分数裂项1完整PPT课件

合集下载

六年级第一讲:分数裂项

六年级第一讲:分数裂项

| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education分数裂项| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education例1一、单位分数的拆分:导入课堂 练习:()[]1161+= ()与[ ]中数不同 例1:()()()()()()()()11111111201201101+=+=+=+=+=教学建议:首先要掌握10的因数有哪几个解:分析:分数单位的拆分,主要方法是:从分母N 的约数中任意找出两个m 和n,有:BA n m N n n m N m n m N n m N 11)()()()(11+=+++=++= 本题10的约数有:1,10,2,5 …… 例如:选1和2,有:151301)21(102)21(101)21(10)21(1101+=+⨯++⨯=+⨯+⨯= 本题具体的解有:3011513511416011211101111101+=+=+=+=专题解析典型例题解析| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假Nice Education练习1(1)()()11121+= 有哪几种情况? (2)杯望希11161++= (“希” “望” “杯”代表不同的整数,一种情况即可)(3)赛竞克匹林奥11111121+++++= (不同数代表不同的数,一种情况即可)例2求:+⨯+⨯+⨯+⨯541431321211 (31)30130291⨯+⨯的值 教学建议:用裂项法求)1(1+n n 型分数求和分析:因为=+-++=+-)1()1(1111n n n n n n n n )1(1+n n (n 为自然数) 所以有裂项公式:111)1(1+-=+n n n n分析:a n =111)1(1+-=+n n n n所以 原式311301301291514141313121211-+-+-+-+-+-=31303111=-=练习2(1)91901541431321⨯++⨯+⨯+⨯ (2)121+261+3121+4201+……+204201| 六年级·提高班 教师版 | 第1讲 李斌老师主编暑假 Nice Education(3)99009899970297017271565542413029201912116521++++++++++ (4)1200520043221=⨯++⨯+⨯xx x(5)?,20052004)1(11216121n n n 求已知=+++++例3求1009711071741411⨯++⨯+⨯+⨯ 的值 教学建议:用裂项法求)(1k n n + 型分数求和分析:)(1k n n +型。

第04讲-分数裂项求和(1)

第04讲-分数裂项求和(1)
原式
也可以直接进行通项归纳.根据等差数列的性质,可知分子的通项公式为,所以,再将每一项的与分别加在一起进行裂项.后面的过程与前面的方法相同.
7、
【解析】,,……,
,所以
原式
8、.
【解析】这题是利用平方差公式进行裂项:,
原式
9、
【解析】原式
1、(迎春杯初赛)计算:
【解析】原式
2、(走美杯初赛)_______
(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:
,形式的,我们有:
(3)
(4)
裂差型裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(1)对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有
(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:
,形式的,我们有:
二、“裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1)(2)
裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
学科教师辅导讲义ห้องสมุดไป่ตู้
学员编号:
年级:六年级
课时数:3
学员姓名:
辅导科目:奥数
学科教师:
授课主题
第04讲——分数裂项求和
授课类型
T同步课堂
P实战演练
S归纳总结
教学目标
会找通项,并能利用通项来裂项;

六年级分数-裂项法

六年级分数-裂项法

六年级分数-裂项法1.2分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:(1)平方差公式:)()(22b a b a b a -⨯+=- (2)等差数列求和公式:()n a a a aa a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n ②)(1d n n +=d 1×(n 1-dn +1)例1. 计算:211⨯+321⨯+431⨯+ (100991)例2. 计算:110×11+111×12 +……+159×60例3. 计算:12 +16 +112+120 +130 +142例4. 计算:110×11+111×12 +……+119×20 例5. 计算12×3 +13×4+……+16×7 +17×8例6. 计算:1+12 +16 +112+120例7. 计算:16 +112 +120+130 +142 +156 +172例8. 计算:31+151+351+631+991+1431例9. 计算:11111144771*********++++⨯⨯⨯⨯⨯例10. 计算:22222315356399++++例11. 计算:1111118244880120168+++++例12. 计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001例13. 计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)例1. 计算:20042003200312005⨯例2. 计算:(751×911×116)÷(113×76×95)例3. 计算:989+9899+98999+……+43421K K 99989999个例4. 计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)例5. 计算:200421-131+200221-331+200021-531+……+421-200131+221-200331例6. 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861) 例7. 计算:⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211=.例8. 计算:222345567566345567+⨯⨯+= .例9. 计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= .例10. 计算:4513612812111511016131+++++++= .例11. 计算:()()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= .例12. 计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++⎪⎭⎫⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211=能力训练:1、计算:1) 5132÷132+7143÷143+9154÷1542) 156 +172 +190 +11103) 18 +124 +148 +180 +1120 4) 212005⨯+322005⨯+432005⨯+……+200520042005⨯5) 212+772+1652+……+16772+202126) 21+65+1211+2019+……+1101097) 1+216 +3112 +4120 +5130 +6142 +7156 +8172 +91908) 21+43+87+1615+3231+6463+128127+256255+5125119) 5431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。

六年级分数-裂项法

六年级分数-裂项法

1.2分数计算(裂项法)知识要点和基本方法分数计算是小学数学的重要内容,也是数学竞赛的重要内容之一。

分数计算同整数计算一样既有知识要求又有能力要求。

法则、定律、性质是进行计算的依据,要使计算快速、准确,关键是掌握运算技巧。

对算式认真观察,剖析算是的特点及个数之间的关系,巧妙、灵活的运用运算定律,合理改变运算顺序,使计算简便易行,这对启迪思维,培养综合分析、推理能力和灵活的运算能力,都有很大的帮助。

公式:(1)平方差公式:)()(22b a b a b a -⨯+=-(2)等差数列求和公式:()n a a a a a a a n n n +=++⋅⋅⋅⋅⋅⋅+++-1132121(3)分数的拆分公式:①)1(1+n n =n 1-11+n②)(1d n n +=d1×(n 1-d n +1)例1. 计算:211⨯+321⨯+431⨯+……+100991⨯例2. 计算:110×11 +111×12 +……+159×60例3. 计算:12 +16 +112 +120 +130 +142例4. 计算:110×11 +111×12 +……+119×20例5. 计算12×3 +13×4 +……+16×7 +17×8例6. 计算:1+12 +16 +112 +120例7. 计算:16 +112 +120 +130 +142 +156 +172例8. 计算:31+151+351+631+991+1431例9. 计算:11111144771*********++++⨯⨯⨯⨯⨯ 例10. 计算:22222315356399++++ 例11. 计算:1111118244880120168+++++例12. 计算:11+21+22+21+31+32+33+32+31+……+1001+1002+……+100100+10099+……+1001例13. 计算:1+211++3211+++43211++++……+20053211+⋅⋅⋅⋅⋅⋅⋅+++例14.计算:2×(1-220051)×(1-220041)×(1-220031)×……×(1-221)例1. 计算:20042003200312005⨯例2. 计算:(751×911×116)÷(113×76×95)例3. 计算:989+9899+98999+……+43421K K 99989999个例4. 计算:(1+21)×(1+41)×(1+61)×(1+81)×(1-31)×(1-51)×(1-71)×(1-91)例5. 计算:200421-131+200221-331+200021-531+……+421-200131+221-200331例6. 计算:(971+97971+9797971+979797971)÷(861+86861+8686861+868686861)例7. 计算:⎪⎭⎫⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211= .例8. 计算:222345567566345567+⨯⨯+= .例9. 计算:322131433141544151655161766171⨯+⨯+⨯+⨯+⨯= .例10. 计算:4513612812111511016131+++++++= .例11. 计算:()()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅⋅⋅⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++293112831133112311311312913029132912291291= .例12. 计算:217665544332217665544332212⨯⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+++++⎪⎭⎫⎝⎛++++⨯⎪⎭⎫ ⎝⎛++++++-76655443327665544332211=能力训练:1、计算:1) 5132÷132+7143÷143+9154÷1542) 156 +172 +190 +11103) 18 +124 +148 +180 +11204) 212005⨯+322005⨯+432005⨯+……+200520042005⨯5) 212+772+1652+……+16772+202126)21+65+1211+2019+……+1101097) 1+216 +3112 +4120 +5130 +6142 +7156 +8172 +91908) 21+43+87+1615+3231+6463+128127+256255+5125119)5431⨯⨯+6541⨯⨯+7651⨯⨯+8761⨯⨯+9871⨯⨯+10981⨯⨯。

裂项相消ppt课件

裂项相消ppt课件

2
,
1
1 2
3
,
1
2
1
3
4
,,
1
2
1 3
n
,(n
N
*
)
的前n项和
提示: an
1
1 2
n
2 n(n 1)
2( 1 n
1) n 1
Sn
2[1 பைடு நூலகம்
1 2
1 2
1 3
1 n
1 n 1
21
1 n 1
2n n 1
4
当堂训练
1.数列{an}的前n项和为Sn,若an=
A.1
B.
C.
D.
,则S5等于 ()
裂项相消法求和
所谓”裂项相消法”就是把数列的各项分裂成两项之差,相 邻的项两彼此相消,就可以化简后求和.
一些常用的裂项公式:
(1)
1
nn 1
1 n
1 n
1
(2)
(2n
1
1)2n
1
1 2
(
1 2n 1
1) 2n 1
(3) 1 1 (1 1 ) (4)
1
n1 n
n(n 2) 2 n n 2
n1 n
注意:根式在分母上时可考虑利用分母有理化,因式相消求和
1
小试身手
应该怎样拆项?
2
[思考探究]
用裂项相消法求数列前n项和的前提是什么? 提示:数列中的每一项均能分裂成一正一负两项,这是用
裂项相消法的前提.一般地,形如{ 列)的数列可选用此法来求.
}({an}是等差数
3
裂项法求和
例:求数列
1,
1 1

1数列求和之裂项相消法优质课件PPT全

1数列求和之裂项相消法优质课件PPT全

1
nn
k
1 k
1 n
n
1
k
变式4:
求和:
Sn
1+ 1 1+2
1 1+2+3
1
1+2+3
n
例2 数列an的前n项和Sn , 通项公式an 2n1,
设bn
=
an +1 Sn Sn+1
,求:数列bn
的前项和Tn
bn
2n 2n 1 2n1 1
1
1
2n 1 2n1 1
1
Tn =1 2n1 1
1 n 1
n ,求其前n项和为Sn.
知识归纳
裂项相消法 分式型
裂项相消法的一般步骤 求通项 裂项 相消
裂项相消法常见裂项公式
求和
变式4:数列的通项公式an
nn
1
1 n
2
, 求其前n项和Sn.
n
n
1
1
n
2
1 2
n
1
n 1
n
1
1
n
2
Sn
=
1 2
1 2
n
1
1
n
2
变式1: 已知数列an为等差数列,a1 1 ,a1 a2 a3
S 数列 bn
满足 bn
2n 1
anan1 2
求:数列 bn
的前n项和
n
bn
2n
n2 n
1
12
1 n2
1 n 1 2
提升
数列an的前n项和Sn ,通项公式an
1 n2
,
证明: Sn 2
小结

五年级分数裂项

五年级分数裂项

分数数列计算分数数列计算本讲我们向同学们介绍怎样用拆分法(也叫裂项法、拆项法)以及换元、通项归纳进行分数的简便运算。

运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。

一般地,形如1a×(a+1)的分数可以拆成1a-1a+1;形如1a×(a+n)的分数可以拆成1n×(1a-1a+n),形如a+ba×b的分数可以拆成1a+1b等等。

同学们可以结合例题思考其中的规律。

对于复杂的分数计算,若有比较庞大的“共同体”,可以考虑换元的方法。

【例1】★计算:11×2 +12×3+13×4+…..+199×100【小试牛刀】14×5+15×6+16×7+…..+139×40【例2】★计算:12×4 +14×6 +16×8 +…..+ 148×50【小试牛刀】 13×5 +15×7 +17×9 +…..+ 197×99【小试牛刀】11×4 +14×7 +17×10 +…..+ 197×100【例3】★计算:113 -712 +920 -1130 +1342 -1556【小试牛刀】114 -920 +1130 -1342 +1556【例4】★★计算:12 +14 +18 +116 +132 +164【小试牛刀】计算 12 +14 +18 +………+1256【例5】★★计算:(1+12 +13 +14 )×(12 +13 +14 +15 )-(1+12 +13 +14 +15 )×(12 +13 +14)【小试牛刀】(12 +13 +14 +15 )×(13 +14 +15 +16 )-(12 +13 +14 +15 +16 )×(13 +14 +15)【例6】★★计算:1111251335572325⎛⎫⨯++++= ⎪⨯⨯⨯⨯⎝⎭【小试牛刀】251251251251251 4881212162000200420042008 +++++⨯⨯⨯⨯⨯【例7】★★计算:5791113151719 1612203042567290 -+-+-+-+【小试牛刀】11798175 451220153012 ++++++【例8】★★★计算1111 123234345192021++++⨯⨯⨯⨯⨯⨯⨯⨯=_________;【例9】★★★1111 135246357202224++++⨯⨯⨯⨯⨯⨯⨯⨯=_________【小试牛刀】1111 135357579192123++++⨯⨯⨯⨯⨯⨯⨯⨯=_________;【例10】★★★11111121231234123450++++++++++++++++=_________;【小试牛刀】1111 11212312100 ++++++++++1. 12+16+112+120+130+1422.110×11+111×12+112×13+113×14+114×153.11×5+15×9+19×13+…..+133×374. 14+128+170+1130+12085. 23 +29 +227 +281 +22436.计算(18 +19 +110 +111 )×(19 +110 +111 +112 )-(18 +19 +110 +111 +112 )×(19 +110 +111)7.计算(1+11999 +12000 +12001 )×(11999 +12000 +12001 +12002 )-(1+11999 +12000 +12001 +12002)×(11999 +12000 +12001)8.计算:11111123420261220420+++++9.计算111 123234789 +++⨯⨯⨯⨯⨯⨯10.计算:111112123122007 +++⋯+++++⋯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档