压水堆核电站工作原理简介

合集下载

压水堆核电厂的工作原理

压水堆核电厂的工作原理

NuclearPowerKnowledge核电知识压水堆核电厂的工作原理压水堆是用高温高压水作慢化剂和冷却剂的反应堆。

15兆帕左右(即150大气压左右)高压的一回路水在反应堆内被核能加热,温度升高到325℃左右。

它在蒸汽发生器内将二回路水加热,生成6~7兆帕、275~290℃的蒸汽,推动汽轮发电机组发电。

核电厂与火电厂的主要区别是核电厂用反应堆替代了火电厂的锅炉。

压水堆的结构压水堆由堆芯、堆内构件、压力容器和控制棒及驱动机构组成(如图所示)。

把二氧化铀烧结成小圆柱形芯块,装入直径约10毫米的锆合金管中,组成燃料元件(燃料棒)。

再将许多燃料元件按一定格式排列,用定位件组装在一起,成为燃料组件。

运行时部分组件内插有控制棒束。

许多燃料组件按一定规律组合在一起,构成堆芯,它是压水堆内产生热能的核心。

!!!!!!!!!!!!!!!!!!!!!!!!"!!!!"!!!!!!!!!!!!!!!!!!!!!!!!"!!!!"编者按:当前能源需求快速增长,环境污染日趋严重,为了解决这些问题,世界各国越来越把目光投向核电。

在我国正面临着核电建设快速发展的大好形势,为了向公众广泛宣传核电是安全、可靠、清洁的新能源,本刊将连续刊载核电科普知识,以飨读者。

压水堆核电厂简要流程图压水堆核的整体结构图192--压水堆的主要物理热工特性压水堆用普通水作为慢化剂和冷却剂,用镉-铟-银和硼酸作为控制材料。

以100万千瓦的核电厂为例,它具有下列主要特性:(1)堆芯高约3.6米,直径约3米,在这么小的体积内要发出约300万千瓦热功率,其平均体积比功率高达约110千瓦每升。

停堆后,由于裂变产物的β和γ衰变以及缓发中子的作用,还要发出“余热”,几小时后还有1%额定功率(约3万千瓦),其能量十分可观!因此必须确保冷却剂流动不能中断,更不能失水!(2)一回路压力如果降低,高温水可能汽化,使燃料元件冷却恶化。

《压水堆核电厂完》课件

《压水堆核电厂完》课件

将反应堆产生的热量传递给蒸汽发生 器。
控制棒与调节剂
控制反应堆的启动、停止和功率调节 。
蒸汽与汽轮机系统
蒸汽发生器
将反应堆产生的热量转化为蒸汽 。
汽轮机
将蒸汽的热能转化为机械能,驱 动发电机发电。
冷凝器与凝结水泵
将汽轮机排出的蒸汽冷凝成水, 回收利用。
冷却剂系统
冷却剂泵
将冷却剂循环流动,带走反应堆产生的热量。
核裂变
重原子核分裂成两个或多 个较轻原子核,同时释放 出巨大能量。
核反应堆
控制和维持核裂变反应的 装置,用于产生热能。
压水堆核电厂的特点
高效能
利用核能发电,具有高效 率和低成本优势。
安全可靠
采用封闭式循环系统和多 重安全保障措施,确保运 行安全。
环保
产生的放射性废料较少, 且经过严格处理,对环境 影响较小。
冷却剂热交换器
将冷却剂的热量传递给蒸汽发生器或辅助系统。
冷却剂过滤器
去除冷却剂中的杂质,保持系统清洁。
核燃料循环系统
燃料组件
由燃料棒、控制棒和支撑结构组成,实现核燃料的安全管理。
燃料装卸系统
负责燃料组件的装载、卸载和运输。
乏燃料储存设施
储存乏燃料,确保其安全处理和处置。
辅助系统与设备
化学处理系统
定期安全审查
对核电厂进行定期的安全评估 ,确保所有安全措施得到有效 执行。
应急计划
制定详细的应急计划,包括事 故发生后的响应措施、人员疏 散等,以最大程度地减少事故
的影响。
辐射防护与控制
辐射监测
对核电厂周围的环境进 行实时监测,确保辐射
水平在安全范围内。
防护设备
为工作人员提供必要的 防护设备,如防护服、 手套、鞋等,以减少辐

压水堆最终热阱

压水堆最终热阱

压水堆最终热肼
压水堆(Pressurized Water Reactor,简称PWR)是一种核电站反应堆类型,其基本原理是利用核裂变反应释放的热能来产生蒸汽,推动涡轮机旋转,进而发电。

在压水堆中,最终热肼(heat sink)的作用是吸收堆芯释放的热量,防止反应堆过热。

热肼通常是指一种高温高压的液体冷却剂,如水、硼酸水等。

在压水堆中,热肼通过循环泵在封闭的循环系统中流动,将堆芯产生的热量传递到蒸汽发生器,然后再由蒸汽推动涡轮机发电。

热肼的主要优点是其热传导性能好,可以有效地带走反应堆堆芯产生的热量。

此外,热肼还具有一定的中子吸收能力,有助于控制反应堆的反应速率。

然而,热肼中的氚污染问题是需要关注的一个重要问题,因为氚是一种放射性同位素,对人体和环境具有危害性。

在压水堆中,热肼作为最终热交换介质,对确保反应堆安全运行具有重要意义。

在实际操作中,需要对热肼的浓度、温度、压力等参数进行严格控制,以保证反应堆的正常运行。

同时,还要注意氚污染的监测和处理,确保环境保护和人类健康。

压水堆核电厂

压水堆核电厂
1中子慢化剂:压水堆的冷却剂为轻水;它具 有比较好的中子慢化能力,起到慢化剂的 作用,使裂变产生的快中子减速成为热中 子,以维持链式裂变反应; 另外,它也起到 反射层的作用,使泄漏出堆芯的部分中子 反射回来。
(2)反应性控制:反应堆冷却剂中溶有的硼酸 可吸收中子,因此通过调整硼溶度可控制 反应性。
▪ 循环水冷却回路:亦称三回路;其主要功用是向冷 凝器供给冷却水,确保汽轮机冷凝器的有效冷却。
▪ 电气系统:电气系统包括发电机、励磁机、主变 压器、厂用变压器等。
01.11.2024
20
01.11.2024
21
核供汽系统:反应堆+反应堆冷却剂系统+辅助系统
01.11.2024
22
反应堆冷却剂系统Reactor Coolant System,RCP一回路Primary system
01.11.2024
29
核电厂选址应考虑的因素
从核安全的观点考虑,核电站的厂址选择必须 是保护公众和环境免受放射性事故所引起的过量 辐射影响; 要重点考虑:
➢ 可能发生的外部自然事件和人为事件对核电站的影响 ➢ 实施应急措施及有关外围地带的人口密度 分布及其他
特征
➢ 核电站正常的放射性物质释放等。
▪ 石墨
➢ 石墨吸收截面稍大于重水, 但价格便宜,又是耐高温 材料,可用于非氧化气氛的高温堆中。
▪ 铍、碳氢化合物等。
➢ 铍的慢化能力比石墨好,用它作慢化剂可缩小堆芯尺 寸,但铍有剧毒 、价格昂贵、易产生辐照肿胀,故使 用受到限制。
01.11.2024
9
反应堆
▪ 沸水堆Boiling Water Reactor;缩写为BWR
01.11.2024
11

简述压水堆核电站工作原理

简述压水堆核电站工作原理

简述压水堆核电站工作原理嘿,朋友们!今天咱来聊聊压水堆核电站那神奇的工作原理。

你看啊,这压水堆核电站就好比一个超级大的能量制造工厂。

核燃料呢,就像是工厂里的超级原料,蕴含着巨大的能量。

在这个大工厂里,核燃料被放进反应堆这个核心区域。

就好像是把宝贝放进了一个特别的魔法盒子里。

然后呢,核燃料在里面发生链式裂变反应,这可不得了啦,就像一场超级能量大爆发!释放出大量的热能。

这热能可不能浪费呀,水就来帮忙啦!水在反应堆里被加热,变成高温高压的水蒸汽。

你想想,这水蒸汽就像充满力量的小火车,呼呼地跑起来。

接着呢,这些水蒸汽就冲向汽轮机,推动汽轮机快速转动。

汽轮机就像是一个大力士,被水蒸汽推动着拼命干活。

汽轮机一转起来,又带动着发电机也跟着转起来啦。

发电机就像一个勤劳的小精灵,把机械能转化成电能。

那发出来的电呢,就顺着电线跑到我们家里啦,给我们带来光明和便利。

哎呀,你说神奇不神奇?这就好像是变魔术一样,从核燃料开始,经过一系列的过程,最后就变成了我们能用的电。

有人可能会担心啦,这么厉害的能量会不会有危险呀?嘿嘿,别担心,核电站有很多安全措施呢。

就像给这个大工厂装上了好多把安全锁,保证一切都稳稳当当的。

而且啊,这压水堆核电站可是为我们的生活做出了巨大贡献呢!它能提供大量的电力,让我们的生活更加丰富多彩。

想想看,如果没有核电站,我们的电可能就不够用啦,那得多不方便呀!
所以说呀,压水堆核电站虽然听起来很复杂很神秘,但其实它就像我们生活中的好帮手,默默地为我们工作着。

我们可得好好感谢它呢!大家说是不是呀!。

压水堆核电站概述

压水堆核电站概述
从那以后,反应堆在许多国家和地区得到了广泛的发展和应 用。
三.反应堆(2)
2.反应堆的类型 根据用途,核反应堆可以分为以下几种类型 ①将中子束用于实验或利用中子束的核反应,包括研究堆、材
料实验堆等。 ②生产放射性同位素的核反应堆。 ③生产核裂变物质的核反应堆,称为生产堆。 ④提供取暖、海水淡化、化工等用的热量的核反应堆,比如多
七.核电站主要系统和设备(1)
1.一回路主辅系统及设备(1) 一回路主辅系统主要包括三大部分:
(1)导出核裂变能的反应堆冷却剂系统; (2)保证反应堆冷却剂系统顺利稳定运行的辅助系统; (3)防止放射性物质失控排放和堆芯熔化的安全系统。
某些系统具有双重或多重作用。
七.核电站主要系统和设备(2)
一.核能与核裂变(4)
3.核裂变 裂变反应是可裂变重核裂变成两个中等质量核并放出能量的
反应,包括用中子轰击引起的裂变和自发裂变。
有意义的是指用中子轰击某些可裂变原子核时,引起重原子 核发生裂变的一种反应。
在裂变过程中有大量能量释放出来,且伴随着放出若干个次 级中子,这是最重要的一种核反应。
一.核能与核裂变(5)
反应堆拥有量排名前三位的美国、法国、日本的反应堆总和 占全世界的49.4%。
五.世界核电发展现状(2)
五.世界核电发展现状(3)
六.中国核电发展概况(1)
1.中国核电发展现状(1) 中国的核电发展经历了2个阶段
第一阶段,从1985年建造秦山核电厂开始到1994年大亚湾 核电站2台机组发电,花了10年时间建成了2个核电厂,3台 机组,总装机容量为210万kW。
对核裂变反应,一般可用反应式来描述:
U+n→X1+X2+ν·n+E

压水堆核电站_

压水堆核电站_

压水堆核电站压水堆核电站用铀制成的核燃料在一种叫“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动气轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。

这就是最普通的压水反应堆核电站的工作原理。

压水堆核电站由反应堆、一回路系统、二回路系统以及电站的配套设施等主要部分组成。

压水堆燃料是高温烧结的圆柱形二氧化铀陶瓷块,直径约8毫米,高13毫米,称之为燃料芯块。

其中铀-235的浓缩度约3%。

燃料芯块-个一个地重叠着放在外径约9.5毫米,厚约0.57毫米的锆合金管内,锆管两端有端塞。

燃料芯块完全封闭在锆合金管内,构成燃料元件。

这种锆合金管称为燃料元件包壳。

这些燃料元件用定位格架定位,组成横截面是正方形的燃料组件(见图4-2)。

每一个燃料组件包括两百多根燃料元件。

一般是将燃料元件排列成横十七排、纵十七行的17×17的组件,中间有些位置空出来放控制棒。

控制棒的上部连成-体成为棒束。

每一个棒束都在相应的燃料组件内上下运动。

控制棒在堆内布置得很分散,以便堆内造成平坦的中子通量分布。

燃料组件外面不加装方形盒,以利于冷却剂的横向流动。

加上端部构件,整个组件长约四米,横截面为边长约20厘米的正方形。

图4-3是典型压水堆压力容器与堆芯结构原理图;图4-4为压力容器的结构布置图。

由燃料组件组成的堆芯放在一个很大的压力容器内。

控制棒由上部插入堆芯。

在压力容器顶部有控制棒的驱动机构。

作为慢化剂和冷却剂的水,由压力容器侧面进来后,经过吊篮和压力容器之间的环形间隙,再从下部进入堆芯。

冷却水通过堆芯后,温度升高,密度降低,再从堆芯上部流出压力容器。

一般入口水温300C ο,出口水温332C ο,堆内压力15.5Mpa 。

一座100万千瓦的压水堆,堆芯每小时冷却水的流量约6万吨。

这些冷却水并不排出堆外,而是在封闭的-回路内往复循环。

堆芯放了一百多个燃料组件,这些组件总共包括四万多根三米多长、比铅笔略粗的燃料元件。

压水堆核电站的发电原理

压水堆核电站的发电原理

压水堆核电站的发电原理把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。

一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。

水这样不断地在密闭的回路内循环,被称为一回路。

二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。

这样的汽水循环过程,被称为二回路。

三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。

什么是核燃料?核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。

压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。

大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由1717根燃料棒组成。

燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。

一个燃料组件中有一束控制棒,控制核裂变反应。

利用核能生产电能的电厂称为核电厂。

由于核反应堆的类型不同,核电厂的系统和设备也不同。

压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图 2.1所示。

通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。

二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。

电厂的其他部分,统称配套设施。

实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。

反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。

通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。

现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压水堆核电站工作原理简介
核反应堆是核电动力装置的核心设备,是产生核能的源泉。

在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。

裂变反应是指一个重核分裂成两个较小质量核的反应。

在这种反应中,核俘获一个中子并形成一个复合核。

复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。

一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。

铀-235的裂变反应如图1.3-1所示。

对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。

在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。

由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。

对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。

这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。

水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。

高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。

如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。

蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。

在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。

高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。

从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低
压加热器用于加热凝结水;低压缸的排气排入凝汽器,并被海水冷却为凝结水。

汇集到凝汽器热井中的凝结水由一级凝结水泵升压后送到凝结水精处理装置进行水质净化,接着凝结水通过轴封蒸汽加热器、一号低压加热器和二号低压加热器。

此时凝结水被加热到87 oC。

凝结水经过二级凝结水泵进一步提升压力后通过三号低压加热器和四号低压加热器被加热至151 oC进入除氧器。

凝结水在除氧器中进行热力除氧(P=0.84MPa,T=172oC),然后由主给水泵提升压力后经5、6号高压加热器进一步被加热至217.6 oC,最后进入蒸汽发生器二次测,给水吸收反应堆冷却剂热量后转变成饱和蒸汽,冲转汽机,从而形成完整的汽水循环,称为二回路汽水循环系统,同时由于汽轮机转子与发电机转子刚性相连,因此汽轮机直接带动发电机发电,把机械能转换为电能。

综上所述,压水堆核电站将核能转变为电能是分四步,在四个主要设备中实现的:(1)反应堆:将核能转变为热能(高温高压水),并将热能传给一回路冷却剂;
(2)蒸汽发生器:将一回路高温高压水中的热量传递给二回路的水,使其变为饱和蒸汽;
(3)汽轮机:将饱和蒸汽的热能转变为高速旋转的机械能;
(4)发电机:将汽轮机传来的机械能转变为电能。

相关文档
最新文档