辽宁省实验中学分校(北校)2019-2020学年度第一学期初一第一次月考数学试卷(扫描版有答案)

合集下载

第一次月考(B)-2019-2020学年七年级下册数学阶段性测评(北师大版)(解析版)

第一次月考(B)-2019-2020学年七年级下册数学阶段性测评(北师大版)(解析版)

第一次月考(B)一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣11【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【专题】计算题.【分析】根据同底数幂乘法、幂的乘方的运算法则进行计算,然后利用排除法求解.【解答】解:A、a3与a2不是同类项,不能合并,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为(a3)2=a6,故本选项错误;D、应为a3﹣a2=a2(a﹣1),故本选项错误;故选B.【点评】本题考查了合并同类项、同底数幂的乘法、幂的乘方,熟练掌握运算法则是解题的关键,不是同类项的一定不能合并.3.化简(a2)3的结果为()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.4.x﹣(2x﹣y)的运算结果是()A.﹣x+y B.﹣x﹣y C.x﹣y D.3x﹣y【考点】整式的加减.【分析】此题考查了去括号法则,括号前面是负号时,去括号后括号里的各项都变号,再合并同类项.【解答】解:x﹣(2x﹣y)=x﹣2x+y=﹣x+y.故选A.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.5.下列各式中不能用平方差公式计算的是()A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中不能用平方差公式计算的是(a﹣2b)(2b﹣a),故选B【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.20°B.30°C.35°D.40°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线定义求出∠AOC=∠EOC=35°,根据对顶角的定义即可求出∠BOD的度数.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=35°,∴∠BOD=∠AOC=35°.故选:C.【点评】本题考查了对顶角、角平分线定义的应用,关键是求出∠AOC的度数.7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°【考点】平行线的性质.【专题】应用题.【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同位角,故选:B.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.8.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能够将黑球直接撞入袋中,那么打白球时必须保证∠1为()A.30°B.45°C.60°D.75°【考点】平行线的性质;余角和补角.【专题】应用题;压轴题.【分析】根据两直线平行,内错角相等及余角定义即可解答.【解答】解:∵AB∥CD,∠3=30°,∴∠4=∠3=30°∴∠1=∠2=90°﹣30°=60°.故选C.【点评】本题主要考查的知识点为:两直线平行,内错角相等.9.如图,在下列四组条件中,能得到AB∥CD的是()A.∠ABD=∠BDC B.∠3=∠4C.∠BAD+∠ABC=180°D.∠1=∠2【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、若∠ABD=∠BDC,则AB∥CD,故本选项正确;B、若∠3=∠4,则AD∥BC,故本选项错误;C、若∠BAD+∠ABC=180°,则AD∥BC,故本选项错误;D、若∠1=∠2,则AD∥BC,故本选项错误;故选A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【考点】平行线的性质;余角和补角.【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是直角.【考点】余角和补角.【分析】根据补角的定义进行计算即可.【解答】解:设这个角为x,则x+x=180°,所以x=90°,故答案为:直.【点评】本题考查了余角和补角,掌握它们的性质是解题的关键.12.如图,直线l1、l2、l3相交于一点O,对顶角一共有6对.【考点】对顶角、邻补角.【分析】识别图中的对顶角应从这个较复杂的图形中分解出三个基本图形(即定义图形)即直线AB、CD 相交于O;直线AB,EF相交于O;直线CD,EF相交于O.由于两条直线相交组成对顶角,所以上述图中共有6对对顶角.【解答】解:如图,图中共有6对对顶角:∠AOC和∠BOD,∠AOD和∠BOC;∠AOF和∠BOE,∠AOE 和∠BOF;∠COF和∠DOE,∠COE和∠DOF.故答案为:6【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.13.计算:(a+b)2+(﹣4ab)=(a﹣b)2.【考点】完全平方公式.【专题】计算题.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2+(﹣4ab)=(a﹣b)2.故答案为:(﹣4ab)【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是27x3y2﹣x2y2.【考点】整式的除法.【专题】计算题.【分析】根据被除数等于除数乘以商,即可求出结果.【解答】解:根据题意得:3xy(9x2y﹣xy)=27x3y2﹣x2y2.故答案为:27x3y2﹣x2y2.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.15.边长为a厘米的正方形的边长减少3厘米,其面积减少4a.【考点】平方差公式.【分析】分别计算出两种边长下正方形的面积,继而可得出答案.【解答】解:边长为a厘米的正方形的面积为:a2;边长为(a﹣2)厘米的正方形的面积为:(a﹣2)2,则面积减小=a2﹣(a﹣2)2=(a+a﹣2)(a﹣a+2)=4a.故答案为:4a.【点评】本题考查了平方差公式的知识,掌握平方差公式的形式是关键.16.若a+b=5,ab=5,则a2+b215.【考点】完全平方公式.【分析】根据a2+b2=(a+b)2﹣2ab来计算即可.【解答】解:∵a+b=5,ab=5,∴a2+b2=(a2+b2+2ab)﹣2ab,=(a+b)2﹣2ab,=52﹣2×5,=15.故答案为:15.【点评】本题考查对完全平方公式的理解掌握情况,对式子的合理变形会使运算更加简便,解题时,常用到a2+b2=(a+b)2﹣2ab=(a﹣b)2+2ab的变化,结合已知去计算.17.已知a+=,则a2+=1.【考点】完全平方公式.【专题】计算题.【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵a+=,∴a2+=(a+)2﹣2=3﹣2=1,故答案为:1【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,则∠BFD的度数为110°.【考点】平行线的性质;多边形内角与外角.【专题】计算题.【分析】根据平行线的性质可得∠ABE+∠CDE+∠E=360°,∠E=140°由此得出∠FBE+∠EDF的值,再根据四边形的内角和为360°可得出∠BFD的度数.【解答】解:过点E作EG∥AB,则可得∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠E=360°;又∵∠E=140°,∴∠ABE+∠CDE=220°,∴∠FBE+∠EDF=(∠ABE+∠CDE)=110°;∵四边形的BFDE的内角和为360°,∴∠BFD=110°,故填110.【点评】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).【考点】多项式乘多项式.【分析】根据多项式乘以多项式法则即可求出答案.【解答】解:原式=18x2﹣24x+54x﹣72=18x2+30x﹣72;【点评】本题考查多项式乘以多项式法则,属于基础题型.20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ab)2.【考点】整式的除法;幂的乘方与积的乘方.【专题】常规题型.【分析】先算乘方,再算乘除.【解答】解:原式=:(a3b5﹣3a2b2+2a4b3)÷a2b2=4ab3﹣12+8a2b.【点评】本题考查了积的乘方和多项式除以单项式,掌握运算顺序,理解多项式除以单项式法则,是解决本题的关键.多项式除以单项式,一般多项式几项,相除后的结果是几项.21.(x+2)2﹣(x+1)(x﹣1)【考点】完全平方公式;平方差公式.【专题】计算题.【分析】利用完全平方公式与平方差公式展开,然后再合并同类项即可.【解答】解:(x+2)2﹣(x+1)(x﹣1)=x2+4x+4﹣x2+1=4x+5.故答案为:4x+5.【点评】本题考查了完全平方公式与平方差公式,熟记公式结构是解题的关键.22.计算:1652﹣164×166(用公式计算).【考点】平方差公式.【分析】先把原式变形为1652﹣(165﹣1)(165+1),再用平方差公式进行计算即可.【解答】解:原式=1652﹣(165﹣1)(165+1)=1652﹣1652+1=1.【点评】本题考查了平方差公式,掌握平方差公式是解题的关键.23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;压轴题.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.【点评】此题主要考查了整式的化简求值,解题的关键是利用整式的乘法法则及平方差公式、完全平方公式化简代数式.四、作图题(7分)24.如图,已知∠AOB,求作一个角,使它等于2∠AOB(不写作法,保留作图痕迹)【考点】作图—复杂作图.【分析】利用基本作图(作一个角等于已知)先作出∠CMD=∠α,再作∠DMN=∠α,则∠CMN=2∠α.【解答】解:如图,∠CMN即为所求角.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.五、完成下列填空(共19分)25.如图,①若∠1=∠BCD,则DE∥BC,根据是内错角相等,两直线平行;②若∠ADE=∠ABC,则DE∥BC,根据是同位角相等,两直线平行;③若∠1=∠EFG,则FG∥DC,根据是同位角相等,两直线平行.【考点】平行线的判定.【专题】推理填空题.【分析】根据平行线的判定定理即可解答.【解答】解:①若∠1=∠BCD,则DE∥BC,根据是:内错角相等,两直线平行;②若∠ADE=∠ABC,则DE∥BC,根据是同位角相等,两直线平行;③若∠1=∠EFG,则FG∥DC,根据是同位角相等,两直线平行.故答案是:DE,BC,内错角相等,两直线平行;DE,BC,同位角相等,两直线平行;FG,DC,同位角相等,两直线平行.【点评】本题考查了平行线的判定定理,正确理解定理内容是关键.26.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b)(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).【考点】平方差公式的几何背景.【专题】计算题.【分析】(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积;(3)建立等式就可得出;(4)利用平方差公式就可方便简单的计算.【解答】解:(1)利用正方形的面积公式可知:阴影部分的面积=a2﹣b2;故答案为:a2﹣b2;(2)由图可知矩形的宽是a﹣b,长是a+b,所以面积是(a+b)(a﹣b);故答案为:a﹣b,a+b,(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2(等式两边交换位置也可);故答案为:(a+b)(a﹣b)=a2﹣b2;(4)①解:原式=(10+0.2)×(10﹣0.2),=102﹣0.22,=100﹣0.04,=99.96;②解:原式=[2m+(n﹣p)]•[2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2.【点评】此题主要考查了平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.。

北师大版2019-2020学年度第二学期第一次月考七年级数学试卷

北师大版2019-2020学年度第二学期第一次月考七年级数学试卷
绝密★启用前
北师大版2019-2020学年度第二学期第一次月考
七年级数学试卷
考试时间:100分钟;满分120分
题号



总分
得分
评卷人
得分
一、单选题
1.(3分)下列计算正确的是( )
A.2a3+3a3=5a6B.(x5)3=x8
C.﹣2m(m﹣3)=﹣2m2﹣6mD.(﹣3a﹣2)(﹣3a+2)=9a2﹣4
14.(4分)如图,a∥b,∠1=∠2,∠3=40°,则∠4等于.
15.(4分)已知a﹣b=1,则a2﹣b2﹣2b的值是_____.
16.(4分)如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于_____.
17.(4分)如图,直线AB、CD、EF相交于点O,且AB⊥CD,∠1=33°,则∠2=_____,∠BOE=_____.
5.(3分)如果 是一个完全平方式,则n值为()
A.3;B.-3;C.6;D.±3.
6.(3分)如图,直线l1,l2被直线l3所截,l1∥l2,与∠1相等的角是()
A.∠2B.∠3C.∠4D.∠5
7.(3分)下列各式中不能用平方差公式计算的是( )
A. B.
C. D.
8.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()
18.(4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).
评卷人
得分
三、解答题
19.(10分)计算:
20.(10分)先化简再求值: ,其中
21.(12分)如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,求∠AFE的度数.

2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷及答案

2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷及答案

2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A={x||x﹣2|<2},B={x|x2﹣3x+2<0},若U=R,则A∩∁U B=()A.{x|0<x≤1或2≤x<4}B.{x|1<x<2}C.∅D.{x|x<0或x>4}2.(5分)命题p:∀x>0,>0,则命题p的否定是()A.∃x>0,≤0B.∃x≤0,≤0C.∃x>0,<0D.∃x>0,0≤x≤23.(5分)下列不等式中,正确的是()A.若a﹣c>b﹣d且c>d,则a>bB.若a>0,b>0,a3﹣b3=1,则a﹣b>1C.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc24.(5分)集合A={x|≤0},B={x|x2﹣4x+3≤0},则A∩B=()A.[2,3]B.[3,4]C.[1,2]D.(2,3]5.(5分)已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,并且满足+=1,则实数m的值是()A.﹣1B.3C.﹣1或3D.﹣3或16.(5分)已知:a,b均为正数,,则使a+b≥c恒成立的c的取值范围是()A.(﹣∞,]B.(0,1]C.(﹣∞,9]D.(﹣∞,8] 7.(5分)已知命题p:0<a<4,命题q:∀x∈R,ax2+ax+1>0,则命题p是命题q为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)已知实数a>0,b>0,且+=1,则+的最小值为()A.8B.10C.10D.169.(5分)设x,y均为正数,且x+4y+5=x•y,则x+y的最小值为()A.B.25C.11D.5+310.(5分)已知x,y满足的解集为集合A,则下列命题为真命题的是()A.∀(x,y)∈A,4x+2y<2B.∃(x,y)∈A,4x+2y<2C.∀(x,y)∈A,4x+2y<10D.∃(x,y)∈A,4x+2y>1011.(5分)已知x+y=++8(x,y>0),则x+y的最小值为()A.5B.9C.4+D.1012.(5分)关于x的不等式x2﹣ax+a+3≥0在区间[﹣2,0]上恒成立,则实数a的取值范围是()A.[﹣,+∞)B.[6,+∞)C.(﹣∞,6]D.[﹣2,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.14.(5分)已知命题p:﹣2≤x≤4,命题q:实数x满足|x﹣2|≤m(m>0),若¬p是¬q 的必要不充分条件,则实数m的取值范围是.15.(5分)已知m是方程x2﹣5x+1=0的一个根,则m3﹣24m+2019=.16.(5分)已知正数x,y满足xy++4y2=2,则y的最大值为.三、解答题(本大题共4小题,每题10分,共40分)17.(10分)已知a,b,c∈R+,证明:(1)若a,b,c∈R,证明:a2+b2+c2≥(a+b+c)2;(2)设a,b,c∈R+,且a+b+c=1,证明:++≥1.18.(10分)已知集合A={x|x2﹣4x=0},B={x|ax2﹣2x+8=0}.(1)是否存在实数a,使A∪B={0,2,4}?若存在,求出a的值;若不存在,请说明理由;(2)若A∩B=B,求实数a的取值范围.19.(10分)解关于x的不等式>0(a∈R).20.(10分)为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室,由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元,设屋子的左右两面墙的长度均为x米(1≤x≤5).(1)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;(2)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.2019-2020学年辽宁省实验中学高一(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)设集合A={x||x﹣2|<2},B={x|x2﹣3x+2<0},若U=R,则A∩∁U B=()A.{x|0<x≤1或2≤x<4}B.{x|1<x<2}C.∅D.{x|x<0或x>4}【分析】可以求出集合A,B,然后进行交集和补集的运算即可.【解答】解:∵A={x|0<x<4},B={x|1<x<2},U=R,∴∁U B={x|x≤1或x≥2},A∩∁U B={x|0<x≤1或2≤x<4}.故选:A.【点评】本题考查了描述法的定义,绝对值不等式和一元二次不等式的解法,交集和补集的运算,考查了计算能力,属于基础题.2.(5分)命题p:∀x>0,>0,则命题p的否定是()A.∃x>0,≤0B.∃x≤0,≤0C.∃x>0,<0D.∃x>0,0≤x≤2【分析】根据全称命题的否定是存在量词命题,结合命题与它的否定命题之间的关系,判断即可.【解答】解:命题p:∀x>0,>0,由于命题p中x取不到2,其命题的否定中应能取到,所以选项D正确.故选:D.【点评】本题考查了命题与它的否定命题之间关系应用问题,解题时要注意“含定义域限制切记不要直接变号”,是基础题.3.(5分)下列不等式中,正确的是()A.若a﹣c>b﹣d且c>d,则a>bB.若a>0,b>0,a3﹣b3=1,则a﹣b>1C.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc2【分析】根据不等式的性质分别判断即可.【解答】解:对于A:若a﹣c>b﹣d且c>d,则a>b,故A正确;对于B:若a>0,b>0,a3﹣b3=1,则a﹣b<1,故B错误;对于C:令a=2,b=1,c=﹣2,d=﹣3,则ac<bd,故C错误;对于D:c=0时,错误;故选:A.【点评】本题考查了不等式问题,是一道基础题.4.(5分)集合A={x|≤0},B={x|x2﹣4x+3≤0},则A∩B=()A.[2,3]B.[3,4]C.[1,2]D.(2,3]【分析】直接解分式是不等式以及二次不等式求出A,B,进而求出结论.【解答】解:∵集合A={x|≤0}={x|2<x≤4},B={x|x2﹣4x+3≤0}={x|1≤x≤3},∴A∩B=(2,3].故选:D.【点评】本题考查集合间的交集的运算,应注意不等式的正确求解,属于基础题.5.(5分)已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,并且满足+=1,则实数m的值是()A.﹣1B.3C.﹣1或3D.﹣3或1【分析】由根与系数的关系,可得x1+x2=2m+3,x1•x2=m2,又由+=1,即可求得m的值.【解答】解:∵关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,∴△=(2m+3)2﹣4m2=12m+9>0,∴m>﹣,∵x1+x2=2m+3,x1•x2=m2,又∵+=1,∴x1+x2=x1•x2,∴2m+3=m2,解得:m=﹣1或m=3,∵m>﹣,∴m=3,故选:B.【点评】此题考查了一元二次方程根与系数的关系与判别式的应用.此题难度适中,注意掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=﹣,x1x2=的应用.6.(5分)已知:a,b均为正数,,则使a+b≥c恒成立的c的取值范围是()A.(﹣∞,]B.(0,1]C.(﹣∞,9]D.(﹣∞,8]【分析】由题意知,要使a+b≥c恒成立,即a+b的最小值≥c,利用均值不等式求解即可.【解答】解:∵a,b均为正数,,∴a+b=(a+b)×=(5+)≥(5+2)=,当且仅当,即b=2a时,取等号;∴a+b的最小值是,由题意可知c,故选:A.【点评】本题通过恒成立问题的形式,考查了均值不等式,灵活运用了“2”的代换,是高考考查的重点内容.7.(5分)已知命题p:0<a<4,命题q:∀x∈R,ax2+ax+1>0,则命题p是命题q为真命题的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】对于命题q:讨论当a=0的情况和a≠0时,根据一元二次函数图象与不等式的关系求得a的取值范围;再根据充分必要条件的定义判断即可.【解答】解:命题q:∀x∈R,ax2+ax+1>0,当a=0时,1>0成立,因此a=0满足题意当a≠0时,可得,解得0<a<4.综上可得:q:0≤a<4.∵命题p:0<a<4⇒命题q:0≤a<4,反之,命题q:0≤a<4推不出命题p:0<a<4.∴命题p是命题q为真命题的充分不必要条件.故选:A.【点评】本题考查了一元二次不等式及其方程与判别式的关系、充分必要条件的判定方法,考查了计算能力,属于基础题8.(5分)已知实数a>0,b>0,且+=1,则+的最小值为()A.8B.10C.10D.16【分析】利用“乘1法”与基本不等式的性质即可得出【解答】解:因为a>0,b>0,且+=1,所以a+b=ab,即(a﹣1)(b﹣1)=1,则+==,=8a+2b﹣10,=(8a+2b)()﹣10,==8,当且仅当且+=1,即a=,b=3时取等号,此时取得最小值8.故选:A.【点评】本题考查了基本不等式在求最值中的应用,属于中档题.9.(5分)设x,y均为正数,且x+4y+5=x•y,则x+y的最小值为()A.B.25C.11D.5+3【分析】由已知变形可得9=(x﹣4)(y﹣1),然后结合基本不等式即可求解.【解答】解:∵x,y均为正数,且x+4y+5=x•y,∴xy﹣x﹣4y=5即x(y﹣1)﹣4y=5,∴x(y﹣1)﹣4(y﹣1)=9,∴9=(x﹣4)(y﹣1)≤,∵x>0,y>0,∴x+y﹣5≥6即x+y≥11,当且仅当x=7,y=4时取等号.故选:C.【点评】本题主要考查了基本不等式在求解最值中的应用,属于基础试题.10.(5分)已知x,y满足的解集为集合A,则下列命题为真命题的是()A.∀(x,y)∈A,4x+2y<2B.∃(x,y)∈A,4x+2y<2C.∀(x,y)∈A,4x+2y<10D.∃(x,y)∈A,4x+2y>10【分析】令4x+2y=μ(x+y)+λ(x﹣y),根据对应关系求出μ,λ的值,结合x+y,x﹣y 的范围,求出4x+2y的范围即可.【解答】解:令4x+2y=μ(x+y)+λ(x﹣y),则,解得:μ=3,λ=1,故4x+2y=3(x+y)+(x﹣y),而1<x+y<3,故3<3(x+y)<9,﹣1<x﹣y<1,则4x+2y∈(2,10),故选:C.【点评】本题考查了不等式的性质,考查转化思想,是一道常规题.11.(5分)已知x+y=++8(x,y>0),则x+y的最小值为()A.5B.9C.4+D.10【分析】根据题意,将x+y=++8变形可得(x+y)2=(++8)(x+y)=5+8(x+y)++,即有(x+y)2﹣8(x+y)﹣5=+,结合基本不等式的性质可得(x+y)2﹣8(x+y)﹣9≥0,设t=x+y,则有t2﹣8t﹣9≥0,解可得t的取值范围,分析可得答案.【解答】解:根据题意,x+y=++8,则(x+y)2=(++8)(x+y)=5+8(x+y)++,变形可得:(x+y)2﹣8(x+y)﹣5=+,又由+≥2=4,则有:(x+y)2﹣8(x+y)﹣9≥0,设t=x+y,又由x,y>0,则t>0,则有t2﹣8t﹣9≥0,解可得t≥9或t≤﹣1,又由t>0,则t≥9,则x+y的最小值为9;故选:B.【点评】本题考查基本不等式的性质以及应用,关键是对x+y=++8的变形.12.(5分)关于x的不等式x2﹣ax+a+3≥0在区间[﹣2,0]上恒成立,则实数a的取值范围是()A.[﹣,+∞)B.[6,+∞)C.(﹣∞,6]D.[﹣2,+∞)【分析】由题意可得a≥在﹣2≤x≤0恒成立,即a≥在﹣2≤x≤0的最大值,由基本不等式求得最大值,可得a的范围.【解答】解:由﹣2≤x≤0,可得x﹣1∈[﹣3,﹣1],x的不等式x2﹣ax+a+3≥0在区间[﹣2,0]上恒成立,等价为a≥在﹣2≤x≤0恒成立,由==(x﹣1)++2=﹣[(1﹣x)+]+2≤﹣2+2=2﹣4=﹣2,当且仅当x=﹣1时取得等号,所以a≥﹣2,故选:D.【点评】本题考查二次不等式恒成立问题解法,注意运用参数分离和基本不等式求最值,考查转化思想和运算能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为7.【分析】求出集合M,从而求出M的真子集的个数即可.【解答】解:a=1,b=1时,x=2,a=1,b=2时,x=3,a=0,b=2时,x=2,a=0,b=1时,x=1,故M={1,2,3},故M的真子集的个数是:23﹣1=7个,故答案为:7.【点评】本题主要考察了集合的定义及性质,属常考题型,解题的关键是要根据集合M 的定义求出集合M.14.(5分)已知命题p:﹣2≤x≤4,命题q:实数x满足|x﹣2|≤m(m>0),若¬p是¬q 的必要不充分条件,则实数m的取值范围是[4,+∞).【分析】由命题p得到¬p:{x|x<﹣2或x>4},设为集合A,同理得到¬q:{x|x<2﹣m 或x>2+m},设为集合B.根据¬p是¬q的必要不充分条件,可得集合B是集合A的真子集,利用数轴建立关于m的不等式并解之,即可得到实数m的取值范围.【解答】解:∵p:{x|﹣2≤x≤4},∴¬p:{x|x<﹣2或x>4},设为集合A又∵q:{x||x﹣2|≤m,m>0}.∴¬q:{x|x<2﹣m或x>2+m},设为集合B∵¬p是¬q的必要不充分条件,∴集合B是集合A的真子集,∴(两个等号不同时成立)解之得:m≥4,即实数m的取值范围是[4,+∞).故答案为:[4,+∞).【点评】本题给出关于x的不等式的两个条件,在已知¬p是¬q的必要不充分条件的情况下求m的取值范围.着重考查了充分必要条件的判断和集合的包含关系等知识,属于基础题.15.(5分)已知m是方程x2﹣5x+1=0的一个根,则m3﹣24m+2019=2014.【分析】根据m是方程x2﹣5x+1=0的一个根,得到m2﹣5m+1=0,再把所求等式转化为用m2﹣5m+1来表示即可求解结论.【解答】解:根据题意,m是方程x2﹣5x+1=0的一个根,即m2﹣5m+1=0,则m3﹣24m+2019=m(m2﹣5m+1)+5(m2﹣5m+1)+2014=2014.故答案为:2014.【点评】本题考查了函数的零点与方程的根的关系应用以及整体代换思想的应用,属于基础题.16.(5分)已知正数x,y满足xy++4y2=2,则y的最大值为.【分析】由已知结合基本不等式x+≥2可建立关于y的不等式,解不等式可求.【解答】解:由题意可得,,=2,当且仅当x=即x=1时取等号,所以4y2+2y﹣2≤0,解可得,﹣1,因为y>0,故0<y即y的最大值.故答案为:【点评】本题主要考查了利用基本不等式求解最值及二次不等式的求解,属于基础试题.三、解答题(本大题共4小题,每题10分,共40分)17.(10分)已知a,b,c∈R+,证明:(1)若a,b,c∈R,证明:a2+b2+c2≥(a+b+c)2;(2)设a,b,c∈R+,且a+b+c=1,证明:++≥1.【分析】(1)把(a+b+c)2展开,然后利用基本不等式放缩即可证明结论;(2)由,,,作和后结合a+b+c=1证得结论.【解答】证明:(1)∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤a2+b2+c2+(a2+b2)+(b2+c2)+(a2+c2)=3(a2+b2+c2),∴a2+b2+c2≥(a+b+c)2,当且仅当a=b=c时等号成立;(2)∵a,b,c∈R+,∴,,,则,∴,即++≥1,当且仅当a=b=c时等号成立.【点评】本题考查不等式的证明,考查基本不等式的应用,是中档题.18.(10分)已知集合A={x|x2﹣4x=0},B={x|ax2﹣2x+8=0}.(1)是否存在实数a,使A∪B={0,2,4}?若存在,求出a的值;若不存在,请说明理由;(2)若A∩B=B,求实数a的取值范围.【分析】(1)由题意可得a×22﹣2×2+8=0,解得a=﹣1,可求此时B={2,4},即可得解.(2)由题意可得B只可能∅,{0},{4},{0,4},分类讨论即可求解.【解答】解:(1)因为A={x|x2﹣4x=0}={0,4},所以2∈B且B中不含除0,2,4以外的实数,即a×22﹣2×2+8=0,解得a=﹣1,验证:此时B={2,4},所以不存在实数a,使A∪B={0,2,4}.(2)题干A∩B=B可转化为B⊆A,即B只可能∅,{0},{4},{0,4},①B=∅,即△<0,解得a>,②B={0,4},即,a无解,③B中只有一根时,i,a=0,解得B={4}成立;ii,a≠0,即△=0,解得a=,此时B={8}不符合题意,综上所述,a∈{0}∪(,+∞).【点评】本题主要考查了交集,并集及其运算,考查了分类讨论思想的应用,属于基础题.19.(10分)解关于x的不等式>0(a∈R).【分析】不等式即(x2﹣x﹣2)(ax﹣1)>0,分类讨论,求出它的解集.【解答】解:关于x的不等式>0,即(x2﹣x﹣2)(ax﹣1)>0,(1)当a=0时,不等式即x2﹣x﹣2=(x+1)(x﹣2)<0,求得它的解集为(﹣1,2).(2)当a≠0时,不等式即(ax﹣1)(x+1)(x﹣2)>0,它的根为﹣1,2,.若<﹣1,即﹣1<a<0,不等式即(﹣ax+1)(x+1)(x﹣2)<0,求得它的解集为(﹣∞,)∪(﹣1,2).若=﹣1,即a=﹣1,不等式即(x+1)(x+1)(x﹣2)<0,求得它的解集为(﹣∞,﹣1)∪(﹣1,2).若﹣1<<0,即a<﹣1,不等式即(﹣ax+1)(x+1)(x﹣2)<0,求得它的解集为(﹣∞,﹣1)∪(,2).若0<<2,即a>2,不等式即(ax﹣1)(x+1)(x﹣2)>0,求得它的解集为(﹣1,)∪(2,+∞).若=2,即a=2,不等式即(x﹣2)(x+1)(x﹣2)>0,求得它的解集为(﹣1,2)∪(2,+∞).若>2,即0<a<,不等式即(ax﹣1)(x+1)(x﹣2)>0,求得它的解集为(﹣1,2)∪(,+∞).【点评】本题主要考查分式不等式、高次不等式的解法,体现了等价转化、分类讨论的数学思想,属于中档题.20.(10分)为了加强“平安校园”建设,有效遏制涉校案件的发生,保障师生安全,某校决定在学校门口利用一侧原有墙体,建造一间墙高为3米,底面为24平方米,且背面靠墙的长方体形状的校园警务室,由于此警务室的后背靠墙,无需建造费用,甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元,设屋子的左右两面墙的长度均为x米(1≤x≤5).(1)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;(2)现有乙工程队也要参与此警务室的建造竞标,其给出的整体报价为元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.【分析】(1)设甲工程队的报价为y元,则y=3(300×2x+400×)+14400,化简后,利用均值不等式即可求得最小值;(2)由题意知,1800(x+)+14400>对任意的x∈[1,5]恒成立,参变分离后,得>a恒成立,再令x+1=t∈[2,6],结合均值不等式求出y=的最小值即可得解.【解答】解:(1)设甲工程队的报价为y元,而1≤x≤5,y=3(300×2x+400×)+14400=1800(x+)+14400≥1800×2×+14400=28800,当且仅当x=,即x=4时,等号成立,所以当左右两侧墙的长度为4米时,甲工程队的报价最低,为28800元.(2)由题意知,1800(x+)+14400>对任意的x∈[1,5]恒成立,即>,从而>a恒成立,令x+1=t∈[2,6],则==t++6≥2+6=12,当且仅当t=,即t=3时,等号成立,所以0<a<12.【点评】本题考查函数的实际应用,主要利用了均值不等式求函数的最值,还涉及参变分离法和换元法,考查学生的逻辑推理能力和运算能力,属于中档题.。

第一次月考(B)-2019-2020学年七年级下册数学阶段性测评(北师大版)(原卷版)

第一次月考(B)-2019-2020学年七年级下册数学阶段性测评(北师大版)(原卷版)

第一次月考(B)一、选择(本题共10小题,每题3分,共30分)1.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10 D.3.4×10﹣112.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a9D.a3﹣a2=a3.化简(a2)3的结果为()A.a5B.a6C.a8D.a94.x﹣(2x﹣y)的运算结果是()A.﹣x+y B.﹣x﹣y C.x﹣y D.3x﹣y5.下列各式中不能用平方差公式计算的是()A.(﹣x+y)(﹣x﹣y)B.(a﹣2b)(2b﹣a)C.(a﹣b)(a+b)(a2+b2)D.(a﹣b+c)(a+b﹣c)6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.20°B.30°C.35°D.40°7.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°8.如图所示,∠1=∠2,若∠3=30°,为了使白球反弹后能够将黑球直接撞入袋中,那么打白球时必须保证∠1为()A.30°B.45°C.60°D.75°9.如图,在下列四组条件中,能得到AB∥CD的是()A.∠ABD=∠BDC B.∠3=∠4C.∠BAD+∠ABC=180°D.∠1=∠210.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4二、填空:(本题共8小题,每题3分,共24分)11.一个角和它的补角相等,这个角是直角.12.如图,直线l1、l2、l3相交于一点O,对顶角一共有6对.13.计算:(a+b)2+(﹣4ab)=(a﹣b)2.14.一个多项式除以3xy商为9x2y﹣xy,则这个多项式是27x3y2﹣x2y2.15.边长为a厘米的正方形的边长减少3厘米,其面积减少4a.16.若a+b=5,ab=5,则a2+b215.17.已知a+=,则a2+=1.18.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,则∠BFD的度数为110°.三、计算题(19-22每题3分、23题6分,共18分)19.计算:(3x+9)(6x﹣8).20.计算:(a3b5﹣3a2b2+2a4b3)÷(﹣ab)2.21.(x+2)2﹣(x+1)(x﹣1)22.计算:1652﹣164×166(用公式计算).23.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.四、作图题(7分)24.如图,已知∠AOB,求作一个角,使它等于2∠AOB(不写作法,保留作图痕迹)五、完成下列填空(共19分)25.如图,①若∠1=∠BCD,则DE∥BC,根据是内错角相等,两直线平行;②若∠ADE=∠ABC,则DE∥BC,根据是同位角相等,两直线平行;③若∠1=∠EFG,则FG∥DC,根据是同位角相等,两直线平行.26.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是a2﹣b2(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是a﹣b,长是a+b,面积是(a+b)(a﹣b)(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式(a+b)(a﹣b)=a2﹣b2;(4)运用你所得到的公式,计算下列各题:①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).。

2019-2020年北师大版七年级数学第一次月考试卷(已纠错)

2019-2020年北师大版七年级数学第一次月考试卷(已纠错)

/2019-2020学年度第一学期第一次月考七年级 数学一.选择题(每题3分,共30分) 1. 下面的说法错误的是( ).A .0是最小的整数B .1是最小的正整数C .0是最小的自然数D .自然数就是非负整数2.陕西省元月份某一天的天气预报中,延安市的最低气温为-6℃,西安市的最低气温为2℃,这一天延安市的最低气温比西安市的最低气温低( )A .8℃B .-8℃C .6℃D .2℃ 3.下列说法中,正确的个数是( ).①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A )2个 (B )3个 (C )4个 (D )5个 4. 下面几何体截面一定是圆的是 ( )( A)圆柱 (B) 圆锥 (C ) 球 (D) 圆台 5.如图绕虚线旋转得到的几何体是( ).6. )(A )长方体 (B )圆锥体(C )立方体(D )圆柱体 7、如图,该物体的俯视图是 ( )8、 B 、C 、D 、9、下列平面图形中不能围成正方体的是()A 、B 、C 、 D、10.若│a │=5,│b │=3且a>b ,则a-b=( )A .2或8B .-2或-8C .-5或-3D .±3或±8 二.填空题(每题3分,共30分) 11.52的绝对值是 ,相反数是 ,倒数是 . 12.数轴上点A 表示数-1,若|AB|=3,则点B 所表示的数为__________________。 13.若a<0,b<0,│a │<│b │,则a -b________0。

14.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.海拔-200m 比300m 高________;15、如图2所示的几何体由_____个面围成,面与面相交成_____条线,其中直的线有_____条,曲线有_____条.16、用一个平面去截一个圆柱,图甲中截面的形状是_____,图乙中截面的形状是_____. 17、一个物体的主视图、左视图、俯视图都是正方形,这个几何体可能的形状是_____.18、一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的体积为_____立方厘米,表面积为_____平方厘米.19、已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,……,由此可以推测n 棱柱有_____个面,____个顶点,_____条侧棱. 20、-3减去421与-341的和所得的差是________. 三、解答题(共60分) 21.计算(每题5分,共30分)(1); (2)(-0.19)+(-3.12);(D )(B )(C )(A )o a图2 16题图/(3)2.7-(-3.1); (4)0.15-0.26;(5)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(6)0.47+(-0.09)+0.39+(-0.3)+1.53;22.画出下面几何体的主视图、左视图与俯视图.(6分)23.某批发商用1000元购10箱肥皂,每箱50块,准备以一定的价格按箱批发,如果每块肥皂以2.5元的价格为标准,超过的记作正数,不足的记为负数,这10箱肥皂每块价格记录如下:0.2, -0.3, 0.5, -0.1, -0.3, 0.3, -0.4, -0.2, -0.1, +0.4.问:10箱肥皂卖掉后,该批发商是盈利还是亏本?亏本或盈利多少元?(8分)24.粮库3天内发生粮食进、出库的吨数如下(“+”表示进库,“-”表示出库):(8分)+26,-32,-15,+34,-38,-20。

2019-2020年初一七年级下册第一次月考试卷含答案

2019-2020年初一七年级下册第一次月考试卷含答案

2019-2020年初一七年级下册第一次月考试卷含答案一、选择题(每小题3分,共18分)1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =- 2.=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20162016532135( )A. 1-B. 1C. 0D. 20163.若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 324.已知,5,3==b a x x 则=-b a x 23( ) A. 53B.109C.2527D.525. 计算(a -b )(a+b )(a 2+b 2)(a 4+b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 86. 已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是()A .a >b >cB .a >c >bC .a <b <cD .b >c >a二、填空题(每小题3分,共24分)7. 用科学记数法表示0.000000059=________.8.计算:(a-b)(a+2b) = .9. 已知x+y=5,x-y=-2,则x 2-y 2= .10.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。

11已知51=+x x ,那么221x x +=_______。

.12. 设162++mx x 是一个完全平方式,则m =_______。

13.. 已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.14. 已知a 2+2a+b 2-4b+5=0,则a+b= 。

三、解答题(每小题6分,共24分)15.计算:()()02201614.3211π--⎪⎭⎫ ⎝⎛-+--16用乘法公式计算:197×20317.()()222223366m mn m n m -÷--18. (x+2)(2x-3)- x(x+1)四、解答题(本大题共3小题,每小题各8分,共24分)19.解方程:(2x+3)(x-4) - (x+2)(x-3)=2x +620. 先化简再求值先化简,再求值:4x(x+y) - (2x +y)(2x -y),其中x =12,y =-2.D 21. 如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB边的中点,CF=13BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。

第一次月考(C)-2019-2020学年七年级下册数学阶段性测评(北师大版)(原卷版)

第一次月考(C)-2019-2020学年七年级下册数学阶段性测评(北师大版)(原卷版)

第一次月考(C)一、选择题(4*12=48分)1.下列现象中,属于平移现象的为()A.方向盘的转动 B.自行车行驶时车轮的转动C.钟摆的运动D.电梯的升降2.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.33.下列说法正确的是()A.﹣1的相反数是1 B.负数没有立方根C.1平方根是1 D.0没有平方根4.能与数轴上的点一一对应的是()A.整数 B.有理数C.无理数D.实数5.下列命题中,正确的命题是()A.相等的两个角是对顶角B.一条直线有且只有一条平行线C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.一个角一定不等于它的补角6.若实数a,b满足+(b+)2=0,则a•b的值是()A.1 B.﹣1 C.D.﹣7.下列等式中,错误的是()A.±=±8 B.C.D.8.下列各数中,介于6和7之间的数是()A. B. C. D.9.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2 B.∠3=∠4 C.∠D=∠DCE D.∠D+∠ACD=180°10.在实数:3.14159,,1.010010001…(每相隔1个就多1个0),,π,中,无理数的个数有()A.1个B.2个C.3个D.4个11.下列关系中,互相垂直的两条直线是()A.互为对顶角的两角的平分线B.两直线相交成的四角中相邻两角的角平分线C.互为补角的两角的平分线D.相邻两角的角平分线12.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行()次操作后即可变为1.A.2 B.3 C.4 D.5二、选择题(4*6=24分)13.如图,直线AB、CD相交于点O,若∠AOD=28°,则∠BOC=28°,∠AOC=152°.14.把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.15.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9.16.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是垂线段最短.17.如图,数轴上A、B两点对应的实数分别为1和,若点A关于点B的对称点为C,则点C所对应的实数为2﹣1.18.如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),若AB n的长度为56,则n=10.三、解答题19.完成下列计算和解方程题(1)|﹣|+|﹣1|﹣|3﹣|(2)﹣﹣(3)(x﹣1)2﹣81=0(4)8(x+2)3+27=0.20.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.21.已知和|8b﹣3|互为相反数,求的平方根.22.如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.23.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由.解:∵∠A=∠D(已知)∴AB∥ED又∵∠B=∠FCB(已知)∴CF∥AB∴ED∥CF(平行于于同一直线的两直线平行)24.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换).∴AB∥CD(内错角相等,两直线平行).25.已知:如图,CD⊥AB,GF⊥AB,∠B=∠ADE,求证:∠1=∠2.26.我们可以计算出①=2=;=3而且还可以计算=2==3(1)根据计算的结果,可以得到:①当a>0时=a;②当a<0时=﹣a.(2)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简﹣﹣.27.如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)试找出∠1、∠2、∠3之间的关系并说出理由;(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)。

辽宁省沈阳市2020版七年级下学期第一次月考数学试卷B卷

辽宁省沈阳市2020版七年级下学期第一次月考数学试卷B卷

辽宁省沈阳市2020版七年级下学期第一次月考数学试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列运动属于平移的是()A . 风车的转动B . 石头从山顶滚到山脚的运动C . 急刹车是汽车在地面上滑行D . 足球被踢飞后的运动2. (2分) (2017八上·临洮期中) 已知一个多边形的内角和是外角和的2倍,则此多边形的边数为()A . 6B . 7C . 8D . 93. (2分)(2018·江都模拟) 下列各式计算正确的是()A .B .C .D .4. (2分)以下列各组数据为边长,可以构成等腰三角形的是()A . 2,3,4B . 5,5,10C . 2,2,1D . 1,2,35. (2分) (2019七下·路北期中) 下列命题中,是假命题的是()A . 两点之间,线段最短B . 同旁内角互补C . 直角的补角仍然是直角D . 对顶角相等6. (2分)(2017·商丘模拟) 如图,已知∠1=∠2=∠3=62°,则∠4=()A . 62°B . 118°C . 128°D . 38°7. (2分)下列语句正确的是()A . 一个角小于它的补角B . 相等的角是对顶角C . 同位角互补,两直线平行D . 同旁内角互补,两直线平行8. (2分)下列运算正确的是()A . x2•x3=x6B . =2C . (﹣2)0=0D . 2﹣1=二、填空题 (共11题;共11分)9. (1分)将()﹣1、(﹣2)0、(﹣3)2、﹣|﹣10|这四个数按从小到大的顺序排列为________.10. (1分)已知am=4,an=5,那么a3m﹣2n=________.11. (1分)(2016·黔西南) 0.0000156用科学记数法表示为________.12. (1分)计算:82014×(﹣0.125)2015=________.13. (1分)如果一个三角形的各内角与一个外角的和是225°,则与这个外角相邻的内角是________度.14. (1分) (2018八上·泗阳期中) △ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.15. (1分)(2017·大祥模拟) 如图,沿倾斜角为30°的山坡植树,要求相邻两棵树间的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(结果精确到0.1m)16. (1分)(2018·铜仁) 如图,m∥n,∠1=110°,∠2=100°,则∠3=________°.17. (1分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3=________18. (1分)(2017·宝坻模拟) 计算(﹣xy3)2的结果等于________.19. (1分)(2017·如皋模拟) 如图,直线l1∥l2 ,CD⊥AB于点D,∠1=40°,则∠2=________度.三、解答题 (共9题;共55分)20. (5分) (2017七下·滦县期末) 如图,在△ABC中,AD是高,BE是角平分线,AD、BE交于点F,∠C=30°,∠BFD=70°,求∠BAC的度数.21. (5分) (2016八上·嵊州期末) 在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A的坐标是(﹣3,﹣1).①将△ABC沿y轴正方向平移3个单位得到△A1B1C1 ,画出△A1B1C1 ,并写出点B1坐标;②画出△A1B1C1关于y轴对称的△A2B2C2 ,并写出点C2的坐标.22. (5分)如图,直线PQ、MN被直线EF所截,交点分别为A、C,AB平分∠EAQ,CD平分∠ACN,如果PQ∥MN,那么AB与CD平行吗?为什么?23. (5分)计算:(1)a2(a﹣1)+(a﹣5)(a+7);(2)(x﹣5y)2﹣(x+5y)2 .24. (5分)计算:(1)(﹣a3)4•(﹣a2)5;(2)(﹣a2)3﹣6a2•a4;(3)30﹣2﹣3+(﹣3)2﹣(﹣)﹣1;(4).25. (5分) (2016八下·万州期末) 在△ABC中,AE平分∠BAC交BC于E,DE∥AC交AB于D,过D作DF∥BC 交AC于F,若AD=3,求FC.26. (5分) (2016八上·太原期末) 我们都知道“三角形的内角和等于180°”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档