燃气轮机透平叶片蒸汽冷却技术现状

燃气轮机透平叶片蒸汽冷却技术现状
燃气轮机透平叶片蒸汽冷却技术现状

科研探索

知识创新

与。显然,燃气轮机透平进口温度已经

远远超过了金属材料所能承受的极限。因此,对燃气轮机透平高温部件,尤其是透平叶片必须采用冷却技术,保证叶片本身温度低于材料的许可值而安全工作。总结历年来燃气透平进口温度及材料的允许温度变化趋势。燃气透平进口温度平均以每年20℃的速度增加,而金属耐热温度平均每年增加

8℃,其余的温升则得益于冷却技术的进步。

冷却技术的应用不仅提高了燃气透平进口初温和燃气轮机循环热效率,而且使叶片表面温度分布更加均匀,从而降低了叶片内部热应力,提高叶片寿命。然而,随着燃气透平初温的提高,为了冷却高温部件,从压气机抽出的冷却空气量逐渐增加,这不仅消耗了压气机中的高压空气,而且冷空气在透平中与主流燃气的搀混也导致透平效率的下降,从而影响了整个系统的效率。蒸汽的导热性能大于空气且热容较大,采用蒸汽冷却方式可以使需要的冷却剂流量大大减少,较好地弥补了空气冷却的缺点。1蒸汽冷却技术的工业应用

目前,美国、德国和日本的一些燃气轮机生产厂家,如GE 、三菱等已经将蒸汽冷却技术投入实际生产,制造出进口温度更高的燃气轮机,取得了很好的经济效益。1.1美国GE 公司的H 系列燃机

H 系列燃气轮机包括50Hz 的MS9001H 燃气轮机和60Hz 的MS7001H 燃气轮机。以MS9001H 为基础部件组成的STAG 109H 燃气-蒸汽联合循环机组将成为有史以来效率最高的联合循环发电机组,其净效率达到60%,功率输出为480MW ,

而此前最高的联合循环效率仅为55%左右

在冷却叶片设计方面:H 系列燃机采用了航空技术的4级

涡轮,要求对第1、2级喷嘴及动叶进行蒸汽冷却。其中第1级使用单晶叶片,镍基合金并带有隔热涂层;第3级喷嘴及动叶是空气冷却;第4级不进行冷却。1.2西门子先进的大功率燃气轮机

西门子W501G 机型253MW 是目前60Hz 功率最大、效率最高的商用燃气轮机之一。其透平的进口温度达到1420℃,在简单循环下的效率为39%,联合循环的效率为58%。第一台机组的运行小时己超过12500小时,有5台运行超过8000小时,总累计运行小时超过6.5万小时,己积累了在商业环境下的运行经验。W501G 系列机组的可靠性是98.7%,设备可用率己超过95.7%。初步统计,目前有约16台机组投入商业运行。

W501G 燃气轮机在较高负载运行期间,透平采用外置的闭环蒸汽冷却器;但是在启动和部分负载运行期间,使用空气冷却器。较低负载期间的空气冷却器能力己足够,不需要依赖辅助蒸汽源。在较高的燃气轮机负载下,热交换器冷却需要的蒸汽由蒸汽循环提供,温度较低的冷却蒸汽进入各热交换器的内壁冷却回路,通过冷却壁后,被加热的蒸汽收集在排出集管内,通过导管从燃机中输出,增大联合循环的高温再热蒸汽。

使用闭环蒸汽回路冷却器,即可以减少燃气轮机的压缩空气和NOx 的排放;又可以使蒸汽循环获得额外的热量,提高联合循环的性能。

1.3日本三菱公司的M701G2燃气轮机

Han JC,et al.Gas turbine heat transfer and cooling technology [M].New York:Taylor&Francis,2000.

New一generation gas turbines announced by GE Power Systems, Gas Turbine WorId,June1995,P.36.

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

燃气轮机叶片

燃气轮机叶片加工与控制 一.燃气轮机的结构与组成 燃气涡轮发动机主要由压气机、燃烧和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多。 二.燃气轮机工作原理及热处理过程 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 三.燃气轮机叶片 1.在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。叶片的工作条件。 压气机叶片含风扇叶片属于冷端部件的零件,除最后几级由于高压下与气体的摩擦产生熵增而使温度升高到约600K(327°C),其余温度不高,进口处在高空还需防结冰。工作前面几级由于叶片长以离心负荷为主,后面几级由于温度以热负荷为主。总之压气机叶片使用寿命较长。叶片的使用的材料一般为铝合金、钛合金、铁基不锈钢等材料。 涡轮是在燃烧室后面的一个高温部件,燃烧室排出的高温高压燃气流经流道流过涡轮,所有叶片恰好都是暴露在流道中必须承受约1000°C的高温1Mpa 的以上高压燃气的冲刷下能正常工作。因此叶片应有足够的耐高温和高压的强度。涡轮叶片的使用寿命远低于压气机叶片约2500h。 转子叶片,静子叶片只承受热应力及弯曲应力,没有离心应力。叶片使用的材料一般为高温铸造合金如K403、K424等、和高温合金如GH4133等,温下高强度材料。 2.叶片加工与控制 (1)加工 叶片的加工分两大部分:一部分为叶片型面加工,一部分为榫头加工及缘板加工:压气机工作叶片的型面是用高能高速热挤压成型后经抛光而成;整流叶片是由冷轧成型经抛光而成。涡轮叶片的叶型,无论是工作叶片

防止某型号燃气轮机叶片断裂的措施

防止某型号燃气轮机叶片断裂的措施 一概述 燃气轮机发电机机组具有起、停快,负荷调节灵活,为电网提供电源和调峰.MS6001B型燃气轮机发电机组在我国燃机电厂中是比较多类型机组,由于新设备技术新,没有足够的运行、维护检修经验和相应的技术措施,在燃气轮机运行中,曾经发生了一些非正常故障和叶片断裂事件,增加了机组的运营成本,也影响了企业的经济效益和社会效益. 透平动叶是燃气轮机的重要部件,引起透平动叶断裂的主要因素有: (1)可调进气导向叶片(IGV)卡涩,转动失灵,造成压气机喘振;致使透平动叶断裂. (2)透平叶片因腐蚀,蠕变产生的断裂. 二压气机进气导向叶片(IGV) 的合理间隙 燃气轮机在运行过程中, IGV叶片是以燃机的转速信号和透平排气温度为控制基准,由电液伺服阀控制其开度,最小开度为32°,最大开度84°, IGV 叶片在此范围内连续可调. 叶片在燃汽轮机起停机等低转速过程中是防止压气机喘振的重要机构之一. 燃气轮机在低速运行时,空气容积流量低,压气机前12级容易发生气流旋转脱离现象,进一步发展会形成喘振,其表现为压气机空气流量、压力出现脉动,时高时低,严重时出现压气机气流倒流的现象,同时还会发生低频的怒吼声,机组伴随强烈的震动.由于叶片受到变速的强烈振动,易产生疲劳甚至共振断裂,造成机组灾难性的事故.因此, IGV叶片的安全可靠性,对于燃气轮机至关重要.而IGV叶片的安全可靠性主要取决于其是否卡涩;转动是否失灵,叶顶与进气内缸的间隙、叶根与进气外缸间隙是否超过规范,详见图1、图2。

机组在经过多次起停、水洗等过程后,叶片叶根转轴的铜质垫片A可能会产生腐蚀或锈蚀,尤其是在燃机水洗时,带有污垢的水可能会残留在叶根转轴的台阶孔和垫片A之间,这种残留物会导致垫片A锈蚀变形,进而导致IGV叶片沿转轴孔向叶顶径向移动,于是,叶片叶顶与进气内缸的间隙X1变小。通常该情况主要表现在进气缸的下半缸,因为下半缸中叶根转轴的台阶孔和垫片A之间的间隙容易残留水洗时带来的污垢。(图3) 与此同时,下半缸内缸叶顶转轴石墨衬套的松动,在重力的作用下,向下径向移动,使得叶片叶顶与进气内缸的间隙X1变小更成为可能,严重时,IGV叶片叶顶切入到石墨衬套,石墨衬套破损,叶片发生卡涩,使叶片转动失灵,叶片甚至翘曲变形或断裂,严重影响机组运行的安全性。某电厂就因石墨衬套脱落被IGV叶片切成碎片吸入压气机,酿成压气机叶片外物损坏(FOD)的严重事件。 三透平动叶膨胀间隙的要求 由于燃气轮机透平转子在高温高压燃气的环境中运行,透平动叶必定产生一些膨胀,即透平动叶叶根部分在冷态下(停机状态)需保留一定的间隙(如表1),才能是透平叶片在高温状态下运行时膨胀后处于正常的工作状态。透平一、二、

燃气轮机产品及技术发展介绍 88分

燃气轮机产品及技术发展介绍 1.以下不属于燃烧技术领域的是: (3.0分) A.低排放 B.燃料适应性 C.热声分析 D.喘振分析 我的答案:D√答对 2.不属于燃气轮机长期服务的工作是:( 3.0分) A.无损检测 B.叶片修换 C.寿命延长 D.性能试验 我的答案:D√答对 3.以下不属于透平叶片冷却方式的是:(3.0分) A.气膜冷却 B.蒸发冷却 C.冲击冷却 D.对流冷却 我的答案:B√答对

4.以下不属于中心拉杆转子的结构是:(3.0分) A.轮盘 B.中心拉杆 C.周向拉杆 D.赫兹齿 我的答案:C√答对 5.将空气进行压缩的燃气轮机部件是:(3.0分) A.燃烧室 B.透平 C.压气机 D.支撑 我的答案:C√答对 6.AE94.3A燃气轮机的单机功率是:(3.0分) A.943MW B.368MW C.325MW D.78MW 我的答案:C√答对 7.上海电气燃机总装车间投产年份是:(3.0分) A.1983年

B.2003年 C.2015年 D.2005年 我的答案:D√答对 8.用于对燃气轮机入口空气进行过滤的辅助系统是:(3.0分) A.气动模块 B.进气系统 C.排气系统 D.燃料系统 我的答案:B√答对 9.目前上海电气的主要燃气轮机合作伙伴是:(3.0分) A.安萨尔多 B.西门子 C.通用电气 D.西屋 我的答案:A√答对 10.属于二次空气冷却系统的主要功能的是:(3.0分) A.冷却透平叶片 B.冷却压气机叶片 C.提高压气机流量

D.提高燃烧温度 我的答案:A√答对 1.以下属于透平叶片的材料的是:(4.0分)) A.镍基合金 B.球墨铸铁 C.钴基合金 D.不锈钢 我的答案:ABD×答错 2.属于轴系动力学分析的内容有:(4.0分)) A.横振分析 B.扭振分析 C.燃烧调整 D.熔模铸造 我的答案:AB√答对 3.属于联合循环热力优化手段的有:( 4.0分)) A.进气冷却 B.抽汽配置 C.控制保护 D.余热利用 我的答案:ABCD×答错

某电厂3号燃气轮机压气机叶片故障的原因分析

第36卷 第1期热力透平Vol136No11 2007年3月THER M A L T UR BI NE Mar12007某电厂3号燃气轮机压气机叶片故障的原因分析 朱宝田,肖俊锋,祁文玉 (西安热工研究院,西安,710032) 摘 要: 对某电厂3号燃气轮机压气机叶片的故障原因进行分析,调查了故障发生经过、运行记录、控制系统记录、机组分解现场、零部件损坏情况,对叶片材质和断口进行了理化检验分析,得出故障原因,对机组的修复和今后的安全运行具有重要的意义。故障与运行操作无直接关系。故障原因分析的结论成为电厂向制造商索赔的技术依据。 关键词: 发电厂;燃气轮机;压气机;叶片;故障;原因分析 中图分类号:T K47418 文献标识码:A 文章编号:1672-5549(2007)01-0067-04 Analysis on Compressor Blade Failure of No13G as Turbine in a Certain Plant Z H U B ao2ti an,X I A O J un2f eng,QI W en2y u (Thermal Power Research Institute,Xi’an710032,China) Abstract: An analysis on the compressor blade failure of No13gas turbine in a certain plant was analyzed1 The failure occurring,operating record,control system record,unit decomposition site and components damage status were investigated1The physical and chemical inspection analysis for blade material and blade fracture were done to obtain the failure causes,which has a great significance to the rehabilitation of unit and later safe operation1The failure had no direct relation to operation.The conclusion of failure analysis could be considered as technical material used for the plant,who claimed for damages f rom manufacturer1 K ey w ords: power plant;gas turbine;compressor;blade;failure;analysis 1 机组情况 某电厂3号燃气轮机为GE2AL STOM公司制造的P G65812B型燃气轮机,额定功率42100kW(天然气燃料),额定转速5163r/min。2004年9月24日简单循环投运,2005年9月4日,联合循环投运。3号燃气轮机累计点火运行1004314小时;累计启动80次,事故跳闸9次(因燃气轮机引起的跳闸仅本次事故);系统周波4919~5012Hz。机组正常运行负荷在30~40MW之间,平均负荷33MW,冬季环境温度低时最高负荷48MW,调峰时最低负荷25MW。 2 故障情况 故障前,3号燃气轮机负荷37MW。 2005年12月6日凌晨5点左右,1号轴承两个振动监测值由原来的0189mm/s、0197mm/s分别增至1182mm/s、119mm/s。 9时许,1号轴承振动监测值增至316mm/s、3156mm/s,2号轴承两个振动监测值由113mm/ s、1144mm/s增至3139mm/s、3109mm/s;由于上述振动监测值与GE公司规定的报警值1217mm/s尚有距离,机组继续运行。 11:52分,控制系统出现“燃机排气温度高”报警,机组跳闸。跳闸前报警信息如下: 时间 报警信息 2005/12/06 11:52:231343燃机排气温度高2005/12/06 11:52:231343排气超温跳闸2005/12/06 11:52:241718发电机短路器跳闸2005/12/06 11:52:451343高振动跳闸或停机机组跳闸前后燃机有短促异常声响。跳闸后机组惰走时间11分20秒,与正常停机6走时间 收稿日期:2006-09-27 作者简介:朱宝田(1948-),男,西安热工研究院首席研究员,享受国务院政府特殊津贴的专家,从事发电厂设备和系统的研究。本文为2006年中国动力工程学会透平专委会论文研讨会宣读论文,获优秀论文奖。

航天发动机涡轮叶片失效分析

航空发动机涡轮叶片失效分析 涡轮叶片是航空发动机最主要的部件之一,高温1600-1800度长期工作、要承受300米/秒左右的风速、高负荷(根据作用力的大小确定)、结构复杂的典型热端机械构件,它的设计制造性能和可靠性直接关系到整台发动机的性能水平耐久性和寿命。为了提高发动机的推重比,叶片设计时常采用比强度高的新材料;采用先进复杂的冷却结构及工艺;降低工作裕度等措施来实现。因此,研究涡轮叶片失效分析对提高发动机工作安全及正确评估叶片的损伤形式和损伤程度有重要意义。 1.涡轮转子叶片结构特点 现代航空发动机多处采用多级轴流式涡轮。涡轮叶片具有气动力翼型型面,为了使燃气系统排出的燃气流竜在整个叶片长度上做等量得功,并保证燃气流以均匀的轴向速度进入排气系统从叶根到叶尖有一个扭角,叶尖处的扭角比叶根处要大。 涡轮转子叶片在涡轮盘上的固定方法十分重要,现代大多数燃气涡轮发动机转子都采用“枞树形”榫齿。这种榫齿精确加工和设计,以保证所有榫齿都能按比例承受载荷。当涡轮静止时,叶片在榫槽内有一定的切向活动量;而当涡轮转动时,离心力将叶根拉紧在盘上。 涡轮叶片材料是保证涡轮性能和可靠性的基础,涡轮叶片早期是用变形高温合金,采用锻造的方法制造。由于发动机设计与精铸技术的发展,发动机涡轮叶片从变形合金发展为铸造合金从实心发展为空心,从多晶发展为单晶,从而大大提高了叶片的耐热性能。由于镍基单晶超合金具有卓越的高温蠕变性能已成为制造航空发动机热端部件的重要材料。 涡轮叶片的工作条件和受力分析 2.叶片的工作条件 涡轮叶片时直接利用高温高速燃气做功的关键部件,温度高负荷大应力状态复杂工作环境非常恶劣。涡轮叶片在高温燃气的工作条件下,高温氧化和燃气腐蚀则是其主要的表面损伤形式。氧和硫是影响镍基合金高温合金氧化抗力最有害的两种元素。氧化晶界扩散与晶界上的Cr。Al..。和Ti等元素发生化学反应形成氧化物,然后氧化物开裂,使疲劳裂纹萌生与扩展。硫以引起晶界脆化的方式加速疲劳裂纹的萌生与扩展。 涡轮转子叶片在工作中一直处于高温工作状态,因此热疲劳和高温蠕变性能也是涡轮转子叶片的重要失效抗力指标。

北航航空燃气轮机结构设计期末考试复习宝典概要

、填空题。 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置、压气机、燃烧室、涡轮和排气装置;其中“三大核心”部件为:压气机、燃烧室和涡轮。 3.压气机的作用提咼空气压力,分成轴流式、离心式和组合式三种 4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣。 5.压气机增压比的定义是:压气机出口压力与进口压力的比值,反映了气流在压气机内压力提高的程度。 6.压气机由转子和静子等组成,静子包括机匣和整流器。 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子(工作)叶片的部分组成:叶身、樺头、中间叶根。 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式有:燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。 12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气 14.轴流式压气机转子的组成:盘;鼓(轴)和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振。 17.采用双转子压气机的作用是防止压气机喘振。 18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力。 20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环 21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内,气流相对谏度减小,压力、密度增加。 25.在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 26.叶冠的作用:①可减少径向漏气而提高涡轮效率:②可抑制振动。 27.叶身凸台的作用:阻尼减振,避免发生共振或颤震,降低叶片根部的弯曲扭转应力(防

航空发动机和燃气轮机耐高温叶片

附件4 航空发动机和燃气轮机耐高温叶片 “一条龙”应用计划申报指南 一、产业链构成 面向航空发动机和燃气轮机等应用领域,以提高高温合金精密铸造涡轮叶片质量和可靠性为核心,组织产业链各环节优势力量,推动重点项目攻关,突破单晶高温合金母合金纯净度控制、复杂定向/单晶涡轮叶片制备、长寿命热障涂层设计与制备等关键技术,带动上游原辅材料产业、高端装备产业等相关产业互融共生、分工合作、利益共享,推进产业链协作发展,形成上下游产业对接顺畅的应用示范全链条,推动航空发动机和燃气轮机的开发、生产和应用。 关键产业链条环节 序号产业链环节航空发动机叶片地面燃气轮机叶片 1上游原材料√√ 2关键设备制造√√ 3高性能涡轮叶片合金开发√√ 4高纯净度母合金制备√√ 5涡轮叶片精密铸造√√ 6涡轮叶片机加√√ 7涡轮叶片制孔√√ 8涡轮叶片焊接√√ 9涡轮叶片热障涂层√√ 10下游应用√√ 二、目标和任务 (一)上游原材料 1.母合金用原材料 (1)环节描述及任务。开发镍、钽、铼等原材料制备技术,提

高原材料的杂质元素含量控制水平,为涡轮叶片用铸造高温合金熔炼提供优质原材料,为母合金锭纯净度控制奠定基础。 (2)具体目标。具备优质原材料生产能力,镍、钽、铼等具体化学成分控制要求如下表所示: 表1镍的化学成分控制要求 表2钽的化学成分控制要求 类别牌号 化学成分,% Ta Nb C O N Fe Ni Mn 不大于 钽条TTa-1余量0.010.0150.200.010.010.0050.003 类别牌号W Mo Si Zr Al Cu Cr Ti 不大于 钽条TTa-10.00 30.0030.010.0030.0030.0030.0050.003 表3铼的化学成分控制要求 类别 化学成分,% Re K Na Ca Fe Cu Mo Pb 不小于不大于 铼条、铼粒99.990.00050.00050.00050.00050.00010.00010.0001 类别W As Se Sn Ba Mn Be Pt 不大于 铼条、铼粒0.00050.00010.00030.00010.00010.00010.00010.0001 类别Co Cd Bi Si Mg C Zn Sb 不大于 铼条、铼粒0.00050.00010.00010.00050.00010.00150.00010.0001 类别Al Ni Ti Cr Tl Te S 不大于 铼条、铼粒0.00010.00050.00050.00010.00010.00010.0005 2.陶瓷型芯/型壳用原材料 (1)环节描述及任务

航空发动机涡轮叶片修复中的裂纹控制

航空发动机涡轮叶片修复中的裂纹控制 航空发动机是飞机的动力核心,随着我国航空事业的发展,我国加快了对于航空发动机的研制步伐,通过引进、研发、生产的这一发展战略提高我国航空发动机的效率和使用寿命。在航空发动机的各组成部件中,涡轮叶片是其中最为重要同时也是受负荷最大的部件,涡轮叶片在工作的过程中会承受着高温燃气的高速冲刷、撞击、黏着磨损等从而使得涡轮叶片的使用效率和使用寿命持续下降。并导致涡轮叶片的叶冠间隙增大进而影响到涡轮叶片叶冠的阻尼效果,严重的会导致涡轮叶片在工作中断裂从而威胁到飞机的飞行安全。在航空发动机使用一段时间进行检修时需要对涡轮叶片进行检查处理,通过采用焊接的方式消除涡轮叶片叶冠阻尼凸台缺陷,并注意做好堆焊处理后涡轮叶片焊接处的裂纹控制和处理。提高涡轮叶片的使用效率和使用寿命。 标签:涡轮叶片;叶冠;裂纹;堆焊 前言 航空发动机涡轮叶片在长时间的使用后会导致涡轮叶片叶冠出现阻尼凸台,这一缺陷的存在会对航空发动机的正常使用造成较大的危害。通过采用氩弧焊堆焊的方式来对涡轮叶片叶冠阻尼凸台进行处理的过程中发现在涡轮叶片叶冠焊接处存在焊接热裂纹,为确保涡轮叶片的使用寿命,在做好涡轮叶片叶冠阻尼凸台焊接裂缝分析的基础上通过对涡轮叶片叶冠阻尼凸台氩弧焊堆焊工艺进行改进用以消除热裂纹缺陷,保障航空发动机涡轮叶片的安全、高效的使用。 1 航空发动机涡轮叶片叶冠阻尼凸台焊接热裂纹产生的原因 某航空发动机在长时间使用后进行检修的过程中发现涡轮叶片叶冠存在阻尼凸台从而使得航空发动机涡轮叶片的阻尼效果变差。航空发动机涡轮叶片采用K403型号的材质,为做好航空发动机涡轮叶片的维修通过采用航空发动机涡轮叶片叶冠阻尼凸台氩弧焊堆焊的处理方法,在对航空发动机涡轮叶片叶冠阻尼凸台焊接处理后检查后发现航空发动机涡轮叶片焊接处存在焊缝热影响区裂缝,从而对航空发动机涡轮叶片的安全使用埋下了安全隐患。为提高航空发动机使用的安全性需要做好航空发动机涡轮叶片焊接热影响区裂纹产生的原因分析并针对性的对航空发动机涡轮叶片的热焊接工艺进行改进优化,以确保航空发动机涡轮叶片的修复质量。 在对航空发动机涡轮叶片焊接热影响区进行分析时为避免裂纹对显微观测结果造成影响,在对航空发动机涡轮叶片进行分析的过程中采用金相分析、电镜扫描观测、能谱仪相配合的方式来做好对于裂纹的分析,用以对航空发动机涡轮叶片焊接热影响区裂纹的产生机理进行分析用以对后续的航空发动机涡轮叶片热焊接工艺进行改进,提高航空发动机涡轮叶片的焊接效果。 航空发动机涡轮叶片裂纹观测结果:

燃气轮机故障类型及原因

燃气轮机故障监测及诊断 1. 国内燃气轮机主要类型 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。 燃气轮机分为: (1)轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。 (2)重型燃气轮机为工业型燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机有不同的分类方法,一般情况如图1-1所示。 图1-1

2. 燃气轮机故障类型 1.燃机在启动过程中“热挂” 2.压气机喘振 3.机组运行振动大 4.点火失败 5.燃烧故障 6.启动不成功 7.燃机大轴弯曲 8.燃机轴瓦烧坏 9.燃机严重超速 10.燃机通流部分损坏 11.润滑油温度高 12.燃机排气温差大 3. 燃气轮机故障原因 “热挂”的原因: (1)启动系统的问题。启动柴油机出力不足;液力变扭器故障等。 (2)压气机进气滤网堵塞、压气机流道脏,压缩效率下降。 (3)燃机控制系统故障。 (4)燃油雾化不良。 (5)透平出力不足。 产生压气机喘振的原因: 压气机喘振主要发生在启动和停机过程中。引起喘振的原因主要有:机组在启动过程升速慢,压气机偏离设计工况;机组启动时防喘放气阀不在打开状态;停机过程防喘放气阀没有打开。 机组运行振动大的原因: 引起燃气轮机运行振动的原因较多,对机组安全运行构成威胁,因此应高度重视。下面列举部分引起机组振动的情况: (1)机组启动过程过临界转速时振动略微升高,属正常现象,但在临界转速后振动会下降。按正常程序启动燃气轮机时,机组会快速越过临界转速,如果由于升速慢引起振动偏高,应检查处理升速较慢的原因。 (2)启动过程中由于压气机喘振引起的振动偏高,喘振时压气机内部发

燃气轮机航空叶片介绍

航空发动机叶片 众所周知,在航空发动机里叶片是透平机械的“心脏”,是透平机械中极为主要的零件。透平是一种旋转式的流体动力机械,它直接起着将蒸汽或燃气的热能转变为机械能的作用。叶片一般都处在高温,高压和腐蚀的介质下工作。动叶片还以很高的速度转动。在大型汽轮机中,叶片顶端的线速度已超过600 m/s,因此叶片还要承受很大的离心应力。叶片不仅数量多,而且形状复杂,加工要求严格;叶片的加工工作量很大,约占汽轮机、燃气轮机总加工量的四分之一到三分之一。叶片的加工质量直接影响到机组的运行效率和可靠行,而叶片的质量和寿命与叶片的加工方式有着密切的关系。所以,叶片的加工方式对透平机械的工作质量及生产经济性有很大的影响。这就是国内外透平机械行业为什么重视研究叶片加工的原因。随着科学技术的发展,叶片的加工手段也是日新月异,先进的加工技术正在广泛采用。 叶片的主要特点是:材料中含有昂贵的高温合金元素;加工性能较差;结构复杂;精度和表面质量要求高;品种和数量都很多。这就决定了叶片加工生产的发展方向是:组织专业化生产,采用少、无切削的先进的毛坯制造工艺,以提高产品质量,节约耐高温材料;采用自动化和半自动化的高效机床,组织流水生产的自动生产线,逐步采用数控和计算机技术加工。叶片的种类繁多,但各类叶片均主要由两个主要部分组成,即汽道部分和装配面部分组成。因此叶片的加工也分为装配面的加工和汽道部分的加工。装配面部分又叫叶根部分,它使叶片安全可靠地、准确合理地固定在叶轮上,以保证汽道部分的正常工作。因此装配部分的结构和精度需按汽道部分的作用、尺寸、精度要求以及所受应力的性质和大小而定。由于各类叶片汽道部分的作用、尺寸、形式和工作各不相同,所以装配部分的结构种类也很多。有时由于密封、调频、减振和受力的要求,叶片往往还带有叶冠(或称围带)和拉筋(或称减震凸台)。叶冠和拉筋也可归为装配面部分。汽道部分又叫型线部分,它形成工作气流的通道,完成叶片应起的作用,因此汽道部分加工质量的好坏直接影响到机组的效率。 下面说一下叶片的材料,由于透平叶片的工作条件和受力情况比较复杂,因此对叶片材料的要求也是多方面的,其中主要的要求概括如下:(1).具有足够的机械强度。即在工作温度范围内具有足够的,稳定的机械强度(屈服极限和强度极限),并且在工作温度范围内这些机械强度具有稳定的数值。在高温情况下(一般指450℃以上),具有足够的蠕变极限和持久强度极限。(2).具有高的韧性和塑性以及高温下抗热脆性(高温下稳定的冲击韧性),避免叶片在载荷作用下产生脆性断裂。(3).耐蚀性。抵抗高温下气体中有害物质的腐蚀以及湿蒸汽和空气中氧的腐蚀能力。(4).耐磨性。抵抗湿蒸汽中水滴和燃气中固体物质的磨蚀。(5).具有良好的冷、热加工性能。(6).具有良好的减振性。叶片是处在交变载荷下工作,除要求有较高的疲劳极限外,还要求有良好的减震性能,即高的对数衰减率。这样可以减小振动产生的交变应力,减小叶片疲劳断裂的可能性。 根据使用温度、使用温度和化学成份等,可以将叶片材料分为两类:(1).马氏体、马氏体-铁素体和铁素体钢。这类钢的使用温度最高不超过580℃,可以作为汽轮机叶片材料。(2).奥氏体钢、铁镍合金和镍基合金等。着类钢的使用温度最高不超过700~750℃,可以作为燃气轮机叶片材料。

大修航空发动机涡轮叶片的检修技术通用版

解决方案编号:YTO-FS-PD367 大修航空发动机涡轮叶片的检修技术 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

大修航空发动机涡轮叶片的检修技 术通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍了涡轮叶片的清洗、无损检测、叶型完整性检测等预处理,以及包括表面损伤修理、叶顶修复、热静压、喷丸强化及涂层修复等在内的先进修理技术。 涡轮叶片的工作条件非常恶劣,因此,在性能先进的航空发动机上,涡轮叶片都采用了性能优异但价格十分昂贵的镍基和钴基高温合金材料以及复杂的制造工艺,例如,定向凝固叶片和单晶叶片。在维修车间采用先进的修理技术对存在缺陷和损伤的叶片进行修复,延长其使用寿命,减少更换叶片,可获得可观的经济收益。为了有效提高航空发动机的工作可靠性和经济性,涡轮叶片先进的修理技术日益受到发动机用户和修理单位的重视,并获得了广泛的应用。 1.修理前的处理与检测 涡轮叶片在实施修理工艺之前进行必要的预处理和检测,以清除其表面的附着杂质;对叶片损伤形式和损伤程度做出评估,从而确定叶片的可修理度和采用的修理技术

燃气轮机涡轮叶片多轴疲劳_蠕变寿命研究_彭立强

第22卷第2期燃气涡轮试验与研究Vol.22,No.2 2009年5月Gas Turbine Experiment and Research May,2009 燃气轮机涡轮叶片多轴疲劳/蠕变寿命研究 彭立强,王健 (大连理工大学汽车工程学院,辽宁大连116023) 摘要:本文针对电厂用燃气轮机涡轮转子叶片工作环境,对Manson-Coffin多轴疲劳预测方程和SWT公式进行修正,同时采用尚德广多轴疲劳损伤参量,给出涡轮叶片新的疲劳寿命预测方法,以适应涡轮叶片高温变幅非比例加载 下的疲劳损伤情况。通过算例计算了某涡轮叶片疲劳寿命及10000h的总损伤,其结果与叶片实际疲劳破坏相吻合, 验证了该高温多轴疲劳损伤计算模型的准确性。 关键词:涡轮叶片;高温多轴疲劳;疲劳寿命;蠕变;燃气轮机 中图分类号:TK47文献标识码:A文章编号:1672-2620(2009)02-0034-04 Research of Multiaxial Fatigue-creep Life Prediction for Turbine Blade PENG Li-qiang,WANG Jian (School of Automotive Engineering,Dalian University of Technology,Dalian116023,China) Abstract:This paper amended Manson-Coffin equation of multiaxial fatigue prediction and SWT formula, based on the working condition of gas turbine blade in power generation application.Also,this paper brought forward a new method of fatigue life prediction of turbine blade for non-proportional loading of turbine blade fatigue damage at high temperature with using SHANG De-guang multiaxial fatigue damage model.A prediction was made to turbine blade fatigue life and the total damage after10000hours,which was consistent with the actual blade fatigue damage.So the model of multiaxial fatigue prediction was validated. Key words:turbine blade;multiaxial fatigue at high temperature;fatigue life;creep;gas turbine 1引言 燃气轮机作为大型动力装置,广泛应用于发电及各种工业领域。电厂用燃气-蒸汽轮机联合循环发电机组中的燃气轮机涡轮叶片是燃气轮机中承受温度载荷最剧烈和工作环境最恶劣的部件之一,在高温下要承受很大、很复杂的应力和应变。涡轮叶片在工作时不仅要承受很大的离心载荷、热载荷、气动载荷等,同时还要承受燃气腐蚀、氧化等作用。燃气轮机涡轮叶片疲劳寿命研究对确保热力发电设备的安全、经济运行具有重要意义。 高温疲劳主要研究材料在疲劳和蠕变共同作用下的力学行为。应该指出,“高温”这个概念通常是指使金属点阵中的原子具有较大的热运动能力的温度环境,它因不同的材料而异。一般认为,当合金的工作温度与合金熔点的比值大于0.5时,材料的蠕变现象不可忽略,这时认为零件处于高温工作状态。多轴疲劳是指多向应力或应变作用下的疲劳,也称复合疲劳。 当前,涡轮叶片疲劳寿命预测理论主要基于局部-应力应变的疲劳寿命预测模型,该方法通常采用经典Manson-Coffin方程的Morrow修正公式,同时利用Von-Mises等效应变方法[1]或采用SWT损伤公式[2]。以上方法基本为高温单轴寿命预测方法,经修正和改进后可推广到高温多轴疲劳寿命预测中。然而,直接采用单轴推广过来的疲劳损伤参量来预 收稿日期:2008-10-20;修回日期:2009-04-10 基金项目:国家重点基础研究发展计划—— —973计划(2007CB70770103) 作者简介:彭立强(1983-),男,山东巨野人,硕士研究生,主要从事燃气轮机零部件强度及疲劳寿命研究。34

航空发动机燃气轮机高温合金叶片及结构件项目投资计划书

航空发动机燃气轮机高温合金叶片及结构件项 目 投资计划书 xxx公司

航空发动机燃气轮机高温合金叶片及结构件项目投资计划书目录 第一章项目概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章投资背景和必要性分析 一、产业政策及发展规划 二、鼓励中小企业发展 三、宏观经济形势分析 四、区域经济发展概况 五、项目必要性分析 第三章项目建设方案 一、产品规划 二、建设规模 第四章选址方案评估 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价 第五章项目工程方案分析

一、建筑工程设计原则 二、项目工程建设标准规范 三、项目总平面设计要求 四、建筑设计规范和标准 五、土建工程设计年限及安全等级 六、建筑工程设计总体要求 七、土建工程建设指标 第六章风险防范措施 一、政策风险分析 二、社会风险分析 三、市场风险分析 四、资金风险分析 五、技术风险分析 六、财务风险分析 七、管理风险分析 八、其它风险分析 九、社会影响评估 第七章项目进度说明 一、建设周期 二、建设进度

三、进度安排注意事项 四、人力资源配置 五、员工培训 六、项目实施保障 第八章项目投资情况 一、项目估算说明 二、项目总投资估算 三、资金筹措 第九章项目经济评价 一、经济评价综述 二、经济评价财务测算 二、项目盈利能力分析 第十章附表 附表1:主要经济指标一览表 附表2:土建工程投资一览表 附表3:节能分析一览表 附表4:项目建设进度一览表 附表5:人力资源配置一览表 附表6:固定资产投资估算表 附表7:流动资金投资估算表

航空发动机涡轮叶片断裂原因分析

航空发动机涡轮叶片断裂原因分析 【摘要】本文针对实际使用中航空发动机涡轮叶片断裂的故障,从理论上分析造成断裂的机理,分析实际中引起涡轮叶片断裂的原因,并提出预防措施,对飞行安全起到一定的参考价值。 【关键词】航空发动机;涡轮叶片;断裂分析 0 引言 涡轮叶片是航空发动机最主要的结构件之一,由于其长期工作在高温燃气包围下,承受转子高速旋转时叶片自身的离心力、气动力、热应力以及振动负荷,是发动机中工作条件最为恶劣的零件。 在实际的使用过程中,由于各种原因,涡轮叶片可能发生断裂。当涡轮叶片断裂时,不仅会出现发动机振动进而引起飞机振动,还会打坏其他机件、甚至导致飞机着火等现象,这将严重影响到飞行安全。长期以来,由于涡轮叶片断裂引发的飞行事故在飞行中屡见不鲜。 本文从涡轮叶片的工作条件出发,分析了引起涡轮叶片断裂故障的原因,并举例分析,在此基础上指出预防措施。 1 涡轮叶片故障机理 从理论上看,涡轮叶片断裂的故障机理有疲劳、超应力、蠕变、腐蚀、磨损等。 1.1 疲劳 发动机工作时,由于经常起动、加速、减速、停车以及其他条件的影响,发动机内流扰动、自激振动、流动畸变、转子不平衡、燃气温度分布不均等激励因素的作用,会使涡轮各部件承受复杂的循环载荷作用,使得叶片经受大量弹性应力循环,最终引起高周疲劳、低周疲劳或热疲劳,使得涡轮叶片断裂。其中,高周疲劳是指失效循环数范围在105—107周次的疲劳。低周疲劳是指失效循环数低于104—105周次的疲劳。高周疲劳和低周疲劳都能够引起涡轮叶片断裂,实际使用中,断裂还会来自于高低周复合疲劳[1-3]。热疲劳是来自于涡轮叶片温度的循环变化。涡轮叶片的温度的循环变化来自于燃气温度的变化。 1.2 超应力 涡轮叶片的组成包括叶根、叶身和叶冠。由于其形状的不规则,叶片中存在应力集中部位。尽管在设计中已经采取了一些措施,实际上,超应力仍然是造成涡轮叶片断裂的一个原因。

【期末复习】航空燃气轮机结构设计期末考试复习知识点总结

北航航空燃气轮机结构设计期末考试复习宝典. 一、填空题。 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置、压气机、燃烧室、涡轮和排气装置,其中“三大核心”部件为:压气机、燃烧室和涡轮。 3.压气机的作用提高空气压力~分成轴流式、离心式和组合式三种 4.离心式 压气机的组成:离心式叶轮~叶片式扩压器~压气机机匣。 5.压气机增压比的定义是:压气机出口压力与进口压力的比值~反映了气流在压气机内压力提高的程度。 6.压气机由转子和静子等组成~静子包括机匣和整流器。 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子,工作,叶片的部分组成:叶身、榫头、中间叶根。 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头,燕尾式榫头,和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式有:燕尾形榫头,柱形榫头和焊接在中间环或者机匣上。 12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气。 14.轴流式压气机转子的组成:盘,鼓,轴,和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘 振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振。 17.采用双转子压气机的作用是防止压气机喘振。 18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的 功用:提高压气机效率,承受和传递的负载,包容能力。 20整流叶片与机匣联接的

三种基本方法:榫头联接,焊接,环 21.多级轴流式压气机由前向后~转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内~气流相对速度减小~压力、密度增加。 25.在轴流式压气机的整流环内~气流绝对速度减小~压力增加。 26.叶冠的作用:?可减少径向漏气而提高涡轮效率,?可抑制振动。 27.叶身凸台的作用:阻尼减振~避免发生共振或颤震~降低叶片根部的弯曲扭转应力,防止叶片振动,。 28.涡轮工作条件:燃气温度高~转速高~负荷高~功率大 29.涡轮的基本类型:轴流式涡轮~径向式涡轮 30.涡轮的功用是把高温、高压燃气的部分热能、压力能转变为旋转地机械功 从而带动压气机和其他附件工作 31.涡轮的组成:转子,静子和冷却系统。 32.涡轮叶片的特点:剖面厚、弯曲大、和内腔有冷却通道。 33.涡轮不可拆卸式盘轴联接的方案有径向销钉联接方案,盘、轴焊接联接方案和盘轴整体方案 34.加强的盘式转子是在盘式转子的基础上增加了定距环和将轴加粗。 35(鼓 式转子的优点是抗弯刚性好~结构简单。 36..涡轮叶片一般通过枞树形榫头与轮盘上的榫槽连接到轮盘上。 37.为了冷却涡轮叶片~一般把叶片做成空心的~通冷却空气。 38..在两级涡轮中~一般第二级涡轮叶片更需要带冠。 39.空气—空气热交换器的功用是利用外涵道的空气给冷却涡轮的空气降温。 40.燃气涡轮发动机附件机匣的作用是安装和传动附件 41.工作叶片受到负荷的类型:气动负荷,振动负荷,热负荷,离心力负荷 42.燃 烧室的基本类型:分管燃烧室~环管燃烧室~环形燃烧室

相关文档
最新文档