圆锥曲线 (3)

合集下载

口算圆锥曲线系列3

口算圆锥曲线系列3
elimination coordinates
得到系数求定最
solve fixed maximum and minimun
1
中点运算
operation
真题引入
past exam
中点公式
formula
C八 X2
真题练习
past exam
真题练习
past exam
x2 y2 1 2
2 2 2 2
2
( y0 B C ) ( y0 A) ( A) ( y1 y0 )( y2 y0 ) 2 2 t exam
x2 y 2 1 4 2
x2 y 2 1 4 2
真题练习
past exam
y2 x2 y 2 C1 : x 1; C2 : 1; P( 2, 2) 2 6 3
小孟老师 高考数学
math meng
口算圆锥 曲线系列
conics
上集回顾
review
末端运算分式最值 一比一反二比二均 tow division tow 位置关系德尔儿塔 delta
area maximum
运算逻辑
logic
直曲联立求韦达
solve francois viete
条件代数消坐标
x2 y2 1 2
2
向量运算
operation
真题练习
past exam
3x 2 3y2 1 4
x2 y2 1 2
三轮系数法 椭系配方正正负 直系B和尾随单 点系前乘Y反反
向量数量积公式
formula
( x0 B) ( x0 A C ) ( B) ( x1 x0 )( x2 x0 ) 2 2 B A

高考数学(理)二轮配套训练【专题6】(3)圆锥曲线中的热点问题(含答案)

高考数学(理)二轮配套训练【专题6】(3)圆锥曲线中的热点问题(含答案)

第3讲圆锥曲线中的热点问题考情解读 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c =0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c =0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.4.轨迹方程问题(1)求轨迹方程的基本步骤:①建立适当的平面直角坐标系,设出轨迹上任一点的坐标——解析法(坐标法). ②寻找动点与已知点满足的关系式——几何关系. ③将动点与已知点的坐标代入——几何关系代数化. ④化简整理方程——简化.⑤证明所得方程为所求的轨迹方程——完成其充要性. (2)求轨迹方程的常用方法:①直接法:将几何关系直接翻译成代数方程;②定义法:满足的条件恰适合某已知曲线的定义,用待定系数法求方程; ③代入法:把所求动点的坐标与已知动点的坐标建立联系;④交轨法:写出两条动直线的方程直接消参,求得两条动直线交点的轨迹;(3)注意①建系要符合最优化原则;②求轨迹与“求轨迹方程”不同,轨迹通常指的是图形,而轨迹方程则是代数表达式.步骤②⑤省略后,验证时常用途径:化简是否同解变形,是否满足题意,验证特殊点是否成立等.热点一 圆锥曲线中的范围、最值问题例1 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.思维启迪 (1)P 点是椭圆上顶点,圆C 2的直径等于椭圆长轴长;(2)设直线l 1的斜率为k ,将△ABD 的面积表示为关于k 的函数.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S , 则S =12|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 思维升华 求最值及参数范围的方法有两种:①根据题目给出的已知条件或图形特征列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 的左,右焦点分别为F 1,F 2,椭圆的离心率为12,且椭圆经过点P (1,32). (1)求椭圆C 的标准方程;(2)线段PQ 是椭圆过点F 2的弦,且PF 2→=λF 2Q →,求△PF 1Q 内切圆面积最大时实数λ的值. 解 (1)e =c a =12,P (1,32)满足1a 2+(32)2b 2=1,又a 2=b 2+c 2,∵a 2=4,b 2=3, ∴椭圆标准方程为x 24+y 23=1.(2)显然直线PQ 不与x 轴重合,当直线PQ 与x 轴垂直时,|PQ |=3,|F 1F 2|=2, S Q PF 1∆=3;当直线PQ 不与x 轴垂直时,设直线PQ :y =k (x -1),k ≠0代入椭圆C 的标准方程, 整理,得(3+4k 2)y 2+6ky -9k 2=0,则y 1=-3k +6k 2+k 43+4k 2,y 2=-3k -6k 2+k 43+4k 2,S Q PF 1∆=12×|F 1F 2|×|y 1-y 2|=12k 2+k 4(3+4k 2)2,令t =3+4k 2,∴t >3,k 2=t -34,∴S Q PF 1∆=3-3(1t +13)2+43,∵0<1t <13,∴S Q PF 1∆∈(0,3),∴当直线PQ 与x 轴垂直时S △PF 1Q 最大,且最大面积为3. 设△PF 1Q 内切圆半径为r ,则S Q PF 1∆=12(|PF 1|+|QF 1|+|PQ |)·r =4r ≤3.即r max =34,此时直线PQ 与x 轴垂直,△PF 1Q 内切圆面积最大,∴PF 2→=F 2Q →,∴λ=1.热点二 圆锥曲线中的定值、定点问题例2 (2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8. (1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.思维启迪 (1)设动圆圆心坐标,利用圆的半径、半弦长和弦心距组成的直角三角形求解;(2)设直线方程y =kx +b ,将其和轨迹C 的方程联立,再设两个交点坐标,由题意知直线BP 和BQ 的斜率互为相反数,推出k 和b 的关系,最后证明直线过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |,当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中点, ∴|O 1M |=x 2+42, 又|O 1A |=(x -4)2+y 2, ∴(x -4)2+y 2=x 2+42,化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 如图由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.得x 1,2=(8-2bk )±-32kb +642k 2,则x 1+x 2=8-2bkk 2,①x 1x 2=b 2k2,②∵x 轴是∠PBQ 的角平分线, ∴y 1x 1+1=-y 2x 2+1, 即y 1(x 2+1)+y 2(x 1+1)=0, (kx 1+b )(x 2+1)+(kx 2+b )(x 1+1)=0, 2kx 1x 2+(b +k )(x 1+x 2)+2b =0③将①②代入③得2kb 2+(k +b )(8-2bk )+2k 2b =0, ∴k =-b ,此时Δ>0,∴直线l 的方程为y =k (x -1),即直线l 过定点(1,0).思维升华 (1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).已知椭圆C 的中点在原点,焦点在x 轴上,离心率等于12,它的一个顶点恰好是抛物线x 2=83y 的焦点. (1)求椭圆C 的方程;(2)已知点P (2,3),Q (2,-3)在椭圆上,点A 、B 是椭圆上不同的两个动点,且满足∠APQ =∠BPQ ,试问直线AB 的斜率是否为定值,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则b =2 3.由c a =12,a 2=c 2+b 2,得a =4,∴椭圆C 的方程为x 216+y 212=1.(2)当∠APQ =∠BPQ 时,P A 、PB 的斜率之和为0, 设直线P A 的斜率为k ,则PB 的斜率为-k ,P A 的直线方程为y -3=k (x -2), 由⎩⎪⎨⎪⎧y -3=k (x -2),x 216+y212=1,整理得 (3+4k 2)x 2+8(3-2k )kx +4(3-2k )2-48=0, x 1+2=8(2k -3)k 3+4k 2,同理PB 的直线方程为y -3=-k (x -2), 可得x 2+2=-8k (-2k -3)3+4k 2=8k (2k +3)3+4k 2.∴x 1+x 2=16k 2-123+4k 2,x 1-x 2=-48k3+4k 2, k AB =y 1-y 2x 1-x 2=k (x 1-2)+3+k (x 2-2)-3x 1-x 2=k (x 1+x 2)-4k x 1-x 2=12, ∴直线AB 的斜率为定值12.热点三 圆锥曲线中的探索性问题例3 已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中心和C 2的顶点均为原点O ,从每条曲线上各取两个点,将其坐标记录于下表中:x 3 -2 4 (1)求C 1,C 2(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →?若存在,求出直线l 的方程;若不存在,说明理由.思维启迪 (1)比较椭圆及抛物线方程可知,C 2的方程易求,确定其上两点,剩余两点,利用待定系数法求C 1方程.(2) 联立方程,转化已知条件进行求解.解 (1)设抛物线C 2:y 2=2px (p ≠0), 则有y 2x=2p (x ≠0),据此验证四个点知(3,-23),(4,-4)在C 2上, 易求得C 2的标准方程为y 2=4x . 设椭圆C 1:x 2a 2+y 2b2=1(a >b >0),把点(-2,0),(2,22)代入得⎩⎨⎧4a 2=12a 2+12b2=1,解得⎩⎪⎨⎪⎧a 2=4b 2=1,所以C 1的标准方程为x 24+y 2=1.(2)容易验证当直线l 的斜率不存在时,不满足题意. 当直线l 的斜率存在时,设其方程为y =k (x -1), 与C 1的交点为M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -1)消去y 并整理得(1+4k 2)x 2-8k 2x +4(k 2-1)=0, 于是x 1,2=8k 2±64k 4-16(1+4k 2)(k 2-1)2(1+4k 2),则x 1+x 2=8k 21+4k 2,①x 1x 2=4(k 2-1)1+4k 2.②所以y 1y 2=k 2(x 1-1)(x 2-1) =k 2[x 1x 2-(x 1+x 2)+1]=k 2[4k 2-11+4k 2-8k 21+4k 2+1]=-3k 21+4k 2.③由OM →⊥ON →,即OM →·ON →=0,得x 1x 2+y 1y 2=0.(*) 将②③代入(*)式,得4(k 2-1)1+4k 2-3k 21+4k 2=k 2-41+4k 2=0,解得k =±2,所以存在直线l 满足条件, 且直线l 的方程为2x -y -2=0或2x +y -2=0.思维升华 解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型.解决问题的一般策略是先假设结论成立,然后进行演绎推理或导出矛盾,即可否定假设或推出合理结论,验证后肯定结论,对于“存在”或“不存在”的问题,直接用条件证明或采用反证法证明.解答时,不但需要熟练掌握圆锥曲线的概念、性质、方程及不等式、判别式等知识,还要具备较强的审题能力、逻辑思维能力以及运用数形结合的思想分析问题和解决问题的能力.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.解 方法一 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),且可知其左焦点为F ′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF |+|AF ′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,设其方程为y =32x +t .由⎩⎨⎧y =32x +t ,x 216+y212=1,得3x 2+3tx +t 2-12=0.因为直线l 与椭圆C 有公共点,所以Δ=(3t )2-4×3×(t 2-12)≥0,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离d =4,得|t |94+1=4,解得t =±213.由于±213∉[-43,43],所以符合题意的直线l 不存在.方法二 (1)依题意,可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),且有⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4.解得b 2=12,b 2=-3(舍去).从而a 2=16.所以椭圆C 的方程为x 216+y 212=1.(2)同方法一.1.圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围. 2.定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果. 3.探索性问题的解法探索是否存在的问题,一般是先假设存在,然后寻找理由去确定结论,如果真的存在,则可以得出相应存在的结论;若不存在,则会由条件得出矛盾,再下结论不存在即可.真题感悟(2014·北京)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.解 (1)由题意,得椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)直线AB 与圆x 2+y 2=2相切.证明如下: 设点A ,B 的坐标分别为(x 0,y 0),(t,2),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t =±2,故直线AB 的方程为x =±2, 圆心O 到直线AB 的距离d = 2. 此时直线AB 与圆x 2+y 2=2相切.当x 0≠t 时,直线AB 的方程为y -2=y 0-2x 0-t (x -t ).即(y 0-2)x -(x 0-t )y +2x 0-ty 0=0. 圆心O 到直线AB 的距离 d =|2x 0-ty 0|(y 0-2)2+(x 0-t )2.又x 20+2y 20=4,t =-2y 0x 0, 故d =⎪⎪⎪⎪2x 0+2y 20x 0x 20+y 20+4y 20x 20+4=⎪⎪⎪⎪4+x 20x 0x 40+8x 2+162x 20= 2. 此时直线AB 与圆x 2+y 2=2相切. 押题精练已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其左、右焦点分别是F 1、F 2,过点F 1的直线l交椭圆C 于E 、G 两点,且△EGF 2的周长为4 2. (1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A 、B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|P A →-PB →|<253时,求实数t 的取值范围.解 (1)由题意知椭圆的离心率e =c a =22,∴e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2.又△EGF 2的周长为42,即4a =42, ∴a 2=2,b 2=1.∴椭圆C 的方程为x 22+y 2=1.(2)由题意知直线AB 的斜率存在,即t ≠0.设直线AB 的方程为y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ),由⎩⎪⎨⎪⎧y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 由Δ=64k 4-4(2k 2+1)(8k 2-2)>0,得k 2<12. ∴x 1,2=8k 2±64k 4-4(2k 2+1)(8k 2-2)2(1+2k 2), ∴x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2, ∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t (1+2k 2), y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4k t (1+2k 2). ∵点P 在椭圆C 上,∴(8k 2)2[t (1+2k 2)]2+2(-4k )2[t (1+2k 2)]2=2, ∴16k 2=t 2(1+2k 2).∵|P A →-PB →|<253,∴1+k 2|x 1-x 2|<253, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209, ∴(1+k 2)[64k 4(1+2k 2)2-4·8k 2-21+2k 2]<209, ∴(4k 2-1)(14k 2+13)>0,∴k 2>14.∴14<k 2<12. ∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k 2, 又32<1+2k 2<2,∴83<t 2=8-81+2k 2<4, ∴-2<t <-263或263<t <2, ∴实数t 的取值范围为(-2,-263)∪(263,2).(推荐时间:50分钟)一、选择题1.已知点M 与双曲线x 216-y 29=1的左、右焦点的距离之比为2∶3,则点M 的轨迹方程为( ) A .x 2-y 2+26x +25=0B .x 2+y 2+16x +81=0C .x 2+y 2+26x +25=0D .x 2+y 2+16x -81=0答案 C解析 设点M (x ,y ),F 1(-5,0),F 2(5,0),则由题意得|MF 1||MF 2|=23, 将坐标代入,得(x +5)2+y 2(x -5)2+y 2=49, 化简,得x 2+y 2+26x +25=0.2.已知椭圆E 的左、右焦点分别为F 1、F 2,过F 1且斜率为2的直线交椭圆E 于P 、Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( ) A.53 B.23 C.23 D.13答案 A解析 由题意可知,∠F 1PF 2是直角,且tan ∠PF 1F 2=2,∴|PF 2||PF 1|=2,又|PF 1|+|PF 2|=2a , ∴|PF 1|=2a 3,|PF 2|=4a 3. 根据勾股定理得⎝⎛⎭⎫2a 32+⎝⎛⎭⎫4a 32=(2c )2, 所以离心率e =c a =53. 3.已知抛物线y 2=8x 的焦点F 到双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)渐近线的距离为455,点P 是抛物线y 2=8x 上的一动点,P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x =-2的距离之和的最小值为3,则该双曲线的方程为( )A.y 22-x 23=1 B .y 2-x 24=1 C.y 24-x 2=1 D.y 23-x 22=1 答案 C解析 由题意得,抛物线y 2=8x 的焦点F (2,0),双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线的方程为ax -by =0, ∵抛物线y 2=8x 的焦点F 到双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)渐近线的距离为455, ∴2a a 2+b 2=455, ∴a =2b .∵P 到双曲线C 的上焦点F 1(0,c )的距离与到直线x =-2的距离之和的最小值为3, ∴|FF 1|=3,∴c 2+4=9,∴c =5,∵c 2=a 2+b 2,a =2b ,∴a =2,b =1.∴双曲线的方程为y 24-x 2=1,故选C. 4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案 C解析 设P (x 0,y 0),则 x 204+y 203=1,即y 20=3-3x 204, 又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2, 又x 0∈[-2,2],即OP →·FP →∈[2,6],所以(OP →·FP →)max =6.5.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 依题意得F (0,2),准线方程为y =-2,又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|,∴|FM |>4,即|y 0+2|>4,又y 0≥0,∴y 0>2.6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),若双曲线上存在点P 满足a sin ∠PF 1F 2=c sin ∠PF 2F 1,则该双曲线的离心率的取值范围为( ) A .(1,2+1) B .(1,3)C .(3,+∞)D .(2+1,+∞) 答案 A解析 根据正弦定理得|PF 2|sin ∠PF 1F 2=|PF 1|sin ∠PF 2F 1, 所以由a sin ∠PF 1F 2=c sin ∠PF 2F 1可得a |PF 2|=c |PF 1|, 即|PF 1||PF 2|=c a=e , 所以|PF 1|=e |PF 2|.因为e >1,所以|PF 1|>|PF 2|,点P 在双曲线的右支上.又|PF 1|-|PF 2|=e |PF 2|-|PF 2|=|PF 2|(e -1)=2a ,解得|PF 2|=2a e -1, 因为|PF 2|>c -a ,所以2a e -1>c -a ,即2e -1>e -1, 即(e -1)2<2,解得1-2<e <2+1.又e >1,所以e ∈(1,2+1),故选A.二、填空题7.直线y =kx +1与椭圆x 25+y 2m=1恒有公共点,则m 的取值范围是________. 答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m=1表示椭圆, ∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点,∴要使直线与椭圆总有公共点,应有:025+12m≤1,m ≥1,∴m 的取值范围是m ≥1且m ≠5.8.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A 、B ,则直线AB 恒过定点________.答案 (0,2)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得,y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2.又点Q (t ,-2)的坐标满足这两个方程,代入得:-2=12x 1t -y 1,-2=12x 2t -y 2,则说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为:y -2=12tx ,因此直线AB 恒过定点(0,2).9.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 椭圆x 29+y 24=1中,a =3.如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.10.(2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1. 三、解答题11.已知点A 、B 的坐标分别是(0,-1)、(0,1),直线AM 、BM 相交于点M ,且它们的斜率之积为-12. (1)求点M 轨迹C 的方程;(2)若过点D (0,2)的直线l 与(1)中的轨迹C 交于不同的两点E 、F ,试求△OEF 面积的取值范围.(O 为坐标原点)解 (1)设点M 的坐标为(x ,y ),∵k AM ·k BM =-12. ∴y +1x ·y -1x =-12. 整理,得x 22+y 2=1(x ≠0), 即M 的轨迹方程为x 22+y 2=1. (2)由题意知直线l 的斜率存在,设l 的方程为y =kx +2,①将①代入x 22+y 2=1得: (2k 2+1)x 2+8kx +6=0,由Δ>0,解得k 2>32. 设E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧ x 2=-4k -4k 2-62k 2+1,x 1=-4k +4k 2-62k 2+1,则|x 1-x 2|=24k 2-62k 2+1. S △OEF =S △OED -S △OFD =12OD ·|x 1|-12OD ·|x 2|=12OD ·|x 1-x 2|=12×2·|x 1-x 2|=|x 1-x 2| = 16(k 2-32)(2k 2+1)2. 令k 2-32=t (t >0),所以k 2=t +32(t >0),所以S △OEF =|x 1-x 2|= 16t (2t +4)2= 4t (t +2)2 =2t t 2+4t +4=21t +4t +4≤214+4=22, 故△EOF 面积的取值范围是(0,22].12.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM →·TN →的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.(1)解 依题意,得a =2,e =c a =32, 所以c =3,b =a 2-c 2=1.故椭圆C 的方程为x 24+y 2=1. (2)解 点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0.由于点M 在椭圆C 上,所以y 21=1-x 214.(*) 由已知得T (-2,0),则TM →=(x 1+2,y 1),TN →=(x 1+2,-y 1),所以TM →·TN →=(x 1+2)2-y 21=(x 1+2)2-(1-x 214)=54x 21+4x 1+3 =54(x 1+85)2-15. 由于-2<x 1<2,故当x 1=-85时,TM →·TN →取得最小值为-15. 把x 1=-85代入(*)式,得. y 1=35,故M (-85,35), 又点M 在圆T 上,代入圆的方程得到r 2=1325.故圆T 的方程为:(x +2)2+y 2=1325. (3)证明 设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0), 令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1, 故x R ·x S =x 21y 20-x 20y 21y 20-y 21,(**) 又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式,得x R ·x S =4(1-y 21)y 20-4(1-y 20)y 21y 20-y 21=4(y 20-y 21)y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.。

高考数学圆锥曲线综合题题库3 含详解

高考数学圆锥曲线综合题题库3 含详解

51、(河北省正定中学2008年高三第五次月考)已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点.(1)设1()2O R O P O Q =+(O 为原点),求点R 的轨迹方程;(2)若直线l 的倾斜角为60°,求11||||PF QF +的值. 解:(1)设1122(,),(,),(,)P x y Q x y R x y112211()(,)[(,)(,)]22O R O P O Q x y x y x y =+⇒=+ 121222x x x y y y +⎧=⎪⎪⇒⎨+⎪=⎪⎩由22222212xx y y +=⇒+=,易得右焦点(1F ----------(2分)当直线l x ⊥轴时,直线l 的方程是:1x =,根据对称性可知(1,0)R 当直线l 的斜率存在时,可设直线l 的方程为(1)y k x =-代入E 有2222(21)4220k x k x k +-+-=2880k ∆=+>; 2122421kx x k +=+----(5分)于是(,):R x y x =21222221x x kk +=+; (1)y k x =-消去参数k 得2220x y x +-=而(1,0)R 也适上式,故R 的轨迹方程是2220x y x +-=-(8分)(2)设椭圆另一个焦点为'F ,在'PF F ∆中0'120,|'|2,PFF F F ∠==设||PF m =,则|'|PF m =由余弦定理得2220)222cos120m m m =+-⋅⋅⋅m ⇒=同理,在'QF F ∆,设||QF n =,则|'|Q F m = 也由余弦定理得2220)222cos 60n n n -=+-⋅⋅⋅n ⇒=于是1111||||22PF Q F m n +=+=+= ---------(12分)52、(河南省开封市2008届高三年级第一次质量检)双曲线)0,0(12222>>=-b a by ax 的左、右焦点分别为F 1、F 2,O 为坐标原点,点A 在双曲线的右支上,点B 在双曲线左准线上, .,22OB OA OA OF AB O F ⋅=⋅=(1)求双曲线的离心率e ;(2)若此双曲线过C (2,3),求双曲线的方程;(3)在(2)的条件下,D 1、D 2分别是双曲线的虚轴端点(D 2在y 轴正半轴上),过D 1的直线l 交双曲线M 、N ,l N D M D 求直线,22⊥的方程。

高中数学圆锥曲线方程试卷3(考点详解版)

高中数学圆锥曲线方程试卷3(考点详解版)

高中数学组卷圆锥曲线方程3一.解答题(共30小题)1.(2008•温州学业考试)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线方程.2.(2007•重庆)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x=12.(1)求椭圆的方程;(2)在椭圆上任取三个不同点P1,P2,P3,使∠P1FP2=∠P2FP3=∠P3FP1,证明:++为定值,并求此定值.3.(2007•北京)如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(Ⅰ)求面积S以x为自变量的函数式,并写出其定义域;(Ⅱ)求面积S的最大值.4.(2007•山东)已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.5.(2007•天津)设椭圆的左、右焦点分别为F1,F2,A是椭圆上的一点,C,原点O到直线AF1的距离为.(Ⅰ)证明;(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2.6.(2007•上海)我们把由半椭圆(x≥0)与半椭圆(x≤0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,M是线段A1A2的中点.(1)若△F0F1F2是边长为1的等边三角形,求该“果圆”的方程;(2)设P是“果圆”的半椭圆(x≤0)上任意一点.求证:当|PM|取得最小值时,P在点B1,B2或A1处;(3)若P是“果圆”上任意一点,求|PM|取得最小值时点P的横坐标.7.(2007•湖南)已知双曲线x2﹣y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点.(Ⅰ)若动点M满足(其中O为坐标原点),求点M的轨迹方程;(Ⅱ)在x轴上是否存在定点C,使•为常数?若存在,求出点C的坐标;若不存在,请说明理由.8.(2007•丰台区二模)在平面直角坐标系xoy中,已知三点A(﹣1,0),B(1,0),C(﹣1,),以A、B为焦点的椭圆经过点C.(I)求椭圆的方程;(II)设点D(0,1),是否存在不平行于x轴的直线l与椭圆交于不同两点M、N,使?若存在,求出直线l斜率的取值范围;若不存在,请说明理由;(III)若对于y轴上的点P(0,n)(n≠0),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使,试求n的取值范围.9.(2007•东城区二模)已知双曲线的右焦点是F,右顶点是A,虚轴的上端点是B,且,∠BAF=120°.(1)求双曲线C的方程;(2)过点P(0,4)的直线l交双曲线C于M、N两点,交x轴于点Q(点Q与双曲线C的顶点不重合),当,且时,求点Q的坐标.10.(2007•潮阳区校级模拟)已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,)为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.(1)求双曲线C的方程;(2)若Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.11.(2008•山东)已知曲线所围成的封闭图形的面积为,曲线C1的内切圆半径为.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.12.(2008•四川)已知椭圆C1的中心和抛物线C2的顶点都在坐标原点O,C1和C2有公共焦点F,点F在x轴正半轴上,且C1的长轴长、短轴长及点F到C1右准线的距离成等比数列.(Ⅰ)当C2的准线与C1右准线间的距离为15时,求C1及C2的方程;(Ⅱ)设点F且斜率为1的直线l交C1于P,Q两点,交C2于M,N两点.当时,求|MN|的值.13.(2008•四川)设椭圆的左右焦点分别为F1,F2,离心率,点F2到右准线为l的距离为(Ⅰ)求a,b的值;(Ⅱ)设M,N是l上的两个动点,,证明:当|MN|取最小值时,.14.(2008•福建)如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.15.(2008•北京)已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1.(Ⅰ)当直线BD过点(0,1)时,求直线AC的方程;(Ⅱ)当∠ABC=60°时,求菱形ABCD面积的最大值.16.(2008•安徽)设椭圆=1(a>b>0)过点,且左焦点为(Ⅰ)求椭圆C的方程;(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足•=•,证明:点Q总在某定直线上.17.(2008•四川)设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率,右准线为l,M,N是l上的两个动点,(Ⅰ)若,求a,b的值;(Ⅱ)证明:当|MN|取最小值时,与共线.18.(2008•湖北)已知双曲线的两个焦点为的曲线C上.(Ⅰ)求双曲线C的方程;(Ⅱ)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为,求直线l的方程.19.(2008•上海)已知双曲线.(1)求双曲线C的渐近线方程;(2)已知点M的坐标为(0,1).设P是双曲线C上的点,Q是点P关于原点的对称点.记.求λ的取值范围;(3)已知点D,E,M的坐标分别为(﹣2,﹣1),(2,﹣1),(0,1),P为双曲线C上在第一象限内的点.记l为经过原点与点P的直线,s为△DEM截直线l所得线段的长.试将s表示为直线l的斜率k的函数.20.(2008•天津)已知中心在原点的双曲线C的一个焦点是F1(﹣3,0),一条渐近线的方程是.(Ⅰ)求双曲线C的方程;(Ⅱ)若以k(k≠0)为斜率的直线l与双曲线C相交于两个不同的点M,N,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围.21.(2009•辽宁)已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.22.(2009•北京)已知双曲线=1(a>0,b>0)的离心率为,右准线方程为.(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.23.(2009•陕西)已知双曲线C的方程为=1(a>0,b>0),离心率,顶点到渐近线的距离为.(Ⅰ)求双曲线C的方程;(Ⅱ)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若,求△AOB面积的取值范围.24.(2009•重庆)已知以原点O为中心的双曲线的一条准线方程为,离心率.(Ⅰ)求该双曲线的方程;(Ⅱ)如图,点A的坐标为,B是圆上的点,点M在双曲线右支上,|MA|+|MB|的最小值,并求此时M点的坐标.25.(2009•西城区一模)已知椭圆,过点M(0,3)的直线l与椭圆C相交于不同的两点A、B.(1)若l与x轴相交于点N,且A是MN的中点,求直线l的方程;(2)设P为椭圆上一点,且(O为坐标原点),求当|AB|<时,实数λ的取值范围.26.(2009•河东区一模)已知一椭圆经过点(2,﹣3)且与椭圆9x2+4y2=36有共同的焦点(1)求椭圆方程;(2)若P为椭圆上一点,且,P,F1,F2是一个直角三角形的顶点,且|PF1|>|PF2|,求|PF1|:|PF2|的值.27.(2009秋•东城区期末)已知椭圆C的中心在原点,一个焦点,且长轴长与短轴长的比是.(1)求椭圆C的方程;(2)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(3)求△PAB面积的最大值.28.(2008•广东)设b>0,椭圆方程为,抛物线方程为x2=8(y﹣b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1.(1)求满足条件的椭圆方程和抛物线方程;(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP 为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).29.(2008•安徽)已知椭圆,其相应于焦点F(2,0)的准线方程为x=4.(Ⅰ)求椭圆C的方程;(Ⅱ)已知过点F1(﹣2,0)倾斜角为θ的直线交椭圆C于A,B两点.求证:;(Ⅲ)过点F1(﹣2,0)作两条互相垂直的直线分别交椭圆C于点A、B和D、E,求|AB|+|DE|的最小值.30.(2008•重庆)如图,M(﹣2,0)和N(2,0)是平面上的两点,动点P满足:|PM|+|PN|=6.(Ⅰ)求点P的轨迹方程;(Ⅱ)若,求点P的坐标.高中数学组卷圆锥曲线方程3参考答案与试题解析一.解答题(共30小题)1.(2008•温州学业考试)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线方程.【分析】先求出双曲线的顶点和焦点,从而得到椭圆的焦点和顶点,进而得到椭圆方程.【解答】解:椭圆的顶点为(﹣2,0)和(2,0),焦点为(﹣,0)和(,0).∴双曲线的焦点坐标是(﹣2,0)和(2,0),顶点为(﹣,0)和(,0).∴双曲线方程为.【点评】本题主要考查了利用椭圆与双曲线的性质求解双曲线的方程,解题的关键是熟练掌握椭圆与双曲线的性质,正确找出题中的相关量.2.(2007•重庆)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x=12.(1)求椭圆的方程;(2)在椭圆上任取三个不同点P1,P2,P3,使∠P1FP2=∠P2FP3=∠P3FP1,证明:++为定值,并求此定值.【分析】(Ⅰ)设椭圆方程为,由题意知a=6,,故所求椭圆方程为.(Ⅱ)记椭圆的右顶点为A,并设∠AFP i=αi(i=1,2,3),假设,且,,又设点P i在l上的射影为Q i,因椭圆的离心率,从而有|FP i|=|P i Q i|•e==(i=1,2,3).由此入手能够推导出++为定值,并能求出此定值.【解答】解:(Ⅰ)设椭圆方程为因焦点为F(3,0),故半焦距c=3又右准线l的方程为,从而由已知,因此a=6,故所求椭圆方程为(Ⅱ)记椭圆的右顶点为A,并设∠AFP i=αi(i=1,2,3),不失一般性,假设,且,又设点P i在l上的射影为Q i,因椭圆的离心率,从而有|FP i|=|P i Q i|•e==(i=1,2,3)解得=(i=1,2,3)因此++=,而=,故++为定值.【点评】本题考查直线和椭圆的位置关系和综合运用,解题时要认真审题,仔细解答,注意挖掘题中的隐含条件.3.(2007•北京)如图,有一块半椭圆形钢板,其半轴长为2r,短半轴长为r,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记CD=2x,梯形面积为S.(Ⅰ)求面积S以x为自变量的函数式,并写出其定义域;(Ⅱ)求面积S的最大值.【分析】(I)依题意,以AB的中点O为原点建立直角坐标系,由图可得C的横坐标,进而可以表示出c的纵坐标,由解析式分析x的取值范围,即函数的定义域,可得答案;(II)利用导数计算,记f(x)=4(x+r)2(r2﹣x2),(0<x<r),对其求导可得f′(x)=8(x+r)2(r﹣2x),求得其导函数的零点,分析其单调性,可得当时,S也取得最大值,即可得答案.【解答】解:(I)依题意,以AB的中点O为原点建立直角坐标系O﹣xy(如图),则点C的横坐标为x,点C的纵坐标y满足方程,解得=,其定义域为{x|0<x<r}.(II)记f(x)=4(x+r)2(r2﹣x2),(0<x<r),则f′(x)=8(x+r)2(r﹣2x).令f′(x)=0,得.因为当时,f′(x)>0;当时,f′(x)<0,所以是f(x)的最大值.因此,当时,S也取得最大值,最大值为.即梯形面积S的最大值为.【点评】本题考查椭圆方程及其性质的应用与根据导数求函数的最值的方法;第一注意结合题意,建立合适的坐标系,其次在运用导数求函数的最值时,注意自变量的实际意即函数的定义域.4.(2007•山东)已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标.【分析】(Ⅰ)由题设条件可知解得,由此能够推导出椭圆C的标准方程.(Ⅱ)由方程组消去y,得(3+4k2)x2+8kmx+4m2﹣12=0,然后结合题设条件利用根的判别式和根与系数的关系求解.【解答】解:(Ⅰ)设椭圆的长半轴为a,半焦距为c,则解得∴椭圆C的标准方程为.(Ⅱ)由方程组消去y,得(3+4k2)x2+8kmx+4m2﹣12=0由题意:△=(8km)2﹣4(3+4k2)(4m2﹣12)>0整理得:3+4k2﹣m2>0 ①设M(x1,y1)、N(x2,y2),则,由已知,AM⊥AN,且椭圆的右顶点为A(2,0)∴(x1﹣2)(x2﹣2)+y1y2=0即(1+k2)x1x2+(km﹣2)(x1+x2)+m2+4=0也即整理得:7m2+16mk+4k2=0解得:m=﹣2k或,均满足①当m=﹣2k时,直线l的方程为y=kx﹣2k,过定点(2,0),舍去当时,直线l的方程为,过定点,故直线l过定点,且定点的坐标为.【点评】本题综合考查椭圆的性质及应用和直线与椭圆的位置关系,具有较大的难度,解题时要注意的灵活运用.5.(2007•天津)设椭圆的左、右焦点分别为F1,F2,A是椭圆上的一点,C,原点O到直线AF1的距离为.(Ⅰ)证明;(Ⅱ)求t∈(0,b)使得下述命题成立:设圆x2+y2=t2上任意点M(x0,y0)处的切线交椭圆于Q1,Q2两点,则OQ1⊥OQ2.【分析】证法一:设点A(c,y),y>0,由题设条件能够推导出,直线AF2的方程为,再由原点O到直线AF1的距离得到,由此可得.证法二:由题设知A,由椭圆定义得|AF1|+|AF2|=2a,又,所以,解得,而,由此能够导出.(Ⅱ)圆x2+y2=t2上的任意点M(x0,y0)处的切线方程为x0x+y0y=t2.当t∈(0,b)时,圆x2+y2=t2上的任意点都在椭圆内,故此圆在点A处的切线必交椭圆于两个不同的点Q1和Q2,因此点Q1(x1,y1),Q2(x2,y2)的坐标是方程组的解.当y0≠0时,由①式得代入②式,得,然后结合题设条件利用根与系数的关系进行求解.【解答】解:(Ⅰ)证法一:由题设AF2⊥F1F2及F1(﹣c,0),F2(c,0),不妨设点A(c,y),其中y>0,由于点A在椭圆上,有,,解得,从而得到,直线AF2的方程为,整理得b2x﹣2acy+b2c=0.由题设,原点O到直线AF1的距离为,即,将c2=a2﹣b2代入原式并化简得a2=2b2,即.证法二:同证法一,得到点A的坐标为,过点O作OB⊥AF1,垂足为H,易知△F1BC∽△F1F2A,故由椭圆定义得|AF1|+|AF2|=2a,又,所以,解得,而,得,即;(Ⅱ)圆x2+y2=t2上的任意点M(x0,y0)处的切线方程为x0x+y0y=t2.当t∈(0,b)时,圆x2+y2=t2上的任意点都在椭圆内,故此圆在点A处的切线必交椭圆于两个不同的点Q1和Q2,因此点Q1(x1,y1),Q2(x2,y2)的坐标是方程组的解.当y0≠0时,由①式得代入②式,得,即(2x02+y02)x2﹣4t2x0x+2t4﹣2b2y02=0,于是,===.若OQ1⊥OQ2,则.所以,3t4﹣2b2(x02+y02)=0.由x02+y02=t2,得3t4﹣2b2t2=0.在区间(0,b)内此方程的解为.当y0=0时,必有x0≠0,同理求得在区间(0,b)内的解为.另一方面,当时,可推出x1x2+y1y2=0,从而OQ1⊥OQ2.综上所述,使得所述命题成立.【点评】本题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.6.(2007•上海)我们把由半椭圆(x≥0)与半椭圆(x≤0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0.如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,M是线段A1A2的中点.(1)若△F0F1F2是边长为1的等边三角形,求该“果圆”的方程;(2)设P是“果圆”的半椭圆(x≤0)上任意一点.求证:当|PM|取得最小值时,P在点B1,B2或A1处;(3)若P是“果圆”上任意一点,求|PM|取得最小值时点P的横坐标.【分析】(1)根据焦点F0,F1,F2的坐标,分别求得|F0F2|和|F1F2|进而求得c2,则a可求得,进而求得果圆的方程.(2)设P(x,y),则|PM|可求,根据求得∴|PM|2的最小值只能在x=0或x=﹣c 处取到.即|PM|取得最小值时,P在点B1,B2或A1处.原式得证.(3)根据题意可知研究P位于“果圆”的半椭圆上的情形即可.先表示出|PM|进而根据x的范围确定a和c不等式关系,看a≤2c时,|PM|2的最小值在时取到,根据|PM|2在x<a时是递减的进而可知|PM|2的最小值在x=a时取到,进而分别求得P的坐标.【解答】解:(1)∵,∴,于是,所求“果圆”方程为,.(2)设P(x,y),则=,∵,∴|PM|2的最小值只能在x=0或x=﹣c处取到.即当|PM|取得最小值时,P在点B1,B2或A1处.(3)∵|A1M|=|MA2|,且B1和B2同时位于“果圆”的半椭圆和半椭圆上,所以,由(2)知,只需研究P位于“果圆”的半椭圆上的情形即可.=.当,即a≤2c时,|PM|2的最小值在时取到,此时P的横坐标是.当,即a>2c时,由于|PM|2在x<a时是递减的,|PM|2的最小值在x=a时取到,此时P的横坐标是a.综上所述,若a≤2c,当|PM|取得最小值时,点P的横坐标是;若a>2c,当|PM|取得最小值时,点P的横坐标是a或﹣c.【点评】本题主要考查了椭圆的应用.考查了学生综合分析问题和基本的运算能力.7.(2007•湖南)已知双曲线x2﹣y2=2的左、右焦点分别为F1,F2,过点F2的动直线与双曲线相交于A,B两点.(Ⅰ)若动点M满足(其中O为坐标原点),求点M的轨迹方程;(Ⅱ)在x轴上是否存在定点C,使•为常数?若存在,求出点C的坐标;若不存在,请说明理由.【分析】(Ⅰ)先根据条件求出左、右焦点的坐标,并设A(x1,y1),B(x2,y2),M(x,y),然后表示出向量,,,,根据可得到x1,x2,x以及y1,y2,y的关系,即可表示出AB的中点坐标,然后分AB不与x轴垂直和AB与x 轴垂直两种情况进行讨论.(Ⅱ)假设在x轴上存在定点C(m,0),使为常数,当AB不与x轴垂直时,设出直线AB的方程,然后与双曲线方程联立消去y得到关于x的一元二次方程,进而可得到两根之和与两根之积,表示出向量•并将所求的两根之和与两根之积代入整理即可求出C 的坐标;当AB与x轴垂直时可直接得到A,B的坐标,再由=﹣1,可确定答案.【解答】解:由条件知F1(﹣2,0),F2(2,0),设A(x1,y1),B(x2,y2)(Ⅰ)设M(x,y),则,,,由,得,即,于是AB的中点坐标为,当AB不与x轴垂直时,,即,又因为A,B两点在双曲线上,所以x12﹣y12=2,x22﹣y22=2,两式相减得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),即(x1﹣x2)(x﹣4)=(y1﹣y2)y,将代入上式,化简得(x﹣6)2﹣y2=4,当AB与x轴垂直时,x1=x2=2,求得M(8,0),也满足上述方程,所以点M的轨迹方程是(x﹣6)2﹣y2=4.(Ⅱ)假设在x轴上存在定点C(m,0),使为常数,当AB不与x轴垂直时,设直线AB的方程是y=k(x﹣2)(k≠±1),代入x2﹣y2=2有(1﹣k2)x2+4k2x﹣(4k2+2)=0则x1,x2是上述方程的两个实根,所以,,于是=(k2+1)x1x2﹣(2k2+m)(x1+x2)+4k2+m2===.因为是与k无关的常数,所以4﹣4m=0,即m=1,此时=﹣1,当AB与x轴垂直时,点A,B的坐标可分别设为,,此时,故在x轴上存在定点C(1,0),使为常数.【点评】本题主要考查直线与双曲线的综合问题.直线与圆锥曲线的综合题是高考的热点问题,每年必考,要强化复习.8.(2007•丰台区二模)在平面直角坐标系xoy中,已知三点A(﹣1,0),B(1,0),C(﹣1,),以A、B为焦点的椭圆经过点C.(I)求椭圆的方程;(II)设点D(0,1),是否存在不平行于x轴的直线l与椭圆交于不同两点M、N,使?若存在,求出直线l斜率的取值范围;若不存在,请说明理由;(III)若对于y轴上的点P(0,n)(n≠0),存在不平行于x轴的直线l与椭圆交于不同两点M、N,使,试求n的取值范围.【分析】(I)设椭圆方程为,据A(﹣1,0),B(1,0),C(﹣1,)知,,由此可求出椭圆方程.(II)⇔,若存在符合条件的直线,该直线的斜率一定存在,否则与点D(0,1)不在x轴上矛盾.可设直线l:y=kx+m(k≠0),由得(3+4k2)x2+8kmx+4m2﹣12=0,然后利用根的判别式和根与系数的关系进行求解.(III)由题设条件可推出,即,由4k2+3>m2得4k2+3>n2(3+4k2)2,即,要使k存在,只需,由此可推导出n 的取值范围.【解答】解:(I)设椭圆方程为,据A(﹣1,0),B(1,0),C (﹣1,)知,解得∴所求椭圆方程为(4分)(II)∵条件等价于∴若存在符合条件的直线,该直线的斜率一定存在,否则与点D(0,1)不在x轴上矛盾.∴可设直线l:y=kx+m(k≠0)由得(3+4k2)x2+8kmx+4m2﹣12=0由△=64k2m2﹣4(3+4k2)(4m2﹣12)>0得4k2+3>m2.(6分)设M(x1,y1),N(x2,y2),MN的中点为Q(x0,y0)则.又∵∴解得:m=﹣3﹣4k2.(8分)(将点的坐标代入亦可得到此结果)由4k2+3>m2得,4k2+3>(3+4k2)2得,4k2<﹣2,这是不可能的.故满足条件的直线不存在.(10分)(III)据(II)有,即,解得,m=﹣n(3+4k2),由4k2+3>m2得4k2+3>n2(3+4k2)2,即,要使k存在,只需∴n的取值范围是(14分)【点评】本题综合考查直线和椭圆的位置关系和椭圆性质的运用,解题时要认真审题,仔细解答,恰当地选取公式.9.(2007•东城区二模)已知双曲线的右焦点是F,右顶点是A,虚轴的上端点是B,且,∠BAF=120°.(1)求双曲线C的方程;(2)过点P(0,4)的直线l交双曲线C于M、N两点,交x轴于点Q(点Q与双曲线C的顶点不重合),当,且时,求点Q的坐标.【分析】(Ⅰ)由条件可知A,B,F的坐标根据和联立求得a和c,进而求得b.双曲线方程可得.(Ⅱ)设l的方程,M和N的坐标,依题意可得Q的坐标,根据表示出x1和y1,把M代入双曲线方程整理后求得k,点Q的坐标可得.【解答】解:(Ⅰ)由条件知A(a,0),B(0,b)F(c,0)..①.∴c=2a.②解①,②得a=1,c=2.则b2=c2﹣a2=3.故双曲线C的方程为.(Ⅱ)由题意知直线l的斜率k存在且不等于零,设l的方程为:.∴.∴.∴∵M(x1,y1)在双曲线C上,∴.∴.∴.同理.若16﹣k2=0,则直线l过项点,不合题意,∴16﹣k2≠0∴的两根∴.∴k2=9,此时△>0,∴k=±3.∴所求Q点的坐标为.【点评】本题主要考查了双曲线的标准方程.考查了学生综合运用所学知识的能力.10.(2007•潮阳区校级模拟)已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,)为圆心,1为半径为圆相切,又知C的一个焦点与A关于直线y=x对称.(1)求双曲线C的方程;(2)若Q是双曲线C上的任一点,F1、F2为双曲线C的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N,试求点N的轨迹方程.【分析】(1)设双曲线C的渐近线方程为y=kx,根据题意可得k=±1,所以双曲线C的方程为,C的一个焦点与A关于直线y=x对称,可得双曲线的焦点坐标进而求出双曲线的标准方程.(2)若Q在双曲线的右支上,则延长QF2到T,使|QT|=|OF1|;若Q在双曲线的左支上,则在QF2上取一点T,使|QT|=|QF1|,根据双曲线的定义|TF2|=2,再利用相关点代入法求出轨迹方程即可.【解答】解:(1)设双曲线C的渐近线方程为y=kx,即kx﹣y=0∵该直线与圆相切,∴双曲线C的两条渐近线方程为y=±x…(3分)故设双曲线C的方程为,又∵双曲线C的一个焦点为∴2a2=2,a2=1,∴双曲线C的方程为x2﹣y2=1…(6分)(2)若Q在双曲线的右支上,则延长QF2到T,使|QT|=|OF1|若Q在双曲线的左支上,则在QF2上取一点T,使|QT|=|QF1|…(8分)根据双曲线的定义|TF2|=2,所以点T在以F2为圆心,2为半径的圆上,即点T的轨迹方程是①…(10分)由于点N是线段F1T的中点,设N(x,y),T(x T,y T)则…(12分)代入①并整理得点N的轨迹方程为…(14分)【点评】本题主要考查双曲线的有关性质与定义,以及求轨迹方程的方法(如相关点代入法).11.(2008•山东)已知曲线所围成的封闭图形的面积为,曲线C1的内切圆半径为.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.(Ⅰ)求椭圆C2的标准方程;(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.【分析】(Ⅰ)利用封闭图形的面积为,曲线C1的内切圆半径为,求出a、b的值,待定系数法写出椭圆的标准方程.(Ⅱ)(1)假设AB所在的直线斜率存在且不为零,设AB所在直线方程为y=kx,代入椭圆的方程,用k表示|OA|的平方,由|MO|2=λ2|OA|2,得到|MO|2.再用k表示直线l的方程,并解出k,把解出的k代入|MO|2的式子,消去k得到M的轨迹方程.当k=0或不存在时,轨迹方程仍成立.(2)当k存在且k≠0时,由(1)得,,同理求出点M的横坐标的平方、纵坐标的平方,计算出AB的平方,计算出|MO|2,可求出三角形面积的平方,使用基本不等式求出面积的最小值,再求出当k不存在及k=0时三角形的面积,比较可得面积的最小值.【解答】解:(Ⅰ)由题意得,又a>b>0,解得a2=5,b2=4.因此所求椭圆的标准方程为.(Ⅱ)(1)假设AB所在的直线斜率存在且不为零,设AB所在直线方程为y=kx(k≠0),A (x A,y A).解方程组得,,所以.设M(x,y),由题意知|MO|=λ|OA|(λ≠0),所以|MO|2=λ2|OA|2,即,因为l是AB的垂直平分线,所以直线l的方程为,即,因此,又x2+y2≠0,所以5x2+4y2=20λ2,故.又当k=0或不存在时,上式仍然成立.综上所述,M的轨迹方程为.(2)当k存在且k≠0时,由(1)得,,由解得,,所以,,.由于===,当且仅当4+5k2=5+4k2时等号成立,即k=±1时等号成立,此时△AMB面积的最小值是.当k=0,.当k不存在时,.综上所述,△AMB的面积的最小值为.【点评】本题考查用待定系数法求椭圆的标准方程,参数法求轨迹方程,直线与圆锥曲线的位置关系的应用.12.(2008•四川)已知椭圆C1的中心和抛物线C2的顶点都在坐标原点O,C1和C2有公共焦点F,点F在x轴正半轴上,且C1的长轴长、短轴长及点F到C1右准线的距离成等比数列.(Ⅰ)当C2的准线与C1右准线间的距离为15时,求C1及C2的方程;(Ⅱ)设点F且斜率为1的直线l交C1于P,Q两点,交C2于M,N两点.当时,求|MN|的值.【分析】(1)先设C1、C2的标准方程,进而可得到a=2c,再求出C1的右准线方程、C2的准线方程,根据C1的长轴长、短轴长及点F到C1右准线的距离成等比数列求出a,b,c的值,得到答案.(2)先表示出直线l的方程,然后设M、N、P、Q四点的坐标,联立直线和椭圆方程消去y,得到关于x的一元二次方程进而得到两根之和、两根之积再由可求出c的值,最后联立直线和抛物线方程消去y得到关于x的一元二次方程,同样可得到两根之和根据是|MN|=|MF|+|FN|=x1+x2+2c可最后答案.【解答】解:(Ⅰ)设C1:(a>b>0),其半焦距为c(c>0).则C2:y2=4cx.由条件知,得a=2c.C1的右准线方程为,即x=4c.C2的准线方程为x=﹣c.由条件知5c=15,所以c=3,故a=6,.从而C1:,C2:y2=12x.(Ⅱ)由题设知l:y=x﹣c,设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4).由(Ⅰ)知,即3x2+4y2=12c2.由,知x3,x4满足7x2﹣8cx﹣8c2=0,从而.由条件,得,故C2:y2=6x.由得,所以x1+x2=9.于是|MN|=|MF|+|FN|=x1+x2+2c=12.【点评】本题主要考查椭圆的标准方程和直线与圆锥曲线的综合问题.直线和圆锥曲线的综合题是每年的重头戏,一般作为压轴题出现,要想答对必须熟练掌握其基础知识,多做练习.13.(2008•四川)设椭圆的左右焦点分别为F1,F2,离心率,点F2到右准线为l的距离为(Ⅰ)求a,b的值;(Ⅱ)设M,N是l上的两个动点,,证明:当|MN|取最小值时,.【分析】(Ⅰ)先根据离心率求得a和c的关系,进而根据F2到右准线为l的距离求得a和c的另一关系式,联立求得a和c,进而根据a,b和c的关系气的b.(Ⅱ)根据(1)中的椭圆方程求得可知椭圆的焦点坐标,则l的方程可得,设出M,N的坐标,根据求得得y1y2的值,代入到|MN|的表达式中,根据均值不等式求得|MN|的最小值,根据等号成立的条件求得y1和y2的值,进而求得,证明原式.【解答】解:(Ⅰ)因为,F2到l的距离,所以由题设得解得由b2=a2﹣c2=2,得(Ⅱ)由得,l的方程为故可设由知得y1y2=﹣6,所以当且仅当时,上式取等号,此时y 2=﹣y1所以,=(0,y1+y2)=【点评】此题重点考查椭圆基本量间的关系,进而求椭圆待定常数,考查向量与椭圆的综合应用;要熟悉椭圆各基本量间的关系,数形结合,熟练进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中的应灵活应用.14.(2008•福建)如图,椭圆=1(a>b>0)的一个焦点是F(1,0),O为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F的直线l交椭圆于A、B两点.若直线l绕点F任意转动,值有|OA|2+|OB|2<|AB|2,求a的取值范围.。

第3讲 圆锥曲线第三定义(解析版)

第3讲 圆锥曲线第三定义(解析版)

第3讲 圆锥曲线第三定义参考答案与试题解析一.选择题(共7小题)1.椭圆22:143x y C +=的左、右顶点分别为1A ,2A ,点P 在C 上且直线1PA 的斜率的取值范围是[2-,1]-,那么直线2PA 斜率的取值范围是( ) A .13[,]24B .33[,]84C .1[,1]2D .3[,1]4【解答】解:设0(P x ,0)y ,22003(4)4y x =-,由1(2,0)A -,2(2,0)A ,1220002200034PA PA y y y k k x a x a x a =⨯==-+--, ∴1234PA PA k k -=,由1[2PA k ∈-,1]-,23421PA k -∴--,则23384PA k , ∴直线2PA 斜率的取值范围3[8,3]4,故选:B .2.椭圆22:143x y C +=的左、右顶点分别为1A ,2A ,点P 在C 上且直线2PA 的斜率的取值范围是[3-,1]-,那么直线1PA 斜率的取值范围是( ) A .1[4,3]4B .1[2,3]4C .1[2,1]D .3[4,1]【解答】解:由椭圆22:143x y C +=可知其左顶点1(2,0)A -,右顶点2(2,0)A .设0(P x ,00)(2)y x ≠±,则得2020344y x =--. 记直线1PA 的斜率为1k ,直线2PA 的斜率为2k ,则201220344y k k x ==-- 直线2PA 斜率的取值范围是[3-,1]-,∴直线1PA 斜率的取值范围是1[4,3]4故选:A .3.椭圆22:143x y C +=的左、右顶点分别为M 、N ,点P 在C 上,且直线PN 的斜率为14-,则直线PM 斜率为( ) A .13B .3C .13-D .3-【解答】解:椭圆22:143x y C +=的左、右顶点分别为M 、N ,M ∴点坐标为(2,0)-,N 点坐标为(2,0),又直线PN 的斜率为14-,∴直线PN 的方程为:1(2)4y x =--,代入椭圆22:143x y C +=方程可得:2134440x x --=,设P 点坐标为(,)x y ,则4213x +=,解得2213x =-,1213y =,故直线PM 斜率1213322213k ==-+,故选:B .4.设椭圆22221(0)x y a b a b+=>>长轴的两个顶点分别为A 、B ,点C 为椭圆上不同于A 、B 的任一点,若将ABC ∆的三个内角记作A 、B 、C ,且满足3tan 3tan tan 0A B C ++=,则椭圆的离心率为( )AB .13CD .23【解答】解:因为3tan 3tan tan 0A B C ++=可得3sin 3sin sin()cos cos cos()A B A B A B A B ++=+,即3(sin cos sin cos )sin()cos cos cos()A B B A A B A B A B ++=+,而在三角形中,sin cos cos sin sin()0A B A B A B +=+≠,所以上式可得3cos()cos cos 0A B A B +-= 而cos()cos cos sin sin A B A B A B +=-,所以可得2cos cos 3sin sin A B A B =,即2tan tan 3A B =, 由题意可得(,0)A a -,(,0)B a ,设0(C x ,0)y ,可得2200221x y a b+=,由双曲线的对称性设C 在第一象限,如图所示:在ACD ∆中,00tan y A x a=+,在ABD ∆中,0tan y B a x =-, 所以220222000222220000(1)tan tan x b y y y b a AB x a a x a xa x a-====+---,所以可得2223b a =,所以离心率c e a ==故选:A .5.已知A ,B ,P 为双曲线2214y x -=上不同三点,且满足2(PA PB PO O +=为坐标原点),直线PA ,PB 的斜率记为m ,n ,则224n m +的最小值为( )A .8B .4C .2D .1【解答】解:满足2(PA PB PO O +=为坐标原点),A ∴,B 关于原点对称, 设1(A x ,1)y ,1(B x -,1)y -,0(P x ,0)y ,则220014y x =-,221114y x =-,直线PA ,PB 的斜率记为m ,n ,满足220122014y y mn x x -==-, 则222442n nm m mn +==,即224n m +的最小值为4.故选:B .6.已知A ,B ,P 是双曲线22221x y a b-=上不同的三点,且A ,B 连线经过坐标原点,若直线PA ,PB 的斜率乘积为43,则该双曲线的离心率为( ) A.2BCD.3【解答】解:由题意,设1(A x ,1)y ,2(P x ,2)y ,则1(B x -,1)y -,2221212122212121PA PBy y y y y y k k x x x x x x -+-∴==-+-, 2211221x y a b -=,2222221x y a b-=, ∴两式相减可得2222122221y y b x x a -=-, 43PA PB k k=, ∴2243b a =, ∴222273a b e a +==,则e =. 故选:D .7.已知A ,B ,P 是双曲线2222:1(0,0)x y C a b a b-=>>上的不同的三点,直线PA 的斜率为1k ,直线PB 的斜率为2k ,且1k ,2k 是关于x 的方程2430x mx ++=的两个实数根,若0OA OB +=,O 为坐标原点,则双曲线C 的离心率是( ) A .2B C D .32【解答】解:设点P 的坐标为(,)x y ,点A 的坐标为0(x ,0)y , 因为0OA OB +=,所以点B 的坐标为0(x -,0)y -,因为1234k k =,所以000034y y y y x x x x -+⋅=-+,即22022034y y x x -=-, 又P ,A 在双曲线2222:1(0,0)x y C a b a b -=>>上,所以22221x y a b -=,2200221x y a b -=,两式相减得2222002211()()0x x y y a b---=,即22202220y y b x x a -=-,又因为22022034y y x x -=-,所以2234b a =, 所以2222344()a bc a ==-, 所以2274a c =,c e a ==, 故选:B .二.填空题(共4小题)8.已知A 、B 、P 为双曲线2214y x -=上不同三点,且满足2(PA PB PO O +=为坐标原点),直线PA 、PB 的斜率记为m ,n ,则229n m +的最小值为 83【解答】解:由2(PA PB PO O +=为坐标原点),得O 为AB 的中点, 设1(A x ,1)y ,2(P x ,2)y ,则1(B x -,1)y -,2121y y m x x -∴=-,2121y y n x x +=+,故2221212122212121y y y y y y mn x x x x x x -+-==-+-,① 又由A 、B 、P 为双曲线上的点, ∴221114y x -=,222214y x -=,代入①,可得2221222141()4y y mn y y -==-.∴222282993n n m m +=.当且仅当229n m =时上式“=”成立.∴229n m +的最小值为83.故答案为:83.9.已知A ,B 是椭圆22221(0)x y a b a b +=>>和双曲线22221x y a b-=的公共顶点,P 是双曲线上的动点,M 是椭圆上的动点(P ,M 都异于A ,)B ,且()PA PB MA MB λ+=+,其中R λ∈,设直线AP ,BP ,AM ,BM 的斜率分别为1k ,2k ,3k,4k ,若12k k +=34k k += 【解答】解:根据题意可得(,0)A a -,(,0)B a ,设1(P x ,1)y ,2(M x ,2)y ,因为()PA PB MA MB λ+=+其中R λ∈,所以1(x a +,11)(y x a +-,12)[(y x a λ=+,22)(y x a +-,2)]y , 所以1221x y x y =,因为P ,M 都异于A ,B , 所以10y ≠,20y ≠,1212x x y y =,由111112221112y y x yk k x a x a x a+=+==-+-① 因为2211221x y a b-=,②由①②得,1212x x y y =,222234222222y y x y k k x a x a x a+=+=-+-, 又因为2222221x y a b+=,所以2223422222x b b k k a y a +=-⨯=-=.故答案为:10.已知A ,B 椭圆2222:1x y C a b +=和双曲线22221(0)x y a b a b-=>>的左右顶点,P ,Q 分别为双曲线和椭圆上不同于A ,B 的动点,且满足()(,||1)PA PB QA QB R λλλ+=+∈>,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k ,则1234k k k k +++= 0 .【解答】解:A 、B 为椭圆22221x y a b +=和双曲线22221(0)1x y a b a b-=>>=的公共顶点,P 、Q 分别为双曲线和椭圆上不同于A 、B 的动点,由()(PA PB QA QB R λλ+=+∈,||1)λ>, 即22PO QO λ=, 可得OP OQ λ=,则点P ,Q ,O 三点共线. 设1(P x ,1)y ,2(Q x ,2)y ,则211111111222222111112222y y x y x y x b k ka x a x a x a a y yb +=+===+--, 同理,得:2234222x b k k a y +=-,OP OQ λ=,12x x λ∴=,12y y λ=,∴1212x x y y =, 2123422(b k k k k a ∴+++=1212)0x x y y -=. 故答案为:0.11.已知A 、B 、P 是双曲线22221x y a b-=上不同的三点,且A 、B 两点关于原点O 对称,若直线PA ,PB的斜率乘积12PA PB k k ⋅=,则该双曲线的离心率e = . 【解答】解:由题意,设1(A x ,1)y ,2(P x ,2)y ,则1(B x -,1)y -2221212122212121PA PBy y y y y y k k x x x x x x -+-∴⋅=⨯=-+- 2211221x y a b -=,2222221x y a b-=, ∴两式相减可得2222122221y y b x x a -=- 12PA PBk k ⋅=,∴2212b a =∴22212c a a -=,∴22112c a -=∴2232c a =,c e a ∴==三.解答题(共4小题)12.如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆22142x y +=的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k(1)若直线PA 平分线段MN ,求k 的值; (2)当2k =时,求点P 到直线AB 的距离d ; (3)对任意0k >,求证:PA PB ⊥.【解答】解:(1)由题设知,2a =,b =,故(2,0)M -,(0,N ,所以线段MN 中点坐标为(1,2-. 由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过原点,所以k =. (2)直线PA 的方程为2y x =,代入椭圆方程得224142x x +=,解得23x =±,因此2(3P ,4)3,2(3A -,4)3-于是2(3C ,0),直线AC 的斜率为1,故直线AB 的方程为203x y --=.因此,242||d --==. (3)设1(P x ,1)y ,2(B x ,2)y ,则10x >,20x >,12x x ≠, 2211142x y +=,2222142x y +=,221124x y +=,222224x y +=,1(A x -,1)y -,1(C x ,0).设直线PB ,AB 的斜率分别为1k ,2k . 因为C 在直线AB 上,所以1121110()()22y y kk x x x --===--,从而2221212111222212121()22121211()y y y y y y kk k k x x x x x x ----+=+=⋅⋅+=+---- 22222211222221212(2)440x y x y x x x x +-+-===--. 因此11kk =-,所以PA PB ⊥.13.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点1(F ,若椭圆上存在一点D ,满足以椭圆短轴为直径的圆与线段1DF 相切于线段1DF 的中点F . (Ⅰ)求椭圆E 的方程;(Ⅱ)已知两点(2,0)Q -,(0,1)M 及椭圆22229:1x y G a b+=,过点Q 作斜率为k 的直线l 交椭圆G 于H ,K 两点,设线段HK 的中点为N ,连接MN ,试问当k 为何值时,直线MN 过椭圆G 的顶点?(Ⅲ)过坐标原点O 的直线交椭圆222294:12x y W a b+=于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC 并延长交椭圆W 于B ,求证:PA PB ⊥. 【解答】(本小题满分14分)解:(Ⅰ)连接2DF ,(FO O 为坐标原点,2F 为右焦点),由题意知:椭圆的右焦点为2F 因为FO 是△12DF F 的中位线,且1DF FO ⊥, 所以2||2||2DF FO b ==, 所以12||2||22DF a DF a b =-=-, 故111||||2FF DF a b ==-.⋯(2分) 在1Rt FOF ∆中,22211||||||FO FF FO += 即222()5b a b c +-==,又225b a +=,解得29a =,24b =,所求椭圆E 的方程为22194x y +=.⋯(4分)(Ⅱ)由(Ⅰ)得椭圆22:14y G x +=设直线l 的方程为(2)y k x =+并代入2214y x +=整理得:2222(4)4440k x k x k +++-= 由△0>得:k <⋯(5分) 设1(H x ,1)y ,2(K x ,2)y ,0(N x ,0)y则由中点坐标公式得:202002248(2)4k x k k y k x k ⎧-=⎪⎪+⋯⎨⎪=+=⎪+⎩(6分)①当0k =时,有(0,0)N ,直线MN 显然过椭圆G 的两个顶点(0,2)-,(0,2).⋯(7分) ②当0k ≠时,则00x ≠,直线MN 的方程为0011y y x x -=+ 此时直线MN 显然不能过椭圆G 的两个顶点(0,2)-,(0,2); 若直线MN 过椭圆G 的顶点(1,0),则00101y x -=+,即001x y +=, 所以22228144k k k k -+=++,解得:2,23k k ==(舍去),⋯(8分) 若直线MN 过椭圆G 的顶点(1,0)-,则00101y x -=-+,即001x y -=-,所以22228144k k k k --=-++,解得:44k k =-+=--.⋯(9分) 综上,当0k =或23k =或4k =-+MN 过椭圆G 的顶点.⋯(10分) (Ⅲ)法一:由(Ⅰ)得椭圆W 的方程为2212x y +=,⋯(11分)根据题意可设(,)P m n ,则(,)A m n --,(,0)C m 则直线AC 的方程为()2ny n x m m+=+,⋯① 过点P 且与AP 垂直的直线方程为()my n x m n-=--,⋯② ①⨯②并整理得:222222x m y n +=+,又P 在椭圆W 上,所以2212m n +=,所以2212x y +=,即①、②两直线的交点B 在椭圆W 上,所以PA PB ⊥.⋯(14分)法二:由(Ⅰ)得椭圆W 的方程为2212x y += 根据题意可设(,)P m n ,则(,)A m n --,(,0)C m , ∴PA n k m =,2AC n k m=, 所以直线22()2:()212n y x m n m AC y x m m x y ⎧=-⎪⎪=-⎨⎪+=⎪⎩, 化简得22222(1)2022n n n x x m m +-+-=, 所以22222A B mn x x m n +=+, 因为A x m =-,所以3222232B m mn x m n +=+,则322222B B n n n y x m m n =-=+.⋯(12分) 所以32232222232PBn n m m n k m mn n m m n -+==-+-+,则1PA PB k k ⋅=-,故PA PB ⊥.⋯(14分) 14.如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆22142x y +=的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,设直线PA 的斜率为k .(1)若直线PA 平分线段MN ,求k 的值;(2)求PMN ∆,面积S 的最大值,并指出对应的点P 的坐标;(3)对任意的0k >,过点P 作PA 的垂线交椭圆于B ,求证:A ,C ,B 三点共线.【解答】(1)解:由题设知,2a =,b =, 故(2,0)M -,(0,N ,∴线段MN中点坐标为(1,-. 由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过原点,k ∴=; (2)解:(2,0)M -,(0,N ,∴MN k == 设与MN平行的直线方程为y x m =+,联立22142y m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2220x m +-=.由△22()480m =-+=,解得:2m =±. 由题意可知,当2m =时,直线2y =+与直线MN 的距离最大,最大值d = 即PMN ∆面积S有最大值,等于11||222MN d ==.由220x -+=,解得x ,1y =. P ∴点坐标为;(3)证明:设1(P x ,1)y ,2(B x ,2)y ,PB 中点0(Q x ,0)y , 则2211142x y +=,2222142x y +=, 两式作差可得:12121212()()()()42x x x x y y y y -+-+=-, ∴0121202x y y x x y -=--,即002PB x k y =-. PA PB ⊥,00()12x k y ∴⋅-=-,即002y k x =. ∴002OQ y k k x ==. PO OA =,PQ QB =,//OQ AB ∴,即2AB k k =.111110022A AC A C y y y k k x x x x x ---====---. AC AB k k ∴=.故A ,C ,B 三点共线.15.椭圆22221(0)x y a b a b+=>>,过原点的直线交椭圆于P ,A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连AC ,并延长交椭圆于B ,若PA PB ⊥,求椭圆的离心率.【解答】解:设1(P x ,1)y ,2(B x ,2)y ,则10x >,20x >,12x x ≠,1(A x -,1)y -,11PA y k x ∴=,1212PB y y k x x -=-,1211212AB y y y k x x x +==+ PA PB ⊥, ∴112112()1()y y y x x x -=--, ∴112112()112()2y y y x x x -⋅=--2211221x y a b +=,①,2222221x y a b+=,② 由①-②可得222212122211()()0x x y y a b ---=, 即2121221212()()()()y y y y b x x x x a-+=--+, ∴2212b a =c e a ∴==。

圆锥曲线第三定义的推导

圆锥曲线第三定义的推导

圆锥曲线第三定义的推导
圆锥曲线是平面上的一类曲线,它们可以通过圆锥与平面的交
线来定义。

圆锥曲线有四种基本类型,圆、椭圆、抛物线和双曲线。

这些曲线可以通过多种方法来定义,其中第三种定义是通过圆锥的
截面来推导。

首先,让我们考虑一个双锥,即两个相同的圆锥在顶点处相交。

现在,我们在这个双锥上取一个平面截面。

这个截面可以与圆锥相交,形成不同的曲线。

根据截面与圆锥的位置和角度,我们可以得
到不同的圆锥曲线。

具体来说,如果截面与圆锥的两个母线平行且与底面的交点在
同一位置,我们将得到一个圆。

如果截面与圆锥的母线不平行,但
与底面的交点在同一位置,我们将得到一个椭圆。

如果截面与圆锥
的母线平行且与底面的交点在圆锥的顶点处,我们将得到一个抛物线。

最后,如果截面与圆锥的母线不平行且与底面的交点在圆锥的
顶点处,我们将得到一个双曲线。

因此,通过圆锥的截面,我们可以推导出圆锥曲线的第三种定义。

这种定义方式可以直观地帮助我们理解不同类型的圆锥曲线是
如何形成的,以及它们的基本特征和性质。

总之,圆锥曲线的第三种定义通过圆锥的截面来推导,通过分析截面与圆锥的位置和角度,我们可以得到圆、椭圆、抛物线和双曲线这四种基本类型的圆锥曲线。

这种定义方式有助于我们深入理解圆锥曲线的几何特性和形成原理。

圆锥曲线 课件


利用线性代数知识求解圆锥曲线问题
线性方程组
线性方程组是线性代数中的基础内容, 它可以用来求解与圆锥曲线相关的问题 。例如,通过解线性方程组,可以找到 满足特定条件的点的坐标。
VS
特征值与特征向量
特征值和特征向量在解析几何中也有广泛 应用。通过计算圆锥曲线的特征值和特征 向量,可以深入了解曲线的性质,从而更 好地解决相关问题。
椭圆离心率的范围是0<e<1,双曲线的离心率范围是e>1。
圆锥曲线的光学性质
01
光线经过圆锥曲线上的点时,其 方向会发生改变,这种现象叫做 圆锥曲线的光学性质。
02
光线经过椭圆时,会沿着椭圆的 主轴方向折射;经过双曲线时, 会沿着双曲线的副轴方向折射。
圆锥曲线的对称性
圆锥曲线具有对称性,即如果将圆锥 曲线沿其对称轴旋转180度,它仍然 与原来的曲线重合。
02 圆锥曲线的性质
焦点与准线
焦点
圆锥曲线上的点到曲线的两个焦 点的距离之和等于常数,这个常 数等于椭圆的长轴长,等于双曲 线的实轴长。
准线
与圆锥的母线平行的线,在平面 内与准线相交的直线与圆锥相切 于一点,这个点叫做切点。
离心率
离心率:是描述圆锥曲线形状的一个重要参数,它等于圆锥顶点到曲线的距离与 圆锥的半径之比。离心率越大,圆锥曲线越扁平,反之则越接近于球形。
双曲线的极坐标 方程
$frac{rho^2}{a^2} frac{rho^2}{b^2} = 1$
圆锥曲线在极坐 标下的表…
将圆锥曲线问题转化为极 坐标形式,便于理解和求 解。
利用极坐标求解圆锥曲线问题
利用极坐标求解圆锥曲线问题的步骤
首先将问题转化为极坐标形式,然后利用极坐标的性质和公式进行求解。

2024高考数学专项复习圆锥曲线专题:调和点列-极点极线

圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。

同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。

所以称A,B和C,D称为调和共轭。

2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。

若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。

3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。

由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。

4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。

九年级数学圆锥曲线期末复习3

高 二 数 学 期 末 复 习 三(圆锥曲线综合问题)一、知识回顾1.直线与圆锥曲线的位置关系:在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.注意:①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“0∆>”,尤其是在应用韦达定理解决问题时,必须先有“0∆>”.②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.2.弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,则22|||AB x x -,若12,y y 分别为A 、B 的纵坐标,则12|||AB y y =-=,若弦AB 所在直线方程设为x ky b =+,则AB 12y -。

注意:焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和,或统一(第二)定义求解。

3.圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆12222=+by a x 中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k -=;在双曲线22221x y a b-=中,以00(,)P x y 为中点的弦所在直线的斜率0202y a x b k =;在抛物线22(0)y px p =>中,以00(,)P x y 为中点的弦所在直线的斜率)0(00≠=y y pk 。

注意:如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.4.常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法等), 以及如何利用曲线的方程讨论曲线的几何性质,这是解析几何的两类基本问题,也是解析几何的基本出发点.注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.②在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.二、典型例题例1.(1)椭圆284722=+y x 上的点到直线01623=--y x 的最短距离为13138; (2)过抛物线x y 22=焦点的直线交抛物线于A 、B 两点,已知ΔABO 重心的横坐标为3(O 为坐标原点),则|AB|=___10____(3*)已知直线1+-=x y 与椭圆22221(0)x y a b a b+=>>相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,则此椭圆的离心率为22(4*)若椭圆11022=+m y x 与双曲线122=-b y x 有相同的焦点,且),310(y P 椭圆与双曲线的一个交点,则椭圆与双曲线的方程分别为,11022=+y x 1822=-y x 。

2024年全国一卷数学新高考题型细分S13圆锥曲线解答题3

2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。

其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。

2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。

方便老师备课选题。

3、题型纯粹按照个人经验进行分类,没有固定的标准。

4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。

每道题目后面标注有类型和难度,方便老师备课选题。

1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

付雨楼讲高考数学1圆锥曲线

【高考命题规律】小题部分:2013年第4题考查了双曲线的渐近线方程,第10题考查了椭圆中的中点弦公式;2014年第4题考查了双曲线中焦点到渐近线距离公式,第10题考查了抛物线中的焦点弦结论;2015年第5题结合向量考查了双曲线中的焦点三角形结论,第14题以椭圆的基本性质为背景,考查了圆的方程;2016年第5题考查了双曲线标准方程满足的条件,第10题以抛物线为背景,结合圆的方程,考查抛物线的焦准距;2017年第10题考查抛物线的焦点弦公式,第14题以双曲线为背景,结合圆的知识,考查离心率。预测2018年仍然会考两道小题,加上解答题会包含解析几何四大曲线,小题仍以圆锥曲线基本性质为主,几乎都会考到小结论,很有可能模式与前两年一样,以圆锥曲线为背景,必然会夹杂圆的有关知识,本章节知识点繁多,可易可难,亲们想要全部掌握,必须下苦功夫,小结论参考基础知识整合部分,会推导,会应用,善于化简,能够进行大的计算量是本章内容得分之关键!

【基础知识整合】椭圆知识点(一)椭圆的图像与性质

定义:平面上到两定点1(,0)Fc,2

(,0)Fc的距离之和等于定值2(22)aac的点的集合.

(求轨迹方法:1:求什么设什么,设(,)Pxy,2:找条件,12

||||2PFPFa,3:代入数据

2222()()2xcyxcya

,4:化简得222221xyaac,5:检验,可能挖点)

令222acb,得到焦点在x轴上的椭圆标准方程22221xy

ab

(1212||||2||PFPFaFF,222acb,21cbeaa)其中1max||PFac1min

||PFac

当2

PFx轴时,

2

2||b

PF

a

共焦点的椭圆方程设为:22221xyambm共离心率的椭圆方程设为:22221xy

mamb

若点00(,)Pxy在椭圆22221xyab上,则过点P且与椭圆相切的直线方程是00221xxyyab.若点00(,)Pxy在椭圆22221xyab外,则过点P作椭圆的两条切线,切点分别为12

,PP,

则切点弦12PP的直线方程是00221xxyyab.付雨楼讲高考数学2(二)椭圆中的焦点三角形★题设:若

1||PFm,2||PFn,12

FPF,

结论:2222[,]1cosbmnba,22222cos[,]1cosbmnbcb,12

2tan(0,]

2PFFSbbc



证明如下:由余弦定理得:22222(2)2cos()2(1cos)42(1cos)cmnmnmnmnamn

22

1cosb

mn



12222

2

2sincos112sin22

sintan

221cos22cos

2

PFF

bSmnbb





题设:若椭圆上存在一点P,使得12

FPF,求离心率范围.结论:2

1cossin

22e





证明如下:2222

22222

2

22()1cos2(1cos)1cos2(1)1cos

1cos22

bmnacmnabaee

a









题设:焦点三角形12PFF中,若12PFF,21

PFF,结论:则离心率

sin()

sinsine



证明如下:12||22sinsinsin()

22sin2sinsinsinsinsinFFcR

e

amnRR









(三)椭圆中的中点弦(点差法或韦达定理)

★题设:AB是不平行于对称轴的弦,P是AB的中点,结论:

2

2ABOPb

kk

a

证明如下:付雨楼讲高考数学3推论1:若,AB关于原点O对称,P是椭圆上异于,AB的任意一点,结论:22PAPBb

kk

a

证明如下:设1122(,),(,)PxyAxy,则22

(,)Bxy,所以

211221

211221

()

()PAPByyyyyy

kk

xxxxxx







所以2221212122212121PAPB

yyyyyykk

xxxxxx







又22112222222222121212222222212222101xyxxyyyybababxxaxyab所以22PAPBbkka.推论2:若l是椭圆上不垂直于对称轴的切线,M为切点,结论:22lOMb

kk

a

双曲线知识点(一)双曲线的图像与性质

定义:平面上到两定点1(,0)Fc,2

(,0)Fc的距离之差的绝对值等于定值2(22)aac的点的集合.

(求轨迹方法:1:求什么设什么,设(,)Pxy,2:找条件,12

||||||2PFPFa,3:代入数据

2222|()()|2xcyxcya

,4:化简得222221xyaca,5:检验,可能挖点)

令222cab,得到焦点在x轴上的双曲线标准方程22221xy

ab

(1212||||||2||PFPFaFF,222cab,21cbeaa,已知任意两个量关系,设k)付雨楼讲高考数学4当2

PFx轴时,

2

2||b

PF

a

双曲线中与渐近线有关的直角三角形结论:

结论:P为双曲线上任意一点,三角形12FPF的圆心一定在xa或xa上结论:P为双曲线上任意一点,以1

PF为直径的圆心一定与222xya相切.

若点00(,)Pxy在双曲线22221xyab上,则过点P的切线方程是00221xxyyab.共焦点的双曲线方程设为:22222

221()

xyambmc

ambm



共渐近线的双曲线方程设为:2222xy

ab

(二)双曲线中的焦点三角形

题设:若1||PFm,2||PFn,12

FPF,结论:付雨楼讲高考数学5222[,]1cosbmnb,222cos

[,)

1cos

bmnb



,12

2

tan2

PFF

bS



证明如下:由余弦定理得:22222(2)2cos()2(1cos)42(1cos)cmnmnmnmnamn

22

1cosb

mn



12

222

2

2sincos112sin22

sin

221cos2sintan

22

PFF

bbSmnb





题设:焦点三角形12PFF中,若12PFF,21

PFF,结论:则离心率

sin()

sinsine



证明如下:12||22sinsinsin()

22sin2sinsinsinsinsinFFcR

e

amnRR









(三)双曲线中的中点弦(点差法或韦达定理)

题设:AB是不平行于对称轴的弦,P是AB的中点,结论:22ABOPb

kk

a

证明如下:推论1:若,AB关于原点O对称,P是双曲线上异于,AB的任意一点,结论:22PAPBb

kk

a

证明如下:设1122(,),(,)PxyAxy,则22

(,)Bxy,所以

211221

211221

()

()PAPByyyyyy

kk

xxxxxx







所以2221212122212121PAPB

yyyyyykk

xxxxxx







相关文档
最新文档