电位分析法

合集下载

电位分析法

电位分析法
电极的主要组成部分是电极 下端的玻璃泡,它是电极的 敏感膜,是在SiO2基质中 加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。利用 玻璃膜的组成不同可制成对 不同阳离子有响应的玻璃电 极。对H+有响应的电极叫 pH玻璃电极,它是问世最 早(1906年)的离子选择 性电极,也是人们研究较多 的离子选择性电极。
电位分析法按原理分类
直接电位法和电 位滴定法。 直接电位法是通 过测量电池电动 势,从而确定指 示电极电位,然 后根据Nernst方 程,计算被测物 含量。

电位滴定法是通 过测量在滴定过 程中指示电极电 位的变化来确定 滴定终点,再按 滴定中消耗的标 准溶液的体积和 浓度计算待测物 质含量,实质上 是一种容量分析 方法。
第二节 离子选择性电极(ISE)概述
离子选择性电极由三部分组成:
离子选择性电极由三部分组成:①敏感膜:对
给定离子响应; ②内参液:含有与膜及内参 比电极响应的离子;③内参比电极。 也有的膜电极不用内参液和内参比电极,在 压膜时,在膜上压一层银粉,焊上一根金属 导线,或用导电胶将导线与膜粘在一起,或 把敏感膜涂在金属丝或片上制成涂层电极。
φm = K RT ln α FF
氟离子选择性电极的使用范围

一般在1~10-6 mol· -1范围内电极电位符合能斯特方程;检测 L 下限由单晶膜的溶度积决定,LaF3饱和溶液中F-离子浓度 约为10-7 mol· -1,因此氟电极在纯水体系中最低检测下限为 L 10-7 mol· -1左右;实验中要用F-离子的标准溶液校正电极。 L 电极在低活度范围内响应时间为~3min,而后在高活度范围 内响应迅速。氟电极的选择性较好,PO43-,CH3COO-,X -,NO -,SO 2- ,HCO -等离子不干扰,主要干扰离子 3 4 3 -。干扰的原因是在膜表面产生如下反应: 是OH LaF3 + 3OH- = La(OH)3 + 3F- 产生的F-离子对测定造成正干扰,而La(OH)3 层也对 测定有干扰. 在酸度较高时,会形成HF,HF2-,HF32-,而使F-离子浓 度降低,因此测定时应控制pH值在5~6之间。

电位分析法

电位分析法
M
RT Pot z / m Pot z / n K ln a M K m a K ...... ,i i m, ja j ZF


0.059 Pot z / m Pot z / n M K ln a M K m a K ...... ,i i m, j a j Z
★ 试样组分较稳定的试液,如火力发电厂水 蒸气中Na+的测定。
<二> 校准曲线法: 配制试液和一系列标准溶液,加 1. 方法要点: 入总离子强度调节缓冲溶液,使 各溶液的实验条件一致。分别测 定它们的电动势,根据标准系列 溶液的浓度,作E~C曲线,再用 内插法求试液中被测物含量。 2. 适用范围: ★ 适用于大批量试样的分析。
二、膜电位的产生: 〈一〉膜电位: ● 膜电位: 膜两侧接触不同浓度电解质 溶液而产生的电位差。
〈一〉膜电位产生的模型: 1.扩散电位:
●C1>C2:产生浓差扩散 ●H+迁移较Cl-快:造 成溶液界面上的电荷 分布不匀 ●C1负电荷多而C2正电 荷多:在相界面产生 电位差 ●电位差的产生,使离子 的扩散速度减慢,最后 达到平衡,使两相界面 之间有稳定的界面电位
① 当正、负离子的迁移数相等时,扩散电位 等于零;
② 扩散电位可以出现在液体、固体界面上; ③ 扩散电位不具备强制性和选择性; ④ 扩散电位是膜电位的组成部,它存在于膜 相内部。
2.道南电位:
●渗透膜:它至少能阻止 一种离子从一个液相扩 散到另一个液相。 ●C1>C2:产生浓差扩散
●仅允许少量的K+通过,
§3—1 电位分析法原理
一、电位分析法:
●将指示电极和参比电极同时浸入试液,组 成电池,在通过电路的电流为零的条件下, 测量指示电极的平衡电位,从能斯特方程 式求待测离子浓度的方法,称电位分析法。

电化学分析方法之一电位分析法

电化学分析方法之一电位分析法

)
(K2
0.0592
lg
aH 内 aH 内表面
)
K
0.0592
lg
a H

K
0.0592
pH
C、PH玻璃电极的电极电位:
E玻 E内参 E膜 E内参 K 0.0592 pH试
E玻 K玻 0.0592 pH试
D、电位法测定溶液pH的基本原理 电位法测定溶液的pH,是以玻璃电
极作批示电极,饱和甘汞电极作参比电 极,浸入试液中构成原电池: E = E甘 – E玻
电位滴定法中拟定终点的办法重 要有下列几个:
第一种办法:以测得的电动势和 对应的体积作图,得到E~V曲线, 由曲线上的拐点拟定滴定终点。
第二种办法:作一次微商曲线, 由曲线的最高点拟定终点。具体 由△E/△V对V作图,得到△E/△V 对V曲线,然后由曲线的最高点拟 定终点。
第三种办法:由二次微商求终点
其中,批示电极是看待测离子的 浓度变化或对产物的浓度变化有 响应的电极,参比电极是含有固 定电位值的电极。
在滴定过程中,随着滴定剂的加 入,待测离子或产物离子的浓度 要不停地变化,特别是在计量点 附近,待测离子或产物离子的浓 度要发生突变,这样就使得批示 电极的电位值也要随着滴定剂的 加入而发生突变。
惯用的有Ag/AgCl、甘汞电极 (Hg/Hg2Cl2电极)。
对于甘汞电极,其电极反映为: Hg2Cl2+2e=2 Hg+2Cl-
3. 第三类电极:它由金属,该金属 的难溶盐、与此难溶盐含有相似阴离 子的另一难溶盐和与此难溶盐含有相 似阳离子的电解质溶液所构成。表达 为M (MX,NX,N+)。如: Zn| ZnC2O4(s),CaC2O4(s),Ca2+ Ca2+ + ZnC2O4 +2e CaC2O4+ Zn

电位分析法

电位分析法
1.分类 直接电位分析:通过测定指示电极的电位, 直接电位分析:通过测定指示电极的电位, 根据电位与待测离子活度之间的定量关系进 行定量分析。 行定量分析。 电位滴定分析: 电位滴定分析:通过测定滴定过程中电极电 位突变来确定滴定终点进行分析。 位突变来确定滴定终点进行分析。
2.特点 (1)仪器设备简单,操作方便,适合现场 仪器设备简单,操作方便, 操作; 操作; 选择性好,测定简便快速; (2)选择性好,测定简便快速; 试样用量少; (3)试样用量少; 自动化程度高; (4)自动化程度高; 精密度较差。 (5)精密度较差。
ϕ玻璃
ϕ甘汞
2.303RT E = K′ + pH F 25 °C: E = K′ + 0.059pH
比较法确定待测溶液pH 比较法确定待测溶液pH
pH已知的标准缓冲溶液 和 pH待测的试液 。 测定 已知的标准缓冲溶液s和 待测的试液 待测的试液x。 已知的标准缓冲溶液 各自的电动势为 的电动势为: 各自的电动势为:
测定待测溶液的电位值, 测定待测溶液的电位值, 通过标准曲线求出其浓度。 通过标准曲线求出其浓度。
Ex
lgcx lg c i
总离子强度调节缓冲溶液( TISAB )的作用 保持较大且相对稳定的离子强度,使活度系数恒定; ①保持较大且相对稳定的离子强度,使活度系数恒定; 范围内, ②维持溶液在适宜pH范围内,满足离子电极的要求; 维持溶液在适宜 范围内 满足离子电极的要求; ③掩蔽干扰离子。 掩蔽干扰离子。 测 F- 过 程 所 使 用 的 TISAB 典 型 组 成 : 1mol/L 的 NaCl,使溶液保持较大稳定的离子强度 ; 0.25mol/L的 , 使溶液保持较大稳定的离子强度; 的 HAc 和 0.75mol/L 的 NaAc, 使 溶 液 pH 在 5 左 右 ; 0.001mol/L的柠檬酸钠 掩蔽 3+、Al3+等干扰离子。 的柠檬酸钠, 掩蔽Fe 等干扰离子。 的柠檬酸钠

第九章--电位分析法(2014)PPT课件

第九章--电位分析法(2014)PPT课件

H水 合层 H溶 液
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
.
13/6193
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
同一玻璃电极,膜内外表面性质可以看成是相同 的,所以常数K内=K外;
属于非晶体膜电极。 最早使用的离子选择性电极。 核心部分是玻璃膜。
.
6/696
玻璃膜的不同组成可制成对不同 阳离子响应的玻璃电极。
pH玻璃膜电极的敏感膜是在SiO2 基质中加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。厚度约为 100 mm左右。
原理:玻璃膜产生的膜电位与待 测溶液的pH值有关。
.
19/6199
3.3 pH值的测定
pHlogH[] pH loagH
饱和甘汞电极为参比电 极 , 玻 璃 电 极 作 为 H+ 活 度 指 示电极,两者插入溶液中组 成电池:
A A g ,0 . g 1 m C L 1 H ol 玻 lC 试 l 璃 K ( 饱 液 C ) 膜 ,H 2 C l 和 2 H g l
.
34/6394
二氧化碳气敏电极
电极浸入待测液,试液中 待测CO2通过透气膜扩散 ,直到透气膜内外CO2的 分压相等。
CO2引起的内电解质溶液 pH变化用pH玻璃电极指 示,由此测定试液中CO2 的浓度。
.
35/6395
气敏电极一览表:
.
36/6396
7. 酶电极
将 生物酶 涂剂:二癸基磷酸钙+苯基磷酸二辛酯溶液。
.
32/6392

第七章 电位分析法

第七章 电位分析法

离子敏感场效应晶体管(ISFET)
16-4 离子选择性电极性能参数


一、检测限与响应斜率 离子选择性电极能够检测到被测离子的最低浓 度。如图16-10中的CD与FG两延长线交叉点A 所对应的离子活度。 依能斯特方程直线的理论斜率为:
2.303 RT 理论斜率 zF
实际测定时斜率与理论值不一定相同。
(二)氟电极
氟电极的敏感膜由LaF3单晶片制成,为提高导电性, 在其中参杂少量Eu2+,Ca2+ ,二价离子的引入,使晶 格点阵中La3+被Eu2+,Ca2+取代,形成较多空的F-点 阵,增强了晶体的导电性,导电由F-完成。 氟离子选择性电极是目前最成功的单晶膜电极。
RT EF k ln a F F
能斯特方 程比较
EM
RT k ln a Ag F
二、电位选择性系数


电极选择性是指:电极对被测离子 和干扰离子响应的差异。 这种差异可用电极选择性系数Ki,j表 示。
RT z/m EM k ln( ai K iPot a ) ,j j zF
Ki,j表征了干扰离子对被测离子干扰的程度
玻璃电极的电位与溶液PH关系

玻璃电极的电位与溶液的PH有如下关系 RT E玻 k玻 ln aH F 2.303 RT E玻 k玻 pH 试 F
E玻 k玻 0.0592pH试
(三)阳离子玻璃电极
二、晶体电极

(一)电极结构 晶体电极的基本结构图16-5,其敏感膜 材料系难溶盐加压或拉制成的。能满足 室温下导电的难溶盐晶体只有少数几种, 氟化镧、硫化银、卤化银等。这类晶体 晶格能比较小,离子半径最小电荷最少 的离子F ,Ag+等参与导电。

电位分析


而产生电极电位的,即电极上发生氧化还原反应—电极上
有电子的得失与转移; 离子选择性电极是以敏感膜为基体,选择性地让一些 离子渗透,同时包含着离子的交换过程。因此,离子选择 性电极电位是由离子的交换和扩散作用产生的。 敏感膜是一种能分开两种电解质溶液,并对溶液中某种 物质有选择性响应的薄膜,它能形成膜电位,ISE被认为是 一种电化学传感器,是电位分析中应用最广泛的指示电极。
Chapter 10 Potentiometry
第十章
电位分析法
§10-1 概 述
一、定义
电位分析法指在零电流条件下,利用电极电位和 溶液中某种离子的活度或浓度之间的关系来测定待测 物含量的方法,包括直接电位法和电位滴定法。
直接电位法 电位滴定法
1. 直接电位法 (direct potentiometry) :
将电极插入被测液中,根据测得的电池电动势与
被测溶液中待测物质某种型体的平衡浓度的关系直接
求出待测物质含量的方法。 2. 电位滴定法 (potentiometric titration) : 借助滴定过程中电池电动势的突变来确定滴定 终点,根据滴定剂的体积和浓度来求得待测物质的 含量,所得是某种参与滴定反应物质的总浓度。
3. 任意的i离子选择性电极电位
任意阳离子i 的离子选择性电极的电位均等于膜内扩散
电位和膜与电解质溶液形成的内外界面的界面电位的代数 和。
膜内外表面性质完全相同,所以,内外界面扩散电位 大小相等,方向相反,相互抵消。
而膜内外界面的界面电位为:
外 内
a1 RT K1 ln ’ nF a1 a2 RT K2 ln ’ nF a2
对整个玻璃电极而言,其电极电位应是内参比电极
电位和玻璃膜电位之和:

第九章 电位分析法


a' H +

aH +

a' H +

p 28
式中:
aH+外, aH+内为待测溶液和内参比溶液中氢离子活度。 aH+外’, aH+内’为外水化胶层和内水化胶层中的氢离子活 度。k外、k内为玻璃外,内膜性质决定常数。若膜内外表 面性质相同,则k外=k内, aH+外‘ = aH+内’ ,则
E膜 E道,外 E道,内 0.0592 lg
EE
0 Ce 4 Ce 3
4

3
0.059 lg
aCe 4 aCe 3
p9
第二节
离子选择性电极
膜电极,又称离子选择性电极(Ion Selective Electrode,ISE) (1)敏感膜:对特定的离子有选择性的响应
(2)响应机理:与金属指示电极区别,没有电子的得失(即 氧化还原反应)
p 31
产生原因
由于玻璃膜内外结构、性质并不完全一致,导致
内外水化胶层中aH+外’ ≠ aH+内 ’ ,在这种情况下, 即使aH+外 = aH+内时, E膜也不为0。 消除或减小、稳定不对称电位方法: 在水中长时间浸泡(24h); 用标准缓冲溶液校正。
p 32
(2)碱差(钠差) 定义:普通玻璃电极的适应范围为1-10,当用 玻璃电极测定pH>10的溶液或钠离子浓度较高的溶液 时,测量值与实际值相比偏低,这种现象称为碱差
电极可用符号记为:
Hg 2C2O4 , CaC2O4 , Ca2 Hg
汞电极的电位可有下式确定
0 E EHg 2 / Hg 0.059 lg aHg 2

第十章-电位分析法

14
玻璃膜
15
玻璃膜电位的形成:
玻璃电极在水溶液中浸泡,形成一个三层结构,即 中间的干玻璃层和两边的水化硅胶层。 浸泡后的玻璃膜示意图:
膜电位构成:相界电位、扩散电位之和。
16
玻璃膜电位的形成:
水化硅胶层具有界面, 构成单独的一相,厚度一 般为0.01~10 μm。在水化 层,玻璃上的Na+与溶液 中的H+发生离子交换而产 生相界电位。
测定的只是某种型体离子的平衡浓度。
电位滴定法:利用电极电位的突变来指示滴定终点的
滴定分析法,是电位测量方法在容量分析中的应用。 测定的是某种参与滴定反应物质总浓度。


指示电极: 在电位分析中,将电极电位随被测电活性物
质活度变化的电极称为指示电极。
参比电极: 与被测物质无关的、电位比较稳定的、提供
的电极,K后取负号; b. Ki j 称之为电极的选择性系数; 其意义为:在相同的测定条件下,待测离子和干扰离 子产生相同电位时待测离子的活度αi与干扰离子活度αj的
Zi/Zj次方的比值:
Ki j = αi /(α j)Zi/Zj
25
离子选择性电极的性能参数
Nernst响应,线性范围和检测下限
① 线性范围:AB段对应的检测离子 的活度(或浓度)范围。(Nernst响应)
② 级差: AB段的斜率(S), 活度相差一数量级时,电位 改变值,S=2.303 RT/nF , 25℃时,一价离子S=0.0592 V, 二价离子S=0.0296 V。离子电荷数越大,级差越小,测定 灵敏度也越低,电位法多用于低价离子测定。
电极电位(25℃): EAgCl/Ag = EAgCl/Ag - 0.059lgaCl-
7

电位分析法

被测物质的最低量可以达到 10 mol/L 数量级。

第一章 电位分析法第 一节 基本原理1、电化学分析概述根据物质在溶液中的电化学性质及其变化来进行分析的方法。

它是 以电导、电位、电流和电量等电参量与被测物之间的关系做为计量的基 础。

依据物质电化学性质来测定物质组成及含量的分析方法称为电化学 分析或电分析化学。

它通常是使待分析的试样溶液构成一化学电池(原电池或电解池), 然后根据所组成电池的某些电物理量(如两电极间的电位差,通过电解 池的电流或电量,电解质溶液的电阻等)与其化学量之间的内在联系来 进行测定。

电化学分析法的特点:(1)灵敏度、准确度高,选择性好-12(2)电化学仪器装置较为简单,操作方便直接得到电信号,易传递,尤其适合于化工生产中的自动控制和在线分析。

(3)应用广泛传统电化学分析:无机离子的分析; 测定有机化合物也日益广泛; 有机电化学分析;药物分析;电化学分析在药物分析中也有较多应用。

活体分析。

根据所量的电参量的不同,电分析化学方法可分为三类:第一类:在某些特定条件下,通过待试液的浓度与化学电池中某些电参量的关系进行定量分析,如电导、电位、库仑极谱及伏 安分析第二类:通过某一电参量的变化来指示终点的电容量分析好电位滴定第三类:通过电极反应把被测物质,转变为金属或其它形式的搓化物,用重量法测定基会量。

2、电化学电池2.1原电池能自发的将本身的化学能变成电能,这种化学电池称为原电池。

以铜锌原电池为例锌电极、负极(阳极):Z n→Z n2++2e氧化反应铜电极、正极(阴极):C u2++2e→C u还原反应2.2电解池实现某种电化学反应的能量由外电源供给则这种化学电池称为电解池仍以铜电极和锌电极为例。

锌电极、负极(阴极):Z n2++2e→Z n还原反应铜电极、正极(阳极):C u→C u2++2e氧化反应应注意:阳极、阴极是对实际发生的反应而言,阳极发生氧化反应,阴极发生还原反应;正极、负极是对电荷的流向而言,电子流出为负极,电子流入为正极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章电位分析法§6-1电化学分析法基础一、定义:利用物质在溶液中的电学或电化学性质来进行分析的方法,称为电化学分析法。

通常使待测液构成一个化学电池来测定。

二、分类常见的分类法有:(一)按测试方法不同分类(即溶液电学物理量与化学量之间内在联系的不同)1.利用溶液浓度与电化学参数之间的关系分类电极电位——电位分析法电阻——电导分析法电量——库仑分析法电流—电压曲线——伏安分析法(极谱分析法)2.以上述物理量的突变作为滴定分析的终点指示的分析法——电容量法3.溶液中待测组分通过电极反应转化为固体,然后通过称量固体的重量来测定含量——电重量法(二)根据所测量的电化学参数的不同分类1.电位分析法——零电流下测定电动势进行分析;2.电导分析法3.库仑分析法4.伏安分析法三、电极电位和电动势1.电池化学电池:化学能和电能相互转化的装置原电池:自发地将其内部的化学反应所产生的能量转化为电能的化学电池。

电解池:电化学反应的能量由外电源供给的化学电池①原电池的组成及产生电流的原理②原电池的表示方法IUPAC规定:ⅰ)用“‖”代表盐桥;ⅱ)负极写左,正极写右;ⅲ)用“∣”表示相界面;ⅳ)标明物态(S、l、g)和组成(浓度T、压力P)。

按上述规定Cu-Zn电池可表示为Zn(s) ∣ ZnSO4(а1)‖‖CuSO4(а2) ∣Cu(s)2.电极电位(1)电极电位:极板和溶液之间的电位差(用Ψ正或Ψ负表示)(2)标准电极电位:组成电极的氧化态(Ox)和还原态(Red)的活度均为1时的电极电位(用Ψo表示)3.电动势:当电池没有电流通过时两极之间的电位差(用E表示,E=Ψ正-Ψ负)4.能斯特公式——电极电位与被测离子活度的关系对于电极反应Ox + ne→Red,其电极电位符合公式nesnet公式,即:Ψ= Ψ0Ox/Red + RT/nFln(αOx/αRed),式中Ψ0Ox/Red——标准电极电位 R——气体常数n——电子转移数 T——绝对温度F——法拉第常数αOx——氧化态活度αRed——还原态活度5.电极的种类电极按它在电化学分析中的作用不同可分为(1)指示电极:反映待测离子活度的电极,例如:pH电极(2)参比电极:P,T恒定时,其电极电位不随待测离子活度变化的电极,例如:甘汞电极(3)工作电极:电极上有电流通过,本体溶液成分发生变化的电极。

(4)辅助电极:如pt电极。

四、电化学分析法的特点:1.应用范围广:生产控制、成分分析、科研、环保、农业等。

2.仪器简单,易于自动化、连续化§5-2 电位分析法定义:利用电极电位与浓度的关系测定物质含量的电化学分析法称为电位分析法方法:将指示电极、参比电极和试液组成原电池,测电其电动势即可进行定量分析。

根据测量方式的不同可分为直接电位法(电位测定法)和间接电位法(电位滴定法)1.直接电位法(电位测定法):通过对电动势的测量直接定量被测物浓度(活度)。

对于:Ox+ne→RedΨ=Ψ0Ox/Red+ RT/nFln(αOx/αRed),若还原态为固体,则可认为αRed=1,则Ψ=Ψ0Ox/Red + RT/nFlnαOx,若知Ψ,Ψ0则可求出αOx。

2.间接电位法(电位滴定法)Ψ和αOx(被测物)的对数成正比,故在滴定反应进行到等当点附近时,由于被测物质浓度发生突变,导致电极电位发生突变,这样就可以利用电极电位的突变来确定滴定反应的终点,这种测试方法,称电位滴定法。

§6-3 膜电位与离子选择性电极离子选择性电极:对某种特定离子产生选择性响应的一种化学敏感器。

一般由敏感膜、内参比电极和内参比溶液构成。

一、膜电位、离子选择性电极的测定原理离子选择性电极对特定离子响应是因为对于一种敏感膜而言,这种特定离子可与敏感膜中的离子产生离子交换,从而产生膜电位,这种离子交换是有特征性的。

以PH电极为例。

PH玻璃电极是最早研究的离子选择性电极,结构如下:其底部敏感膜是一种对H+有选择性响应的玻璃膜,约30-50μm,这种膜是一种三维网络骨架(SiO)4-Na+,浸入水溶液时形成一层厚度约0.1-0.01μm的水化层,水化层中骨架上的Na+被H+取代(H+>1014 Na+)即(SiO)4-H+,交换的结果使水化层电荷分布发生变化,使膜两侧产生一定的电位差(如下图),同样,内层也有。

ΔΨM = Ψ试-Ψ内根据nesnet公式:Ψ试= K1+RT/FlnαH+,试/α/H+,试Ψ内= K2+RT/FlnαH+,内/α/H+,内∴ΔΨM = K1+RT/FlnαH+,试/α/H+,试- [ K2+RT/FlnαH+,内/α/H+,内]若水化层对称,可认为 K1= K2,α/H+,试=α/H+,内则,ΔΨM= RT/FlnαH+,试/αH+,内,αH+,内是常数∴ΔΨM= RT/FlnαH+,试+ KΔΨM H+,试ΔΨM 试由上式可看出,若温度一定,玻璃电极的膜电位与试液的PH成线性关系。

与玻璃电极类似,各种离子选择性电极的膜电位也遵循能斯特公式,即ΔΨM由此可知,在一定条件下(T、P恒定),离子选择性电极膜电位和待测离子的活度的对数是线性关系,这就是离子选择性电极测试法的基础。

二.离子选择性电极的选择性理想的离子选择性电极仅对特定离子产生响应,事实上不是为此,共存离子也能产生膜电位。

对PH玻璃电极,Na+影响少,但[H+]低时影响不能忽视,考虑到Na+的影响,实际上膜电位为ΔΨM = K+RTln(αH++αNa+*K H+,Na+)。

式中K H+,Na+为Na+对H+的选择系数,由此推广,设i为某待测离子,j为共存干扰离子,n i,n j分别为i离子和j离子的电荷转移数,则ΨM = K±RT/n i Fln[αi +k i,j(αj)ni/nj尼柯尔斯基—艾森曼方程式k i,j为j离子对i离子的选择系数,k i,j越小,则电极对i离子的选择性越高,即j离子干扰小,通过选择系数可估算某种干扰离子对测定造成误差。

%相对误差 = k i,j*(αj)ni/nj/αI*100%对于多种离子干扰,可以次类推。

三.离子选择性电极的分类和性能按照IUPAC规定:根据膜电位响应机理、膜的组成和结构,离子选择性电极可分为以下几类:1.晶体膜电极晶体膜电极的敏感膜材料一般为难溶盐加压或拉制成单晶、多晶或混晶的活性膜。

根据制备方法的不同可分为均相膜和非均相膜电极两类。

ⅰ)均相膜电极分单晶膜电极和多晶膜电极F-电极为单晶膜电极,LaF3单晶膜。

此外,还有离子接触型和非离子接触型之分。

非离子接触型无内参比液,膜片直接与Ag接触。

如Ag2S电极Ag+、S2+均敏感,还有AgX(Cl-、Br-、I-)和MS(Pb2+、Cu2+、Cd2+等)电极通常以Ag2S为骨架。

ⅱ)非均相膜电极电活性物质(难溶盐、螯合物、缔合物等),均匀分布在惰性材料(硅橡胶、聚氯乙烯、聚苯乙烯等)中制成。

2.非晶体膜电极ⅰ)刚性基质膜电极即玻璃电极,其敏感膜是具有离子交换作用的薄玻璃,随玻璃成分不同对不同离子具有选择性,常见的有H+、Ag+和碱金属等一价阳离子的选择性电极。

(见P142)构造:内参比液、一价阳离子的氯化物、内参比电极为Ag/AgCl。

ⅱ)流动载体电极(液膜电极)它的敏感膜是溶有某种载体的有机溶剂薄层。

3.气敏电极其结构是一完整的原电池,由指示电极和参比电极组成。

如NH3电极4.酶电极酶是具有高选择性,高催化效率的生物催化剂,酶参与的催化反应形成的产物可被离子敏化电极。

气敏电极检测,则可利用这一性质制备的酶电极,用于测定生物活性物或酶活性。

例如:CO(NH2)2+H2O→2NH3+CO2脲酶可催化此反应,通过测定反应产物NH3就可测定尿素的含量。

四、离子选择性电极的基本特征离子选择性电极的基本特征主要包括:选择系数,检出限,响应时间,有效PH范围,使用寿命,响应斜率。

1.检出限E-lgα曲线如右lgα0中的α0即为检测限lgα2.选择系数lgα03.响应斜率能斯特公式Ψ=Ψ0±2303RT/nFlgα中,S = 2303RT/nF即为响应斜率。

4.响应时间从两电极接触试样至电动势稳定(±1mv)所需时间,与膜和待测溶液的性质有关。

5.有效PH范围pH玻璃电极:1-10F-电极: 5-6PH>6,生成La(OH)3沉淀,使LaF3溶解,PH<5,F-与H+结合成HF或HF2-均影响测定。

6.使用寿命§6-4离子选择性电极定量测试方法及其影响因素一、溶液pH测定根据能斯特公式Ψ膜 H+,试= K-2303RT/FpH试…①Ψ玻= Ψ膜+ ΨAg/AgCl = K, 试…②Ψ膜、Ψ玻均无法直接测量,但我们可用pH玻璃电极和饱和甘汞电极组成原电池,pH玻璃电极为负极、甘汞电极为正极。

Ag,AgCl|HCl(0.1M/L)|玻璃膜|试液‖KCl(饱和),Hg2Cl2|HgE = Ψ甘汞-Ψ玻= Ψ甘汞- K,试………………③E = K,, 试………………………………………④PH试=(E-K,,)F/2.303RT……………………………………⑤K,,难得到,但实际测量时可用标准溶液比较法进行测定,E标= K,, 标PH标=(E标- K,,)F/2.303RT………………………………⑥∴ K,, = E标标………………………………⑦由⑤、⑦可得:pH试=PH标+(E-E标……………⑧二、其它离子的测试原理和定量测试方法1.测试原理同PH测量相似,但通常以甘汞电极为负极,离子选择性为正极,有:甘汞E = K, ±若T、P不变,则K,为常数,故E~lgα呈线性关系,若测得E 即可求得α。

2.测试方法常用的测试方法有:ⅰ)标准曲线法缺点:适合于离子强度小或样品简单的测试,采用加入TISAB或标准加入法测定可克服。

ⅱ)标准加入法方法:先测定未知样的电动势,再加入少量已知浓度的标准溶液,然后在相同的条件下测定其电动势即可求出未知样的浓度,公式推导如下:x…………………………………………………①加入标准溶液后:E = K + 2.303RT/nFlg[(C x V0+C s V s)/(V0+V s)]…②②-①得:ΔE = E-Ex = Slg[(C x V0+C s V s)/(V0+V s)C x]式中:RT/nF取反对数得:10ΔE/S= (C x V0+C s V s)/(V0+V s)C x整理后可得:C x = C s V s/(V0+V s)[10ΔE/s-V0/(V0+V s)]-1………………③由于V0》V s ∴ V0 +V s= V0∴③式简化为C x = C s V s/V0(10ΔE/s-1)-1…………………………④优点:只需一种标准溶液,可减少离子强度变化引起的误差(γ恒定)。

相关文档
最新文档