高中近代物理及发展史总结
高中物理学史高考必背2023

高中物理学史高考必背2023高中物理学史高考必背2023一、古希腊的自然哲学古希腊是物理学发展史上的重要里程碑。
早在公元前6世纪,古希腊哲学家提出了一系列关于自然界的假说和理论。
他们试图通过思考和推理来解释自然现象,奠定了物理学的基础。
1. 焦耳理论焦耳(公元前450-前350)认为物质可以通过热量的传递而发生变化。
他提出了热量守恒定律,即能量不会凭空消失或产生,只能从一种形式转化为另一种形式。
2. 莱克希米德的气候理论莱克希米德(公元前570-前495)将自然界的变化归结为四个基本元素:土、水、火、气。
他认为这四个元素可以相互转化,从而解释了世界上的各种现象。
二、近代物理学的开创17世纪,随着科学方法的发展和实验观察的兴起,物理学开始迎来了新的发展阶段。
以下是近代物理学的重要里程碑。
1. 开普勒的行星运动定律开普勒(1571-1630)发现了行星运动的三个定律,为日心说提供了实验证据,奠定了天体力学的基础。
2. 牛顿的运动定律牛顿(1643-1727)提出了运动的三大定律,其中包括著名的万有引力定律。
牛顿的定律使得我们能够准确地计算物体的运动轨迹,为后来的力学研究奠定了基础。
三、电磁学的发展与电的发现19世纪,电磁学开始蓬勃发展。
以下是一些关键的发现。
1. 法拉第的电磁感应定律法拉第(1791-1867)实验证明了通过磁场中的导线可以产生电流。
这一发现揭示了电磁感应的基本规律,为电磁学的发展提供了重要线索。
2. 奥斯特和弗斯塔的电解现象奥斯特(1777-1851)和弗斯塔(1800-1867)独立发现了电解现象,即通过电流可以使化学物质分解。
这一发现引发了对电学和化学之间关系的深入研究。
3. 麦克斯韦方程组麦克斯韦(1831-1879)提出了电磁场的四个基本方程,将电学和磁学统一起来。
这一理论奠定了电磁学的基础,并揭示了电磁波的存在。
四、量子力学的诞生与发展20世纪初,量子力学的发展引起了物理学领域的革命。
高中常考物理学史总结

高中常考物理学史总结一、力学1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
经典物理学与现代物理学的发展简史

经典物理学与现代物理学的发展简史
近代物理学的诞生始于17世纪后半期,伽利略、开普勒和牛顿做出了奠基性的贡献。
1666年,牛顿发现了微积分的基本概念,得到了后来以他名字命名的三的定律,可谓是近代物理学的发端。
18至19世纪是物理学蓬勃发展的时期。
焦耳、迈耶、开尔文和克劳修斯奠定了热力学的基础。
玻尔兹曼和吉布斯则开辟了统计物理学。
库仑、法拉第和麦克斯韦初步建立了电磁学。
以牛顿定律为基础的经典力学、热力学与统计物理学以及电磁学构成了“经典物理学”的大厦,似乎人类对自然的认识以及达到了完美的境地。
但在19世纪和20世纪之交,物理学界有三大发现:伦琴发现x射线、汤姆孙发现电子和贝克勒尔发现放射性。
物理学研究从宏观转向微观,经典物理学在新发现面前遇到困难,现代物理学开始发展。
1905年,德国的爱因斯坦提出狭义相对论。
接着于1915年提出广义相对论。
普朗克、爱因斯坦、玻尔、薛定谔、海森堡和狄拉克共同建立了量子力学。
狭义相对论、广义相对论和量子力学构造了20世纪现
代物理学的基础。
在此基础上,粒子物理学、原子核物理学、原子与分子物理学、凝聚态物理、等离子体物理、天体物理以至于生物物理学皆得到了发展。
高中物理备考必备物理学史

物理学史总结一、力学1、1638年,意大利物理学家伽利略在两种新科学的对话中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因.同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向.3、1687年,英国科学家牛顿在自然哲学的数学原理着作中提出了三条运动定律(即牛顿三大运动定律).4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体.5、1638年,伽利略在两种新科学的对话一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动.6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说.7、17世纪,德国天文学家开普勒提出开普勒三大定律;8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星.10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念.11、1957年10月,苏联发射第一颗人造地球卫星;1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空.二、电磁学12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k 的值.13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象.18世纪中叶,美国人富兰克林提出了正、负电荷的概念.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针.14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖.15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场.16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律.17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象.18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律.19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应.20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向.21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点.22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素.23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子.(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律.25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律.26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一.三、热学27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动.28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述.次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述.29、1848年开尔文提出热力学温标,指出绝对零度是温度的下限.30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律.31、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值.四年后,帕斯卡的研究表明,大气压随高度增加而减小.1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验.四、波动学32、17世纪,荷兰物理学家惠更斯确定了单摆周期公式.周期是2s的单摆叫秒摆.33、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理.34、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应.五、光学35、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律.36、1801年,英国物理学家托马斯杨成功地观察到了光的干涉现象,证明了光具有波动性.37、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑.38、1864年,英国物理学家麦克斯韦发表电磁场的动力学理论的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础.39、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速.同年,光电效应现象首次被观测到(赫兹观测到).40、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章.41、1800年,英国物理学家赫歇耳发现红外线;1801年,德国物理学家里特发现紫外线;1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片.42、激光——被誉为20世纪的“世纪之光”.六、波粒二象性43、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖.44、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性.45、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础.46、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系.47、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案.电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高.七、相对论48、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);49、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现.50、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变.狭义相对论的其他结论:①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限.③相对论质量:物体运动时的质量大于静止时的质量.51、爱因斯坦还提出了相对论中的一个重要结论——质能方程式E=mc2.八、原子物理学52、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流).53、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流.说明原子可分,有复杂内部结构,并提出原子的枣糕模型.1906年,获得诺贝尔物理学奖.54、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型.由实验结果估计原子核直径数量级为10 -15 m .55、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构.天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的.衰变快慢与原子所处的物理和化学状态无关.56、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子.57、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖.58、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素.59、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra).60、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变.61、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成).62、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应).人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料.63、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子.64、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成需记忆的公式:与物理学史相关的模拟试题汇编108——11模拟题10丰台二模1.在物理学发展进程中,许多物理学家的科学发现推动了人类历史的进步.下列说法中正确的是( B )A.库仑发现了电流的磁效应B.牛顿发现了万有引力定律C.奥斯特发现了电磁感应定律D.爱因斯坦首先提出了量子理论10延庆一模2.历史上有很多杰出的物理学家为物理学的发展做出了巨大的贡献,下列说法正确的是( C )A.麦克斯韦发现了万有引力定律B.伽利略在研究微观世界的量子化方面做出了杰出的贡献C.爱因斯坦为建立狭义相对论做出了杰出的贡献D.牛顿在电磁场理论的建立方面做出了很大的贡献09东城二模3.许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史事实的是( A )A.库仑用他发明的扭秤研究带电体间的相互作用,建立了库仑定律B.奥斯特发现了电流的磁效应,总结出了电磁感应定律C.牛顿提出了万有引力定律,通过实验测出了万有引力恒量D.伽利略通过理想斜面实验,提出了力是维持物体运动状态的原因08西城一模4.下列叙述中符合历史事实的是( C )A.卢瑟福的α粒子散射实验揭示了原子核有复杂结构 B.玻尔理论成功地解释了各种原子的发光现象C.爱因斯坦成功地解释了光电效应现象 D.赫兹从理论上预言了电磁波的存在09西城零模5.下列叙述中符合历史史实的是( A )A.玻尔理论很好地解释了氢原子的光谱 B.汤姆生发现电子,表明原子具有核式结构C.卢瑟福根据α粒子散射实验的现象,提出了原子的能级假设D.贝克勒尔发现了天然放射现象,并提出了原子的核式结构10朝阳二模6.通过α粒子散射实验( B )A.发现了电子B.建立了原子的核式结构模型C.爱因斯坦建立了质能方程D.发现某些元素具有天然放射现象10东城一模7.下列叙述中符合历史事实的是( C )A.卢瑟福的α粒子散射实验揭示了原子核内部有复杂结构B.玻尔理论成功地解释了各种原子的发光现象C.爱因斯坦成功地解释了光电效应现象 D.牛顿提出的质量不变性是狭义相对论的基本假设之一10石景山一模8.许多科学家在物理学发展过程中做出重要贡献,下列叙述中符合物理学史的是( D )A.卡文迪许通过扭秤实验,总结并提出了真空中两个静止点电荷间的相互作用规定B.卢瑟福通过α粒子散射实验提出原子核具有复杂结构C.牛顿提出了万有引力定律,并通过实验测出了引力常量D.法拉第经过多年的实验探索终于发现了电磁感应现象10海淀0模9.玻尔提出的氢原子结构理论主要依据的现象是( D )A.α粒子散射实验的现象 B.中子轰击铀核产生裂变的现象C.原子核的天然放射性现象 D.低压氢气放电管中的氢气在高电压作用下发光,产生线状谱线的现象10北京抽样10.物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步.下列表述正确的是( A )A.牛顿发现了万有引力定律 B.洛伦兹发现了电磁感应定律C.α粒子散射现象表明了原子核有复杂结构 D.狭义相对论认为运动物体的质量与速度无关11丰台一模11.下列关于电磁波的说法正确的是( B )A.麦克斯韦提出了电磁波理论,并用实验证实了电磁波的存在B.各种电磁波在真空中的传播速度与光速一样,为3×108m/sC.经过调幅后的电磁波是横波,经过调频后的电磁波是纵波D.红外线是波长为可见光波长还长的电磁波,常用于医院和食品消毒11通州一模12.下列说法符合物理学史实的是( A )A.爱因斯坦创立了相对论 B.麦克斯韦提出了能量子概念C.法拉第发现了天然放射性D.粒子散射实验证实了电磁波的存在11海淀二模13.下列说法中正确的是( B )A.实物粒子只具有粒子性,不具有波动性B.卢瑟福通过α粒子散射实验现象,提出了原子的核式结构模型C.光波是概率波,光子在前进和传播过程中,其位置和动量能够同时确定D.在工业和医疗中经常使用激光,是因为其光子的能量远大于γ光子的能量11海淀二模反馈14.下列说法中不正确的是( D )A.普朗克在研究黑体辐射问题时提出了能量子假说B.光电效应、康普顿效应说明光具有粒子性C.黑体辐射,随着温度的升高,一方面各种波长的辐射强度都有增加,另一方面辐射强度的极大值向波长较短的方向移动D.在康普顿效应中,当入射光子与晶体中的电子碰撞时,把一部分动量转移给电子,因此光子散射后波长变短11丰台二模15.下列理论的提出标志着量子理论诞生的是( C )A.爱因斯坦提出光量子理论 B.玻尔提出原子结构理论C.普朗克提出能量子理论 D.爱因斯坦提出相对论11东城二模16.物理学是一门以实验为基础的科学,任何学说和理论的建立都离不开实验.下面给出了几个在物理学发展史上有重要地位的物理实验,以及与之相关的物理学发展史实的说法,其中错误的是( D )A.α粒子散射实验是原子核式结构理论的实验基础B.光电效应实验表明光具有粒子性C.电子的发现揭示了原子不是构成物质的最小微粒D.天然放射现象的发现证实了玻尔原子理论是正确的11西城二模17.普朗克在1900年将“能量子”引入物理学,开创了物理学的新纪元.人们在解释下列哪组实验现象时,都利用了“量子化”的观点 ( A )A.光电效应现象氢原子光谱实验 B.光电效应现象α 粒子散射实验C.光的折射现象氢原子光谱实验 D.光的折射现象α 粒子散射实验11通州一模18.下列说法符合物理学史实的是 ( A )A.爱因斯坦创立了相对论 B.麦克斯韦提出了能量子概念C.法拉第发现了天然放射性D.粒子散射实验证实了电磁波的存在11东城零模19.二十世纪初,为了研究物质内部的结构,物理学家做了大量的实验,揭示了原子内部的结构.发现了电子、中子和质子,右图是( A )A.卢瑟福的α粒子散射实验装置B.卢瑟福发现质子的实验装置C.汤姆逊发现电子的实验装置D.查德威克发现中子的实验装置11怀柔零模20.下列说法中正确的是 ( A )A.托马斯杨通过光的单缝衍射实验,证明了光是一种波B.在太阳光照射下,水面上油膜出现彩色花纹是光的色散现象C.在光的双缝干涉实验中,若仅将入射光由绿光改为红光,则干涉条纹间距变宽D.麦克斯韦提出电磁场理论并预言电磁波存在,后来由他又用实验证实电磁波的存在11丰台二模21.电子是组成原子的基本粒子之一.下列对电子的说法中正确的是( D )A.密立根发现电子,汤姆生最早测量出电子电荷量为×10-19CB.氢原子的电子由激发态向基态跃迁时,向外辐射光子,原子能量增加C.金属中的电子吸收光子逸出成为光电子,光电子最大初动能等于入射光电能量D.天然放射现象中的β射线实际是高速电子流,穿透能力比α射线强与物理学史相关的模拟试题汇编21.(2010年佛山质检)物理学的研究方法很特别,以下叙述错误的是( D )A.在现实生活中不存在真正的质点,将实际的物体抽象为质点是物理学中一种重要的科学研究方法B.牛顿在探究加速度a与力F、质量m之间的关系时,先保持m恒定的情况下,探究a与F的关系,采用的是控制变量法C.电场强度的定义式,采用的是比值法D.伽利略比萨斜塔上做落体实验,采用的是理想实验法2.以下说法符合物理史实的是( B )A.亚里士多德认为“力是维持运动的原因”阻止了物理学的发展进程B.开普勒关于行星运动的描述为万有引力定律的发现奠定了基础C.法拉第发现了电流周围存在着磁场,为实现当今电气化奠定基础D.“我之所以比别人看得远,是因为我站在了巨人的肩膀上”,牛顿所指的巨人是:爱因斯坦、伽利略、开普勒3.下列说法正确的是( B )A.牛顿总结出了万有引力定律并测出了万有引力常量B.法拉第发现了电磁感应现象C.爱因斯坦的光子说是一部介绍光的波动性的理论D.重核裂变过程质量亏损,轻核聚变过程质量增大4.科学方法在物理问题的研究中十分重要,历史上有一位物理学家受到牛顿万有引力定律的启发,运用类比方法,在电磁学领域中建立了一个物理学定律,该定律的名称为( A )A.库仑定律 B.欧姆定律 C.法拉第电磁感应定律 D.楞次定律5.物理史上,有许多规律的发现或学说的建立是在科学家们之间相互启发、相互印证的过程中逐步完成的.下列说法中不符合史实的是( C )A.牛顿发现了万有引力定律,后来由卡文迪许在实验室证明并测出了万有引力恒量的数值B.麦克斯韦提出了电磁波理论,后来由赫兹证实电磁波的存在C.汤姆逊提出了原子的核式结构学说,后来由他的学生卢瑟福通过着名的α粒子散射实验予以证实D.贝克勒尔最早发现了天然放射现象,后来一些科学家利用放射线轰击其它元素的原子核,相继发现了原子核内存在的质子和中子6.在物理学发展史上,许多物理学家对物理学发展作出了卓越的贡献,下列叙述不符合史实的是( B )A.玻尔首先把普朗克的量子理论应用到原子系统上,提出玻尔原子能级模型B.麦克斯韦提出电磁场理论并证实电磁波的存在C.约里奥居里夫妇首先发现了用人工核转变的方法获得放射性同位素D.法拉第发现了电磁感应现象,还提出了电场线的概念7.下列说法正确的是( A )A. 钱三强、何泽慧夫妇是最早发现铀三裂变、四裂变的中国科学家B. 铀的裂变是不需要条件的,只要让中子进入铀核中,铀核即能发生链式反应C. 无论是核聚变还是核裂变,其反应过程中所产生的能量,都可以被利用来发电D. 与裂变相比轻核聚变辐射多,不安全、不清洁8.(2009年汕头金中三模)下列关于物理学史的说法,正确的是( D )A.爱因斯坦提出了量子理论,后来普朗克通过光电效应实验提出了光子说B.卡文迪许发现了万有引力定律,后来牛顿测出了万有引力常量C.查德威克预言了中子的存在,并亲自通过核的人工转变实验加以证实D.汤姆孙发现了电子,密立根通过油滴实验测定了电子的电荷量9.物理学在研究实际问题时,常常进行科学抽象,即抓住研究问题的主要特征,不考虑与当前研究问题无关或影响较小的因素,建立理想化模型.下列选项是理想化模型的有( AC )A.质点 B.加速度 C.自由落体运动 D.力的合成10.(2010年普宁模拟)某同学对下面几个图案进行了论述,哪些是正确的( AC )A.甲图是在共点力合成实验中描绘的图象,能说明两个力的作用效果与一个力的作用效果近似相同的事实B.乙图是演示伽利略的“理想实验”装置,能证明小球在水平轨道上一直保持匀速直线运动状态的事实C.丙图是猜想的a-F图象,事实上由实验数据描出的点有些离散,并不是严格地位于这条直线上,用来拟合这些点的直线并非准确地通过原点D.丁图是描述条形磁铁磁感线的图象,能说明磁感线是客观存在的物质11.在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进步.在对以下几位物理学家所作科学贡献的叙述中,正确的说法是( AC )A.英国物理学家卡文迪许用实验的方法测出万有引力常量GB.牛顿应用“理想斜面实验”推翻了亚里士多德的“力是维持物体运动的原因”观点C.胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比D.亚里士多德认为两个从同一高度自由落下的物体,重物体与轻物体下落一样快12.(2010年普宁二中月考)下列说法正确的是( BC )A.牛顿第一定律可以通过实验来证实B.法拉第发现了磁场产生电流的条件和规律C.安培最早发现了磁场能对电流产生的作用D.安培也最早发现了磁场对运动电荷产生的作用13.(2009年苏州一模)下列说法正确的是( AD )A.欧姆首先总结了电路中电流与电压和电阻的关系B.库仑发现了电流的磁效应C.麦克斯韦首次通过实验证实了电磁波的存在D.楞次最早提出了确定感应电流方向的方法14.下列关于物理学史的说法正确的是( AC )A.卢瑟福通过α粒子散射实验确定了原子核的内部组成结构B.玻尔提出了原子的能级结构模型理论C.贝克勒尔首先发现了铀和含铀的矿物质具有天然放射现象D.查德威克通过人工转变发现了质子15.在电磁学发展过程中,许多科学家做出了贡献.下列说法正确的是( AC )A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在C.库仑发现了点电荷的相互作用规律:密立根通过油滴实验测定了元电荷的数值D.安培发现了磁场对运动电荷的作用规律:洛仑兹发现了磁场对电流的作用规律。
(完整版)物理学发展简史

欢迎共阅一、古典物理学与近代物理学:1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支。
2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。
理12341)和化(1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。
(2)半导体制成二极管具整流能力。
(3)集成电路(IC):(A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集成电路。
(B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。
(C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。
(4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。
2、雷射:(一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并放射同频率之光子,藉以将光加以增强。
(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。
(三)应用:(1)工业上:测量、切割、精密加工……(2)医学上:切割手术(肿瘤、近视)……(3)军事上:定位、导引……(4)生活、娱乐上:激光视盘、光纤通讯……3、光纤:(一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包层)两层。
(二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而传递至另一端。
(三)特性:(核2。
(1)向量:兼具大小及方向性者,如:速度、力……(2)纯量:仅具大小无方向性者,如:体积、时间、功……(二)依定义方式而分:(1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强度(光度)、物质的量(物量)七种。
近代物理实验总结

近代物理实验总结篇一:近代物理实验总结近代物理实验总结_____对实验中某些问题的回答一,密立根有实验对油滴进行测量时,油滴有时会变模糊,为什么?如何避免测量过程丢失油滴?若油滴平很调节不好,对实验结果有何影响?为什么每测量一次tg都要对油滴进行一次平衡调节?为什么必须使油滴做匀速运动或静止?试验中如何保证油滴在测量范围内做匀速运动?1、油滴模糊原因有:目镜清洁不够导致局部模糊或者是油滴的平衡没有调节好导致速度过快为防止测量过程中丢失油滴,油滴的速度不要太大,尽可能比较小一些,这样虽然比较费时间,但不会出现油滴模糊或者丢失现象2、、根据实验原理可知,如果油滴平衡没有调节好,则数据必然是错误的,结果也是错误的。
因为油滴的带电量计算公式要的是平衡时的数据因为油滴很微小,所以不同的油滴其大小和质量都有一些差异,导致其粘滞力和重力都会变化,因此需要重新调节平衡才可以确保实验是在平衡条件下进行的。
3、密立根油滴实验的原理就是要在平衡态下测量的,所以油滴必须做匀速运动或静止!小心翼翼的调节平衡,并根据刻度目测油滴的位置变化快慢或者是否变化,从而估算油滴是否在做匀速运动或者确定油滴是否静止!不知道 1\由于在实验过程中使用高压,温度上升,油滴会渐渐挥发。
可以通过调节显微镜的距离来进行观察。
二,核磁共振实验核磁共振实验中为什么要求磁场大均匀度高的磁场?扫场线圈能否只放一个?对两个线圈的放置有什么要求?测量共振频率时交变磁场的幅度越小越好? 1, 核磁共振实验中为什么要求磁场大均匀度高的磁场?要求磁场大是为了获得较大的核磁能级分裂。
这样,根据波尔茨曼,低能和高能的占据数(population)的“差值增大,信号增强。
均匀度高是为了提高resolution.2. 扫场线圈能否只放一个?对两个线圈的放置有什么要求?扫场线圈可以只放一个。
若放两个,这两个线圈的放置要相互垂直,且均垂直于外加磁场。
3. 测量共振频率时交变磁场的幅度越小越好?不对。
高中物理学史、人物成就大全及高中物理学史知识汇总
高中物理中出现的所有物理学史资料的总结1、胡克:英国物理学家;发现了胡克定律(F 弹=kx)2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S 正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。
后由牛顿归纳成惯性定律。
伽利略的科学推理方法是人类思想史上最伟大的成就之一。
3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。
4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。
5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。
6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。
7、焦耳:英国物理学家;测定了热功当量J=4.2 焦/卡,为能的转化守恒定律的建立提供了坚实的基础。
研究电流通过导体时的发热,得到了焦耳定律。
8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。
9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。
10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。
11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。
12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。
13、安培:法国科学家;提出了著名的分子电流假说。
14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。
15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。
近代物理学发展进程简介
近代物理学发展进程简介《20世纪物理学革命》是上海科技教育出版社出版的《诺贝尔奖百年鉴》丛书中的一本。
该书给我们描述了物理学的革命历程。
其中,20世纪是物理学发展史上最富有成就的世纪,物理学在经典物理学的基础上飞速发展,取得了许多辉煌的成果,对人类社会产生了深刻的影响。
在20世纪之前,物理学家对于物质结构的认识还只是观念性的。
20世纪前夕的1897年,人类才发现了第一种基本粒子——电子。
在那以后,物理学家才真正开始了探索微观物质世界的进程。
1900年,普朗克提出量子假说,量子论就此诞生。
其后,爱因斯坦用光量子理论解释了光电效应。
1913年,玻尔提出了原子光谱理论,建立了现代意义上的原子模型。
在20世纪20年代,矩阵力学、薛定谔方程、泡利不相容原理、海森伯不确定原理和狄拉克电子方程相继提出,为量子力学奠定了基础。
这是20世纪物理学史上一场名副其实的革命。
与量子革命几乎同时,爱因斯坦发动了20世纪物理学的另一场革命。
1905年,他提出了狭义相对论,把自牛顿以来一直根深蒂固的绝对时空观从物理学中驱逐出去了。
1915年,他又提出了广义相对论,从而建立起引力的科学理论。
相对论和量子理论一起,成为20世纪物理学的两大基石。
40年代,量子电动力学诞生,它利用相对论和量子理论对电磁力进行了极为深入的阐述。
50年代,发现了弱相互作用的宇称不守恒现象。
60年代,夸克模型成功建立。
60年代末到70年代初,电弱统一理论和量子色动力学相继提出,标准模型正式形成。
标准模型是人类认识微观世界的进程中一个重要的分水岭,堪称20世纪物理学的又一场革命。
然而,标准模型并不意味着人类探索自然的脚步就此停止。
一方面,将引力与电磁力、弱力和强力统一到一个完整的大统一理论一直是物理学家无法割舍的梦想;另一方面,实验和观测所提供的数据也提出了许多新的问题。
20世纪80年代以来,弦论的蓬勃发展,也许同样将是一场给物理学带来巨大影响的革命。
关于近代物理学史的论文(2)
关于近代物理学史的论文(2)关于近代物理学史的论文篇二《如何发挥物理学史的人文教育功能》摘要:物理科学从产生到发展,一刻也没脱离社会的影响,反过来,物理科学也一直对社会发生着作用。
这就使物理学发展史不仅具有科学理论的育人功能,还具有更为深刻的人文理念教育功能。
关键词:物理学史;人文教育一、物理学史对学生辩证唯物主义世界观的教育标志着严格意义上的科学诞生的经典物理,是在冲破了宗教神学的桎梏,并以西方文化的逻辑化传统和实验验证思想取代了纯粹的思辨之后才建立起来的。
从此以后在物理科学的每一次重大发展,总是与人类的思想观念相互作用、相互影响、紧密地联系在一起。
这就使物理科学理论不可避免的体现某种自然观、社会观、科学精神和人文精神。
案例:光的本质波粒二象性理论及其发展史就是培养学生辩证思想的极生动的素材。
千百年来人类探索光的本性,到十七世纪形成了微粒说和波动说这两种对立的学说。
由于具有崇高威望的牛顿支持微粒说,加上波动说本身的不完善和找不到强有力的实验依据,使以后的一百多年时间里一直由微粒说占据统治地位。
直到杨氏双缝干涉实验的成功;惠更斯波动理论的建立,法拉第发现偏振光的振动而在磁场中发现旋转而揭示了光和电的内在联系;麦克斯韦建立电磁理论提出光的电磁说,赫兹用实验证实了电磁波的存在,把光的波动说发展到空前完善的地步,光的微粒说被逼进了死路。
恰恰是在把光的波动说推向顶峰的赫兹实验中,意外地发现了光电效应现象。
进一步研究发现,波动说在光电效应规律中遇到了无法逾越的障碍。
微粒说又抬头了,事物走向了反面。
这时,爱因斯坦运用普朗克的原始的量子理论提出了光子说,解释了光电效应规律,并进一步科学地把光的微粒说和波动说归纳总结为对立统一的波粒二象性。
波粒二象性理论的发展过程是一个辩证的否定过程。
光的波粒二象性同时对微粒说和波动说作了辩证的否定。
它肯定了光有波动性和粒子性,又否定了波动性和粒子性的根本对立,波粒二象性理论正是在辩证的否定中得到了发展,其中有量的积累,有质的转变,旧理论的危机又孕育着新理论的诞生,科学不断发展到新的高度。
高中物理学史知识点总结
2019高中物理学史知识点总结高中物理学史(一)一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中近代物理总结 一、原子结构: 1、电子的发现和汤姆生的原子模型: (1)电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。 电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 (2)汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。 2、粒子散射实验和原子核结构模型 (1)粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①装置: ② 现象: a. 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。 b. 有少数粒子发生较大角度的偏转 c. 有极少数粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 (2)原子的核式结构模型: 由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。 原子核半径小于10-14m,原子轨道半径约10-10m。 3、玻尔的原子模型 (1)原子核式结构模型与经典电磁理论的矛盾(两方面) a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。 b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。 (2)玻尔理论 上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设: ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。 ②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1 ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2的整数倍,即:轨道半径跟电了动量mv的
乘积等于h/2的整数倍,即mvrnhn2123、、…… n为正整数,称量数数 (3)玻尔的氢子模型: ①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。) 氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半
径rn分别为:EEnrnrnnn121123、、……
其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算) ②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。 其中n=1的定态称为基态。n=2以上的定态,称为激发态。 ③玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。 4、光谱和光谱分析 ⑴炽热的固体、液体和高压气体发出的光形成连续光谱。 ⑵稀薄气体发光形成线状谱(又叫明线光谱、原子光谱)。 根据玻尔理论,不同原子的结构不同,能级不同,可能辐射的光子就有不同的波长。所以每种原子都有自己特定的线状谱,因此这些谱线也叫元素的特征谱线。 根据光谱鉴别物质和确定它的化学组成,这种方法叫做光谱分析。这种方法的优点是非常灵敏而且迅速。只要某种元素在物质中的含量达到10-10g,就可以从光谱中发现它的特征谱线。 5、氢原子中的电子云 对于宏观质点,只要知道它在某一时刻的位置和速度以及受力情况,就可以应用牛顿定律确定该质点运动的轨道,算出它在以后任意时刻的位置和速度。 对电子等微观粒子,牛顿定律已不再适用,因此不能用确定的坐标描述它们在原子中的位置。玻尔理论中说的“电子轨道”实际上也是没有意义的。更加彻底的量子理论认为,我们只能知道电子在原子核附近各点出现的概率的大小。在不同的能量状态下,电子在各个位置出现的概率是不同的。如果用疏密不同的点子表示电子在各个位置出现的概率,画出图来,就像一片云雾一样,可以形象地称之为电子云。 6、激光的特性及其应用 普通光源(如白炽灯)发光时,灯丝中的每个原子在什么时候发光,原子在
3 2
1 ν3 ν
2
ν1 哪两个能级间跃迁,发出的光向哪个方向传播,都是不确定的。 激光是同种原子在同样的两个能级间发生跃迁生成的,其特性是:⑴是相干光。(由于是相干光,所以和无线电波一样可以调制,因此可以用来传递信息。光纤通信就是激光和光导纤维结合的产物。)⑵平行度好。(传播很远距离之后仍能保持一定强度,因此可以用来精确测距。激光雷达不仅能测距,还能根据多普勒效应测出目标的速度,对目标进行跟踪。还能用于在VCD或计算机光盘上读写数据。)⑶亮度高。能在极小的空间和极短的时间内集中很大的能量。(可以用来切割各种物质,焊接金属,在硬材料上打孔,利用激光作为手术刀切开皮肤做手术,焊接视网膜。利用激光产生的高温高压引起核聚变。) 7、粒子物理学 到19世纪末,人们认识到物质由分子组成,分子由原子组成,原子由原子核和电子组成,原子核由质子和中子组成。 20世纪30年代以来,人们认识了正电子、μ子、K介子、π介子等粒子。后来又发现了各种粒子的反粒子(质量相同而电荷及其它一些物理量相反)。 现在已经发现的粒子达400多种,形成了粒子物理学。按照粒子物理理论,可以将粒子分成三大类:媒介子、轻子和强子,其中强子是由更基本的粒子——夸克组成。从目前的观点看,媒介子、轻子和夸克是没有内部结构的“点状”粒子。 用粒子物理学可以较好地解释宇宙的演化。 二、原子核 1、天然放射现象 (1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。 放射性:物质能发射出上述射线的性质称放射性 放射性元素:具有放射性的元素称放射性元素 天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象 天然放射现象:表明原子核存在精细结构,是可以再分的 (2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图(1) 各种放射线的性质比较 种 类 本 质 质量(u) 电荷(e) 速度(c) 电离性 贯穿性 α射线 氦核 4 +2 0.1 最强 最弱,纸能挡住 β射线 电子 1/1840 -1 0.99 较强 较强,穿几mm铝板 γ射线 光子 0 0 1 最弱 最强,穿几cm铅版 三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:
如⑴、⑵图所示,在匀强磁场和匀强电场中都是β比α的偏转大,γ不偏转;区别是:在磁场中偏转轨迹是圆弧,在电场中偏转轨迹是抛物线。⑶图中γ肯定打在O点;如果α也打在O点,则β必打在O点下方;如果β也打在
A a b c
β γ α α γ
β
⑴ ⑵ ⑶ O O点,则α必打在O点下方。 2、原子核的衰变: (1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒 类 型 衰变方程 规 律 衰 变
新核电荷数减少质量数减少24
衰 变
新核电荷数增加质量数不变1
射线是伴随、衰变放射出来的高频光子流
在衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子,即: (2)半衰期:放射性元素的原子核有半数发生衰变所需的时间叫半衰期。
(对大量原子核的统计规律)计算式为:TttNN210N表示核的个数 ,此式也
可以演变成 Tttmm210或Tttnn210,式中m表示放射性物质的质量,n 表示单位时间内放出的射线粒子数。以上各式左边的量都表示时间t后的剩余量。 半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。 3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。 (1)质子的发现:1919年,卢瑟福用粒子轰击氦原子核发现了质子。
7142481711NHeOH
(2)中子的发现:1932年,查德威克用粒子轰击铍核,发现中子。
4、原子核的组成和放射性同位素 (1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。 在原子核中: 质子数等于电荷数;核子数等于质量数;中子数等于质量数减电荷数 (2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。 正电子的发现:用粒子轰击铝时,发生核反应。
发生+衰变,放出正电子
(3).放射性同位素的应用 ⑴利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。各种射