我国压水堆核电站主要设备及原理
压水堆核电厂的运行_第六章

穹顶在吊装中(左) 穹顶内部(右) 2
吊装环吊的大梁(左) 穹顶钢束张紧(右)
安全壳建造中(左)150吨穹顶吊装(右) 35
安全壳变形测量(左)阀门局部泄漏试验(右)
安全壳贯穿件
• 贯穿通道:
– 设备入口管子 – 电缆套筒 – 燃料组件运输管道的贯穿孔 – 空气闸门。
• 为了不使贯穿件处泄漏,均 有特殊设计,它是由一个穿 过混凝土壁面并锚固在混凝 土上的刚套管及两个接头构 成。接头保证了套管和穿过 安全壳的管道或电缆间的密 封连接。
障。
25
安全壳
• 型式:
– 材料
• 钢板 • 钢筋混凝土制造的(包括预应力混凝土) • 既用钢板又用钢筋混凝土
– 性能
• 干式 • 冰冷凝器式
– 形状
• 球形 • 圆筒形
– 由材料、性能、形式等几方面的组合,结合考虑压水堆核电厂的厂 址,输出功率、经济性和安全性等因素,具有代表性的有以下几种。
26
• 美国早期建造的电功率为800MW压水堆核 电厂安全壳,直径约40m,钢板厚度38mm, 半球顶、椭球底,二次包容壳为椭球顶盖 的圆柱形钢筋混凝土结构,两层壳之间留 有1.5 m宽的环形空间,环腔内呈负压,从 钢壳泄漏至环腔的放射性气体只有经过过 滤净化后方能从排气烟囱排放,以降低放射 性物质对环境的污染。
同时,触发其他系统的保护动作:
– 反应堆紧急停堆; – 安全壳隔离系统 – 汽轮机脱扣 – 启动应急柴油发电机; – 隔离主给水系统并停运主给水泵; – 启动电动辅助给水泵;
21
16
安注过程
• 1.冷段直接注入阶段 – 这一阶段是利用一回路冷却剂正常运行时的流向,使硼酸溶液尽快地注人堆芯。 – 一旦接到"安注"信号,立即自动执行以下动作:
核电站工作原理

核电站工作原理它是以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,来加热水使之变成蒸汽。
蒸汽通过管路进入汽轮机,推动汽轮发电机发电。
一般说来,核电站的汽轮发电机及电器设备与普通火电站大同小异,其奥妙主要在于核反应堆。
核电站除了关键设备——核反应堆外,还有许多与之配合的重要设备。
以压水堆核电站为例,它们是主泵,稳压器,蒸汽发生器,安全壳,汽轮发电机和危急冷却系统等。
它们在核电站中有各自的特殊功能。
主泵如果把反应堆中的冷却剂比做人体血液的话,那主泵则是心脏。
它的功用是把冷却剂送进堆内,然后流过蒸汽发生器,以保证裂变反应产生的热量及时传递出来。
稳压器又称压力平衡器,是用来控制反应堆系统压力变化的设备。
在正常运行时,起保持压力的作用;在发生事故时,提供超压保护。
稳压器里设有加热器和喷淋系统,当反应堆里压力过高时,喷洒冷水降压;当堆内压力太低时,加热器自动通电加热使水蒸发以增加压力。
蒸汽发生器它的作用是把通过反应堆的冷却剂的热量传给二次回路水,并使之变成蒸汽,再通入汽轮发电机的汽缸作功。
安全壳用来控制和限制放射性物质从反应堆扩散出去,以保护公众免遭放射性物质的伤害。
万一发生罕见的反应堆一回路水外逸的失水事故时,安全壳是防止裂变产物释放到周围的最后一道屏障。
安全壳一般是内衬钢板的预应力混凝土厚壁容器。
汽轮机核电站用的汽轮发电机在构造上与常规火电站用的大同小异,所不同的是由于蒸汽压力和温度都较低,所以同等功率机组的汽轮机体积比常规火电站的大。
危急冷却系统为了应付核电站一回路主管道破裂的极端失水事故的发生,近代核电站都设有危急冷却系统。
它是由注射系统和安全壳喷淋系统组成。
一旦接到极端失水事故的信号后,安全注射系统向反应堆内注射高压含硼水,喷淋系统向安全壳喷水和化学药剂。
便可缓解事故后果,限制事故蔓延。
注:核裂变是一个原子核分裂成几个原子核的变化。
只有一些质量非常大的原子核像铀(yóu)、钍(tǔ)等才能发生核裂变。
压水堆运行原理

1,核能有何特点,是什么?具有很高的能量密度,核电是清洁的能源,核能是极为丰富的能源,核电在经济性具有竞争力,核电的安全性具有保障2,压水堆核电站厂的基本组成是什么?与火电厂的对应关系是什么?(1)核岛系统:反应堆冷却剂系统,一回路辅助系统(专设安全系统,核辅助系统,三废处理系统)(2)常规岛系统:二回路系统,循环冷却水系统,电气系统,电厂配套设施3,核电厂的安全目标是什么,其两个解释目标是什么?建立并维持一套有效的防护措施,以保持工作人员、公众和环境免遭放射性危害。
两个解释目标:(1)辐射防护目标:确保在正常时放射性物质引起的辐射照射低于国家规定的限值,并维持在合理达到的尽量低的水平。
(2)技术安全目标:防止发生事故,减少严重事故发生概率及其后果4,纵深防御原则是什么,与核电站设计有何关系?(1)预防:预防出现异常工况和系统故障;保守设计、高质量建造和运行(2)保护:异常工况的控制和故障检测;控制、保护系统和定期检查(3)限制:控制事故在设计基准内;工程安全设施和事故处置程序(4)缓解:防止事故扩展,减轻严重事故的后果;备用措施和事故管理(5)应急:减轻大量放射性物质释放所造成的环境影响;场外应急响应计划5,单一故障原则是什么,与核电站设计有何关系?要求某设施组合在任何部位发生可信的单一故障是仍能执行其正常功能的准则,由该单一故障引起的所有续发性故障均视为单一故障不可分割的组成部分6,压水堆核电站厂的屏蔽如何分类?热屏蔽,生物屏蔽,辅助系统屏蔽,工艺运输屏蔽7,反应堆冷却剂系统的功能是什么?为实现其功能,主冷却剂系统的基本组成是什么?(1)可控的产生链式裂变反应(2)导出堆芯热量,冷却堆芯,防止燃料元件燃毁(3)产生蒸汽(4)第二道实体屏障,包容放射性物质。
系统组成:反应堆压力容器,控制棒驱动机构的压力外壳,主冷却剂管道,蒸汽发生器一回路侧,主冷却剂泵,稳压器连接的管道,与辅助系统连接的管道和阀门8,反应堆的功能是什么?以铀为核燃料,可控制的使一定数量的核燃料发生自是链式裂变反应,并维持不断地将核裂变释放的热量带出做功9,主泵的功能是什么?目前,压水大型堆电厂主要使用哪种类型的主泵,为什么?(1)用于驱动冷却剂在RCP内的循环,连续不断地将堆芯产生的热量传递给蒸汽发生器二次侧给水(2)采用立式单级离心式轴封泵,屏蔽泵电动机制造困难,惯性小,不利于事故停堆下堆芯的冷却,且泵的容量小,造价高,效率低,维修困难,可靠性差,轴封泵带有可控泄露轴封装置,流量大,扬程低10,蒸汽发生器的功能是什么?蒸发器的压力与水位对其功能的实现有何影响?压力与水位如何控制?(1)利用一回路冷却剂从反应堆中带出的热量加热二回路给水并使其产生蒸汽,供给二回路耗气设备,是连接一回路和二回路的枢纽(2)将水位保持在与负荷相匹配的水平,防止瞬态是水位过高淹没干燥器,增加出口蒸汽湿度,损害汽轮机叶片;防止水位过低,造成蒸汽发生器传热管部分暴露于蒸汽中,造成热应力损坏(3)给水阀开度控制,气动给水泵进气阀开度控制11,稳压器的基本功能是什么?如何实现?稳压器的压力与水位控制如何实现?(1)压力控制,压力保护,补充rcp水容积变化,rcp升压和降压(2)压力调节(rcp压力上升,喷淋;rcp压力下降,电加热)压力保护(压力过高:释放阀,高压紧急停堆,安全阀;压力过低:低压紧急停堆,安全注入)12,化学和容积控制系统的基本功能是什么?核电厂一回路系统为什么要设计化学和容积控制系统?化学和容积控制系统的功能如何实现?容积控制—稳压器不能全部吸收一回路水容积变化—上冲下泄化学控制—冷却剂中含有悬浮杂质,需维持冷却剂的化学及放射性指标在规定范围内—注入NAOH,中和硼酸,控制冷却剂为偏碱性;联氨除氧,充入氢气,过滤,离子交换反应性控制—通过调整冷却剂的硼浓度来补偿反应性变化——加硼,稀释和除硼13,反应堆硼和水补给系统的功能是什么?核电厂一回路系统为什么要设计反应堆硼和水补给系统?反应堆硼和水补给系统的功能如何实现?(1)提供除盐除氧硼水—保证rcv系统的容积控制功能—(硼酸溶液贮存箱,除盐除氧水泵,硼酸泵)(2)注入联氨、lioh等药品—保证rcv系统的化学控制能力—化学物添加箱(3)提供硼酸溶液和除盐除氧水—保证rcv系统的反应性控制功能—(除盐除氧水贮存箱、硼酸溶液配置箱)14,余热排出系统的功能是什么?核电厂一回路系统为什么要设计余热排出系统?余热排出系统的功能如何实现?(1)反应堆停堆过程中,用于排出堆芯余热、一回路冷却剂和设备的释热以及运行的主泵在一回路产生的热量(2)反应堆停堆后,由于裂变产生的裂变碎片及其衰变物通过放射性衰变过程释放热量,即剩余功率,仍然需要通过冷却剂的循环带出,以确保堆芯安全(3)余热排出泵,余热排出热交换器15,安全注入系统的系统功能是什么?安全注入系统的系统组成是什么?(1)一回路小破口或二回路蒸汽管道破裂时,向一回路补水,重新建立稳压器水位(2)一回路大破口时,向堆芯注水,以重新淹没并冷却堆芯(3)二回路蒸汽管道破裂时,向一回路注入高浓度硼酸溶液,补偿冷却剂过冷而引起的正反应性高压安全注入系统+低压安全注入系统+中压安全注入系统16,安全壳喷淋系统的系统功能是什么?在发生Loca或安全壳内蒸汽管道破裂时,安全壳内压力和温度升高,安全壳喷淋系统的功能是通过喷淋冷水以冷凝壳内的蒸汽,是温度和压力降低到可接受水平,确保安全壳的完整性17,辅助给水系统的系统功能是什么?在主给水系统的任何一个环节发生故障是、时,作为应急手段向蒸汽发生器二次侧供水,使一回路维持一个冷源,排出堆芯剩余功率,直到余热排出系统允许投入运行为止18,安全壳隔离系统的系统功能是什么?(1)在发生Loca事故时,是专设安全设施以外的穿过安全壳的管道隔离,从而减轻放射性物质的对外释放(2)在主蒸汽管道发生破裂时,及时隔离蒸汽发生器,以防反应堆冷却剂系统过冷和安全壳超压19,压水堆核电厂二回路系统的功能是什么?其组成特点是什么?(1)将核蒸汽供应系统产生的热能转变为电能,在停机或事故工况下,保证核蒸汽供应系统的冷却(2)朗肯循环基础上附加再热循环和回热循环;高压缸使用饱和蒸汽,低压缸使用微过热蒸汽;蒸汽再热器使用高压缸抽气和新蒸汽加热;给水回热系统使用高,低压缸抽气加热20,压水堆核电厂汽轮机发电机组的主要特点有哪些?新蒸汽参数低;新蒸汽参数在一定范围内反滑变化;循环热效率低;理想焓降小;大多数湿蒸汽汽轮机中设有中压缸;容积流量大;大多数级低于湿蒸汽区;单排气口极限功率较小21,核电厂饱和蒸汽汽轮机有哪些特点?新蒸汽参数在一定范围内变化;新蒸汽参数地,通常为饱和蒸汽;理想焓降小,容积流量大;汽轮机及其附属设备中积聚的水分多,甩负荷时容易引起主机超速22,汽轮机润滑、顶轴和盘车系统的功能?简述其工作过程。
压水堆工作原理

压水堆工作原理
压水堆(PressurizedWaterReactor,简称PWR)是一种核反应堆类型,被广泛应用于核能发电领域。
其工作原理如下:
1. 反应堆芯
反应堆芯是PWR的关键部件,其由一系列燃料组件构成,每个燃料组件包含燃料棒和冷却剂管等组件。
燃料棒中填充有铀等放射性物质,通过核裂变释放出能量,产生热量。
2. 冷却剂
冷却剂是PWR中使用的介质,一般采用水作为冷却剂。
冷却剂在反应堆芯中循环流动,将燃料棒中释放的热量带走。
3. 循环系统
PWR的循环系统包括主循环泵、蒸汽发生器和蒸汽涡轮机等组件。
主循环泵将冷却剂从蒸汽发生器中抽出,经过反应堆芯后再回到蒸汽发生器中,循环往复。
4. 蒸汽发生器
蒸汽发生器是PWR中的热交换器,其将循环中的冷却剂与次级循环中的水进行热交换,使次级循环中的水转化成蒸汽,从而驱动蒸汽涡轮机发电。
5. 控制系统
PWR的控制系统主要包括反应堆压力、温度和放射性物质等参数的检测和控制。
其中,反应堆压力和温度的控制是保证反应堆安全运行的关键措施。
总之,PWR在运行过程中通过将燃料的裂变产生的热量带走,利用蒸汽涡轮机将热能转化为电能,从而实现核能发电。
该技术具有能源密度高、污染低、稳定性强等优点,被视为未来能源发展的重要方向之一。
核反应堆工作原理

核反应堆工作原理核反应堆是一种利用核能进行能量转换的装置,它是实现核能利用的关键设备之一。
核能反应堆的工作原理是通过控制并维持核裂变反应的连续进行,从而释放出大量的能量。
本文将详细介绍核反应堆的工作原理。
一、核反应堆的基本组成核反应堆由以下几个关键组成部分构成:1. 燃料元件:燃料元件是核反应堆中的核燃料载体,通常采用浓缩铀或钚等放射性物质。
燃料元件中的核燃料可通过核裂变反应释放出巨大的能量。
2. 控制元件:控制元件用于调节核反应堆中的核裂变反应速率。
通常采用控制棒来实现,控制棒的插入深度可以调节反应堆中的中子流量,从而控制反应堆的热功率。
3. 冷却剂:冷却剂用于吸收反应堆产生的热能,同时也用于传递热能到发电系统。
常用的冷却剂有水、重水和液态金属等。
4. 反应堆堆芯:反应堆堆芯是核反应堆的核心部分,包括了燃料元件和控制元件。
核反应堆的裂变链式反应主要在堆芯中进行。
二、核反应堆的工作原理核反应堆的工作原理可概括为以下几个步骤:1. 中子释放:核反应堆中的裂变链式反应需要中子的引发,裂变产生的中子将会引发更多的裂变。
核反应堆通常通过控制棒的插入深度调节中子的释放速率。
2. 裂变链式反应:一旦中子被释放,它们会与核燃料的原子核相互作用,并引起核裂变反应。
核裂变反应会释放出大量的能量,并产生更多的中子,进一步维持裂变链式反应。
3. 热能释放:核裂变反应产生的能量以热的形式储存在反应堆堆芯中。
冷却剂流经堆芯,吸收堆芯中的热能,并将其带走。
4. 热能转化:冷却剂通过传热介质的方式,将堆芯中的热能传递给发电系统。
常见的热能转化方式是将冷却剂转化为蒸汽,驱动汽轮机发电。
5. 控制反应速率:为了维持核反应堆的稳定工作,需要控制并调节核裂变反应的速率。
通常通过调节控制棒的深度来控制中子的流量,从而控制反应堆的热功率。
三、核反应堆的类型核反应堆可以根据燃料类型、工作方式和冷却剂等分类。
常见的核反应堆类型有:1. 压水堆(PWR):采用轻水作为冷却剂和减速剂,以浓缩铀为燃料。
关于第三代核电站

关于第三代核电站关于第三代核电站前⾔能源危机与环境危机⽇益紧迫,使⽤新的清洁、安全、⾼效能源成为⼈类不争的共识。
除了煤炭、⽯油、天然⽓、⽔⼒资源外,如风能、太阳能、潮汐能、地热能等等新能源逐渐引起⼈们的重视,但是由于技术问题、开发成本及场地等因素,这些能源很难在近期内实现⼤规模的⼯业化⽣产和利⽤;⽽同各种化⽯能源相⽐起来,核能对环境和⼈类健康的危害更⼩,更是⼀种安全、可靠、清洁的能源,且在经济上具有竞争⼒的最为现实的替代能源。
第三代核反应堆是在汲取了第⼆代反应堆运⾏经验和事故教训后,于20世纪90年代后期发展出的安全性更⾼的先进反应堆技术,通常把满⾜《美国⽤户要求⽂件(URD)》或《欧洲⽤户要求⽂件(EUR)》价标准的核电⼚称为第三代核电站。
⽬前,世界上在建和规划待建的核电站,⼤部分将采⽤第三代核电技术。
近年来,我国核电产业发展取得了举世瞩⽬的成绩,核电技术研发和⼯程应⽤⾛在世界前列。
以“华龙⼀号”正式投产和“国和⼀号”成功研发(及其⽰范⼯程的开⼯建设)为标志,我国成为继美国、法国、俄罗斯等核电强国后⼜⼀个拥有独⽴⾃主三代核电技术和全产业链的国家。
核电站⼯作原理核电站是利⽤核分裂(核裂变)或核融合(核聚变)反应所释放的能量产⽣电能的发电⼚。
⽬前商业运转中的核能发电⼚都是利⽤核裂变反应⽽发电。
核电站常见的堆型有四种:压⽔堆、沸⽔堆、重⽔堆和快堆。
压⽔堆核电站发电原理图沸⽔堆核电站发电原理图现在⽐较普遍使⽤的核电站是压⽔反应堆核电站,我国在运、在建的第三代核电站采⽤的都是压⽔堆核电站,它的⼯作原理是:⽤铀制成的核燃料在“反应堆”的设备内发⽣裂变⽽产⽣⼤量热能,再⽤处于⾼压⼒下的⽔把热能带出,在蒸汽发⽣器内(进⾏热能交换,将热能传递给⼆回路供给的主给⽔)产⽣蒸汽,蒸汽推动汽轮机带着发电机⼀起旋转,电就源源不断地产⽣出来,并通过电⽹送到四⾯⼋⽅。
核电站由三个回路组成。
压⽔堆压⽔堆核电站由三个回路组成。
⼀回路:反应堆堆芯因核燃料裂变产⽣巨⼤的热能,由主泵泵⼊堆芯的⽔被加热成327度、155个⼤⽓压的⾼温⾼压⽔,⾼温⾼压⽔流经蒸汽发⽣器内的传热U型管,通过管壁将热能传递给U型管外的⼆回路主给⽔,释放热量后⼜被主泵送回堆芯重新加热再进⼊蒸汽发⽣器。
压水堆核电站控制(第一章)

反应性阶跃变化大小与反应堆周期的关系 压水堆动力学模型 华北电力大学核科学与工程学院
当反应性的变化ρ接近β时,由缓增变为陡增。对应反应堆周期 T=1/ ω 1急剧减小。
压水堆动力学模型 华北电力大学核科学与工程学院 反应性大阶跃变化下中子密度响应
当反应性变化大于β后,反应堆周期接近零,反应堆功率急 剧上升失去控制,出现“瞬发临界事故”。
华北电力大学核科学与工程学院 n/n0
瞬变项
华北电力大学核科学与工程学院 反应性小阶跃变化下中子密度响应 反应性扰动开始的瞬间,中子密度迅速增长决定于瞬发中子,反 应堆周期 ,这种现象称为瞬跳;很快缓发中子发挥作用, 按指数规律增长。
中子密度以反应堆周期
华北电力大学核科学与工程学院
压水堆动力学模型 华北电力大学核科学与工程学院 反应性大阶跃变化下中子密度响应 当反应性ρ为一个很大的阶跃扰动时,按上述类似方法可得:
华北电力大学核科学与工程学院 点堆动力学模型:把反应堆看成没有空间度量的一个“点”, 即反应堆内各点的中子通量密度只随时间变化,与空间位置 无关。 有效增殖系数Keff :某一代参与裂变反应的中子数除以上 一代参与裂变反应的中子数。 中子一代时间(Neutron life time) l :上一代中子产生数量 相同的下一代中子的所需的时间。 平均一代中子时间:一个中子由于裂变被另一个中子代替 的平均时间。 Λ =l/ Keff 反应性:表征链式反应介质或系统偏离临界程度的参数。
华北电力大学核科学与工程学院
华北电力大学核科学与工程学院
华北电力大学核科学与工程学院
压水堆动力学模型 华北电力大学核科学与工程学院 反应性小阶跃变化下中子密度响应
平衡点处: 缓发中子先驱核产生率= 缓发中子先驱核消失率
核电设备

三.规范标准
1.采用规范标准的原则
-中国的法规、条例和规定必须遵照执行 -结合国情,参照大亚湾核电站使用的法国RCC 系列标准和其他国家标准 -适当采用中国国家标准和核工业标准
2.实际规范标准应用情况 2.
(1)国家颁布的法律、法规、条例规定。如环 境保护法、锅炉压力容器安全监察暂行条例、 核安全法规和导则等。 (2)法国规范标准 ① RCC系列 RCC-P、 RCC-M、 RCC-E、 RCC-G、 RCC-I、 17 RCC-C、
11
(2)电气设备的安全分级 若电气设备和部件涉及安全功能和事故后保护公 众的系统,则定为IE级。 未列入IE级的设备用NC表示 四种电气设备鉴定程序 -标准鉴定程序 -K3鉴定程序 -K2鉴定程序 -K1鉴定程序
12
4.抗震分级
(1)所有与安全有关的机械和电气设备,包括 安全1、2、3级和LS级机械设备及IE级电气设 备都有抗震要求,定为抗震1类设备 (2)部分设备和部件虽无核安全要求,但按其 重要性必须验证其抗震能力的也可定为抗震1 类 (3)抗震1类的机械设备和部件分三类: -1I类:在安全停堆地震(SSE)下必须保持结 构完整性和密闭性 -1F类:在安全停堆地震(SSE)下要求保持功 能的专设安全设施及其支承系统的非能动部件 -1A类:在安全停堆地震下要求完成动作确保事 故后安全功能的能动设备
14
6.质量保证等级
(1)质量保证等级分为:Q1、Q2和Q3级,无质 量保证要求的为QNC级。 (2)各级要求: Q1-遵照HAF003和相应导则中的全部要求,制 定实施质保大纲,满足合同等采购文件中的质 保要求。 Q2-遵照HAF003和相应导则中的绝大部分要求, 制定和实施质保大纲程序(质保手册),并满 足合同等采购文件中的质保要求。 Q3-制定和实施质保工作程序和细则,并满足合 同等采购文件中的质保要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压水堆核电站主要设备及原理
压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高
压反应容器。容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,
顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控
制棒的插入深度。
堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。它
由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组
成。
堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过
热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速
流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反
应堆,再通过一套动力回路将热能转变为电能。
压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核
能转变为蒸汽的动能,进而转变为电能。该动力装置由一回路系统,
二回路系统及其他辅助系统和设备组成。
原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在
主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量
带至蒸汽发生器。蒸汽发生器一次侧再把热量传递给管子外面的二回
路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却
水又重新流回堆芯。这样不断地循环往复,构成一个密闭的循环回路。
一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵
机组、稳压器及主管道等。
一回路示意图
稳压器结构图
冷却剂主泵结构图
二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压
蒸汽,然后推动汽轮机,带动发电机发电。做功后的乏汽在冷凝器内
冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生
器,再变成高压蒸汽推动汽轮发电机作功发电。这样构成第二个密闭
循环回路。
二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝
结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。
汽轮发电机机组是二回路系统的主要设备。它由饱和汽轮机、发
电机、冷凝器和中间汽水分离加热器组成。
汽轮机是单轴、四缸六排汽、冷凝式饱和蒸汽轮机。在汽轮机高
压缸和低压缸之间,设有两个汽水分离再热器,对蒸汽进行中间除湿
和加热。
核电厂二回路的流程原理与火力发电厂的流程原理基本相同,只
是由核岛部分的蒸汽发生器代替了火力发电厂的蒸汽锅炉。
同火力发电厂使用的热蒸汽相比,蒸汽发生器出口的蒸汽为饱和
蒸汽,热力参数低,作功能力差,因此核电汽轮机的体积比火电汽轮
机的体积大,在本体疏水和蒸汽除湿等方面都要采取相应的必要措
施,以防止湿蒸汽的冲蚀。为了降低冲蚀影响,采用半转速汽轮机较
为有利。
为保证反应堆的安全运行,压水堆不允许冷却水沸腾。因此,由
主循环泵5送入反应堆2的冷却剂(轻水)的压力高达12~16MPa。在
此情况下,冷却剂(轻水)的温度即使达320℃也不会汽化。冷却剂把
核燃料放出的热能带出反应堆,并进入蒸汽发生器4,通过数以千计
的传热管,把热量传给管外的二回路水(压力通常比一回路低
8~11MPa),使水沸腾产生蒸汽;从蒸汽发生器出来的饱和蒸汽或微
过热蒸汽进入汽轮机高压缸6膨胀作功,高压缸排汽进入汽水分离再
热器7,分离出来的饱和蒸汽被再热后送入对称分流的低压缸8继续
作功。作过功的乏汽在凝汽器10中凝结成水,经凝结水泵11、凝结
水精处理装置12、凝升泵13、低压回热加热器14、除氧器15、给水
泵16和高压回热器加热17后,重新送回蒸汽发生器。冷却剂流经蒸
汽发生器后,再由主泵送入反应堆而形成循环,不断地把反应堆中的
热量带出并转换产生蒸汽。
压水堆核电站主要设备