声道基础知识
音响基础知识

上每1M ∏r²;上的功率=1/4, • 这里最重要的是我们如何理解面积增加4倍导致功率下降
到1/4,发挥你的想象力,想通后下面就不难了)。
分贝(dB)
• 功率每增加一倍,声压级增加3dB;反过来, 功率每减少一倍,声压级渐少3db,1减少 一倍 = 1/2,1/2减少一倍 = 1/4,3dB+3dB = 6dB,由于是减少,前面加"负"号。用前面 的程式计算:
输入灵敏度(input sensitivity)
• 输入灵敏度(input sensitivity):这是个电压 概念,表明当功放达到满功率输出时,在 输入端的信号电压的大小,一般的功放的 输入灵敏度电压为0.775v(0dB)到1.5v(+6dB) 之间,灵敏度电压越高,输入灵敏度越低。 有些高品质功放,输入灵敏度低是由于采 用更深的负反馈电路,所以具有更低的失 真,更宽的频响和更好的音质。
• 距离增加一倍声压级 = 10log(1/4) = 10x0.6021 = -6dB
• 我们经验是:距离每增加一倍,声压级减 少6dB。
实际应用举例
• 标准计算距离与声压级的程式: • L=10㏒P+L1-20㏒r
受声点声压=10㏒功率+音箱灵敏度-20㏒距离 • DX15满功率1800瓦,40米处的声压级计算: • L=10㏒1800瓦+102dB-20㏒40米 • L=32.533+102-20*1.6021 • L=102.5dB • 也可以先计算1米满功率声压级(134.5dB),
• 桥接模式(bridge mode):桥接模式是利用功放内 部的两个放大电路相互推挽,从而产生更大输出 电压的方式,立体声双声道功放设定为桥接模式 后,成为一台单声道放大器,只可以接受一路输 入信号进行放大,输出端为两路功放输出的正端 之间。
数字音频基础知识

3.6常见的数字音频文件格式
常见的数字音频文件格式有很多,每种格式都有自己的优点、缺点及适用范围。
CD格式——天籁之音
CD音轨文件的后缀名为:cda
标准CD格式是44.1K的采样频率,速率88K/秒,16位量化位数,近似无损的。
数字音频基础知识
转换(A/D)技术将模拟音频转化为二进制数,这样模拟音频就转化为数字音频了。所谓模数转换就是将模拟信号转化为数字信号,模数转换的过程包括采样、量化和编码三个步骤。模拟音频向数字音频的转换是在计算机的声卡中完成的。
3.2采样
采样是指将时间轴上连续的信号每隔一定的时间间隔抽取出一个信号的幅度样本,把连续的模拟量用一个个离散的点表示出来,使其成为时间上离散的脉冲序列。
特点:音质好,压缩比比较高,被大量软件和硬件支持,应用广泛。
适用于:适合用于一般的以及比较高要求的音乐欣赏。
MIDI——作曲家的最爱
MIDI(Musical Instrument Digital Interface)乐器数字接口。
MIDI数据不是数字的音频波形,而是音乐代码或称电子乐谱。
MIDI文件每存1分钟的音乐只用大约5~10KB。
采样频率、采样精度和声道数对声音的音质和占用的存储空间起着决定性作用。
我们希望音质越高越好,磁盘存储空间越少越好,这本身就是一个矛盾。必须在音质和磁盘存储空间之间取得平衡。数据量与上述三要素之间的关系可用下述公式表示:
3.4编码
采样和量化后的信号还不是数字信号,需要把它转换成数字编码脉冲,这一过程称为编码。最简单的编码方式是二进制编码,即将已经量化的信号幅值用二进制数表示,计算机内采用的就是这种编码方式。
专业音响基础知识

专业音响基础知识什么是分频器: (2)什么是激励器: (2)什么是反馈抑制器: (2)什么是调音台: (2)什么是幻象电源 (2)什么是话筒指向性: (3)什么是压缩限幅器: (3)什么是均衡器: (3)音响系统的主要技术指标 (4)二、信噪比: (4)三、动态范围: (4)四、失真: (4)五、立体声分离度: (4)六、立体声平衡度: (4)响度 (5)失真度 (5)音箱的灵敏度(单位Db) (5)阻抗 (5)信噪比 (5)音色 (6)动态范围 (6)总谐波失真(THD) (6)17、立体声分离度 (6)18、阻尼系数 (7)l9、等响度控制 (7)什么是分频器:分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。
在高质量声音重放时,需要进行电子分频处理。
它可分为两种:(1)功率分频器:位于功率放大器之后,设置在音箱内,通过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高音,分别送至各自扬声器。
连接简单,使用方便,但消耗功率,出现音频谷点,产生交叉失真,它的参数与扬声器阻抗有的直接关系,而扬声器的阻抗又是频率的函数,与标称值偏离较大,因此误差也较大,不利于调整。
(2)电子分频器:将音频弱信号进行分频的设备,位于功率放大器前,分频后再用各自独立的功率放大器,把每一个音频频段信号给予放大,然后分别送到相应的扬声器单元。
因电流较小故可用较小功率的电子有源滤波器实现,调整较容易,减少功率损耗,及扬声器单元之间的干扰。
使得信号损失小,音质好。
但此方式每路要用独立的功率放大器,成本高,电路结构复杂,运用于专业扩声系统。
什么是激励器:激励器是一种谐波发生器,利用人的心理声学特性,对声音信号进行修饰和美化的声处理设备。
通过给声音增加高频谐波成分等多种方法,可以改善音质、音色、提高声音的穿透力,增加声音的空间感。
现代激励器不仅可以创造出高频谐波,而且还具有低频扩展和音乐风格等功能,使低音效果更加完美、音乐更具表现力。
音响知识及扩声系统名词解释

三、音响知识和扩声系统 (2)1声学基础知识 (2)1.1声波的物理特性 (2)1.2声波的度量 (2)1.3听觉的主观感受 (3)1.4室内声学 (4)2传声器(话筒) (4)2.1传声器的分类 (5)2.2传声器的主要技术指标 (5)2.3常用传声器 (5)2.4传声器的使用 (6)3调音台 (6)3.1调音台的功能 (6)3.2调音台的分类 (7)3.3调音台各组成部分的功能 (8)3.4调音台的使用 (10)4信号处理设备 (11)4.1均衡器 (11)4.2效果器 (12)4.3压限器: (12)4.4扩展器(噪声门) (16)4.5反馈抑制器 (16)5专业放大器与音箱 (17)5.1专业放大器 (17)5.2专业音箱 (18)5.3功放和音箱的配接 (19)6音响系统的调试 (20)6.1会议厅的声学要求 (20)6.2会议厅音响系统的构成 (20)6.3音响系统的插接件与线缆 (20)6.4音响系统的设定 (22)6.5声反馈的抑制 (23)6.6音响系统的噪声问题 (27)6.7音响系统的运行维护 (28)三、音响知识和扩声系统1声学基础知识1.1声波的物理特性1.1.1声波的频率、周期、波长、声速声速:声波在弹性介质中的传播速度称为声速。
记作C,单位是米/(m)/秒(s)。
声速与强度和频率无关,在常温(15℃)下为340米/秒,其速度随着温度的变化也略有变化。
声源完成一次振动的时间称为周期,记作T,单位是称(S)频率:每秒内振动的次数称为频率,记作f,单位是周/秒(Hz),它是周期的倒数f =1/T人耳可听到的范围从20Hz到20000Hz,随着年龄增大,人的听力范围逐渐向中低频缩小。
好的音乐节目频率都比较宽,可以达到40~16000Hz,一般收录机的频率范围仅100Hz~8000 Hz。
声速、频率与波长有如下关系:C=λ·f或c=λ/T波长:沿着波的传播方向,两个相邻的同相位质点间的距离叫做“波长”。
2.数字音频基础知识

声音数字化的几个技术指标
采样频率
11.025kHz(电话质量) 22.05kHz(收音机质量) 44.1kHz(CD质量)
采样位数
8bits、16bits、32 bits等
声道数
单声道、双声道、环绕立体声
数字信号能高度保真
原始波形
在传播和 处理过程 中失真
还原后的 波形
声音文件的数字格式
未经压缩的声音文件数据量很大
声音文件的格式
3、FLAC :(无损压缩)
FLAC即是Free Lossless Audio Codec的缩写 。中文可解 释为无损音频压缩编码。 flac的文件大小与APE差别不大,大概为CD的一半。单从技 术角度讲稍好与APE,FLAC开源,跨平台,支持的硬件多。
(无损格式:WAV 、APE、 FLAC)
(最新的Codec为Windows Media Audio 10 professional
)
声音文件的格式
6、OGG格式 :
Ogg全称应该是OGG Vobis(ogg Vorbis) 是一种新的音频压 缩格式,类似于MP3等的音乐格式。但有一点不同的是, 它是完全免费、开放和没有专利限制的。OGG Vobis有一
数据量=采样频率×采样位数×声道数×时间(秒) ÷8 (1分钟音乐数据约10MB)
常见声音的格式 1、wav格式:(波形格式文件,无损)
由microsoft和IBM开发,取样频率和声道,标准格式化的 WAV文件和CD格式一样,也是44.1K的取样频率,16位量 化数字,因此在声音文件质量和CD相差无几。作为数字音 乐文件格式的标准,采用PCM无损编码,WAV 格式容量过 大,但支持度广泛。
最单纯的声音的波形是正弦波
音频基础知识

Audio知识简介干一行专一行VS学一行丢一行第一部分:HTS基本概念:HTS(Home Theater System)通俗的讲就是将电影院搬到家里,然后就成了家庭影院,就公司的产品而言可以简单的理解为:DVD/BD player + 功放+ Speaker 组成:节目源(碟片+碟机等)+ 放声系统(AV功放+音箱组等)+显示部分(电视机/投影仪)配置家庭影院的好处:高清晰的如水晶般的画面,环绕的立体声,清晰的人声,震撼的低音效果,可以提供几乎身临其境的感觉。
在强烈的视听冲击下,能感受到现实和虚拟的完美交汇,触发更深的人生感悟。
第二部分:Audio百度定义:1.Audio指人说话的声音频率,通常指300Hz---3400Hz的频带2.指存储声音内容的文件3.在某些方面能指作为波滤的振动。
音频这个专业术语,人类能够听到的所有声音都称之为音频,它可能包括噪音,声音被录制下来以后,无论是说话声,歌声乐器都可以通过数字音乐软件处理。
把它制作成CD,这时候所有的声音没有改变,因为CD本来就是音频文件的一种类型。
而音频只是储存在计算机里的声音,演讲和音乐,如果有计算机加上相应的音频卡,可以把所有的声音录制下来,声音的声学特性,音的高低都可以用计算机硬盘文件的方式储存下来,反过来,也可以把眄来的音频文件通过一定的音频程序播放,还原以前录下的声音。
Audio的分类:按编码格式分类:mp3,wav, aac, ogg, flac, aiff, ac3(亦称之Dolby digital), dts, pcm, Dolby true hd(HD), Dolby digital plus(HD), dts hd master audio(HD), dts hd high resolution audio(HD), dts hd low bit rate(HD)多声道音频的分类:C:center L: left front R: Right frontLS: Left surround RS: right surround S: surround(单个环绕声道)LB:left back surround RB: right back surroundCs: Center surround1.带LFE声道的分法:根据码流中实际的通道数分X的值为0/1,0表示不带LFE通道,1表示含LFE通道1.x C 如1.0 为C,1.1为C+LFE2.x->L+R3.x->C+L+R4.x->L+R+LS+RS5.x->L+R+C+LS+RS6.x->L+R+C+LS+RS+Cs7.x->L+R+C+LS+RS+LB+RB2.不带LFE声音的分法:根据喇叭摆放的位置分其中C/L/R均摆放在前面,LS/RS/S/LB/RB均摆在两边/后面,如下图1/0->C2/0->L+R3/0->C+L+R2/1->L+R+S2/2->L+R+LS+RS3/1->L+R+C+S3/2->L+R+C+LS+RS3/3->L+R+C+LS+RS+Cs3/4->L+R+C+LS+RS+LB+RB3.声音信号的传输:(1)定义及I2S总线构成:I2S(Inter-IC Sound)总线是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准,该总线专责于音频设备之间的数据人,广泛应用于各种多媒体系统。
音响系统工程培训教程
音响系统工程培训教程音响系统工程是一门涉及声学、电子学、建筑学等多学科知识的综合性技术。
它旨在为各种场所,如会议室、剧院、体育馆、家庭影院等,提供高质量的声音重现和传播。
本教程将为您介绍音响系统工程的基础知识、设计原则、设备选型、安装调试以及常见问题解决等方面的内容,帮助您初步了解和掌握音响系统工程的核心要点。
一、音响系统工程基础知识(一)声音的基本特性声音是由物体振动产生的机械波,通过空气等介质传播到人耳,引起听觉感受。
声音的基本特性包括频率、振幅、波长和相位。
频率决定了声音的音调高低,振幅决定了声音的响度大小,波长和相位则影响声音的传播和干涉现象。
(二)声学原理声学是研究声音产生、传播、接收和效应的科学。
在音响系统工程中,需要了解声波的反射、折射、衍射、吸收和扩散等现象,以及房间声学的相关知识,如混响时间、驻波、声聚焦等,这些因素都会对音响系统的性能产生重要影响。
(三)音响系统的组成一个完整的音响系统通常由声源、信号处理设备、功率放大器和扬声器等部分组成。
声源可以是麦克风、CD 播放器、电脑等;信号处理设备包括调音台、均衡器、效果器等,用于对声音信号进行调节和处理;功率放大器用于将处理后的信号进行放大,以驱动扬声器发声;扬声器则是将电信号转换为声音信号的最终设备。
二、音响系统工程设计原则(一)目标和需求分析在设计音响系统之前,首先需要明确系统的使用场所、用途、听众数量和声学环境等因素,确定系统的性能指标和功能要求,如声音覆盖范围、音质清晰度、音量大小等。
(二)扬声器布局扬声器的布局是影响音响系统性能的关键因素之一。
根据场所的形状、大小和声学特性,选择合适的扬声器类型(如点声源扬声器、线阵列扬声器等)和安装位置,以实现均匀的声音覆盖和良好的声像定位。
(三)功率和增益计算根据扬声器的灵敏度、功率和声音覆盖范围等参数,计算所需的功率放大器功率和系统增益,确保系统能够提供足够的音量和动态范围,同时避免过度放大导致失真和噪声。
声乐生理学与声学基础
声乐生理学与声学基础一、声学基本知识歌唱的发声与物体的发声相同,是遵循声学基本规律的物理现象。
要懂得歌唱发声的科学原理,需要对声学知识有一定的了解。
(一)声音的产生自然界声音的形成来源于物体的振动。
物体在外力作用下,沿着直线或曲线往复运动称为振动。
振动须具备两个条件:一是声源,二是动力源。
被振动的物体为声源,亦称振源体。
作用于物体的力称为动力源。
乐器的发声就是在具备上述二个因素的条件下产生的。
打击乐的振源体是被打击物体的界面,动力源为打击。
弦乐器的振源体是琴弦,动力源来自弓与弦的磨擦;管乐器的振源体是哨片或吹奏者的嘴唇,动力源来自吹奏者的气流。
发声体在外力作用下发生振动时,会以一定速度在媒介质(气体、固体、液体)中传播,称为声波。
声波在空气中传送到人耳(在15·C 的条件下,传送速度为340米/秒),激起听觉器官的反应,从而引人的听觉感受,人就听到了声音。
物体有规律的周期性振动,发出的声音有固定频率,听起来悦耳,称为乐音。
噪音,又称杂音,是由许多不规则的声波重叠而成,是一种和成波。
风雨声、爆炸声、机器声等,都是噪音。
(二)声音的特性在声学概念中,声音有如下四种特性:1.音高发声体振动,从离开原位到回到原位的时间称为振动周期。
单位时间内的振动周数称为频率。
频率的多少决定音的高低。
频率多,音就高,频率少,音就低。
频率的单位叫赫兹(Hz)——即发声体每秒内的振动周数。
乐音体系中的每个音均有固定的频率,如标准音的频率为440赫兹——即振动数为440次/秒。
2.音量发声体振动,从原位到离开原位的最大值叫做振幅。
振幅的大小取决于使物体振动的外力。
在物体弹性范围内,振幅与外力成正比。
外力越大,振幅越大。
振幅决定音的强弱,即音量。
振幅越大,声音越强,音量越大。
反之,声音弱,音量小。
3.音色不同发声体所发出的声音具有不同的个性与色彩,构成音色。
音色是由于发声体振动形式及波纹的曲折不同而构成。
发声体振动的形式决定基因和泛音之间的关系。
扬声器基础知识
扬声器基础知识目录一、概述 (2)1. 扬声器基本概念 (2)2. 扬声器应用领域 (3)3. 扬声器发展趋势 (4)二、扬声器基本构造与原理 (6)1. 磁路系统 (6)1.1 磁铁种类与特性 (7)1.2 磁极设计原理 (8)1.3 磁路材料的选用 (9)2. 驱动系统 (11)2.1 音圈与引线的连接方式 (11)2.2 驱动系统的振动模式 (13)2.3 驱动系统的输出能力 (14)3. 悬边及悬挂系统 (15)3.1 悬边材料的选择 (16)3.2 悬挂系统的结构设计 (17)3.3 振动系统的动态特性 (18)三、扬声器性能指标与评价方法 (20)1. 声学性能参数 (21)1.1 频率响应特性 (22)1.2 声压级与灵敏度 (23)1.3 总谐波失真及其他失真指标 (24)2. 电气性能参数评价要点介绍与测量方法 (24)一、概述扬声器是一种将电能转换为声音信号并通过空气传播的电子设备。
它广泛应用于各种场合,如家庭影院、音响系统、广播、电视、电话等。
扬声器的工作原理是利用电流在磁性线圈中产生磁场,使磁铁与钕铁硼磁体相互吸引或排斥,从而带动音膜振动,产生声音。
扬声器的主要组成部分包括磁铁、音膜、线圈和振膜等。
本文将对扬声器的基础知识进行简要介绍,包括扬声器的分类、性能参数、工作原理和应用等方面的内容。
1. 扬声器基本概念扬声器是音频系统中的核心组件之一,是一种电能转声能的转换设备。
它负责将电子信号中的低频信号转化为声波,以人类听觉感知的声音形式表现出来。
扬声器的基本工作原理是通过电流激发磁场与磁场的相互作用来推动声波的传导媒介,也就是音膜或振膜震动产生声音。
其主要构成包括磁铁、音圈、音膜、磁路以及箱体等部分。
扬声器的种类多样,按其应用场景和功能可分为多种类型,如落地式音箱、书架式音箱、监听音箱等。
它们各自具有不同的特性和性能参数,以满足不同的音频输出需求。
了解扬声器的基本概念对于理解和使用音频设备至关重要,它不仅能帮助我们更好地理解声音的产生和传输过程,还能为选择合适的音响系统提供基础指导。
3时频分析
s (t ) rk (t )
k 1
语音产生模型(12)
对于单个共振峰的调制信号 rk (t ) 可以用一个能量分离算法将幅度调制后的幅值包络 a(t )
和频率调制后的瞬时频率 f (t ) 从语音信号中分离出来。 这个能量分离算法是根据Teager能量算子发展而来的。
语音产生模型(13)
可以看出,当信号的幅值不发生变化时,TEO操作 后的信号可以反映出频率量算子的输出仍然是只与
a(n) , f (n) 有关的一个函数。
考虑到差分的对称性,可以用
x(n) r (n 1) r (n 1)/ 2
代替 r (n) 的导数,则:
2 4 r (n) x(n) a(n) sin ( f (n))
语音产生模型(19)
以 a(n) 和 f (n) 为未知函数,联立求解,可得到 信号的幅值包络和瞬时频率如下:
1 r (n 1) r (n 1) f (n) arcsin 2T 2 r (n)
1
a z
i 0 i
p
i
P为全极点滤波器的阶,在8-12内取值。一对极点对应一个 共振峰。
语音产生模型(7)
辐射模型 研究表明:辐射效应在高频段较为明显,在低频段影响较小。 可用一个高通滤波器来表示辐射模型。
R( z) (1 rz 1 )
其中r接近1。 在实际信号分析时,常采用这样的预加重技术。即在采样 之后,插入一个一阶高通滤波器。在语音合成时再进行 “去加重”处理,就可以恢复原来的语音。
声 强 电 平 (
dB
)
频率(Hz)
语音的感知(4)
掩蔽效应 指在一个较强的声音附近,相对较弱的声音将不 被人耳觉察。强音称为掩蔽者,弱音称为被掩蔽 者。分为同时掩蔽和异时掩蔽 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
声道基础知识声道(Sound Channel):是指声音在录制或播放时在不同空间位置采集或回放的相互独立的音频信号,所以声道数也就是声音录制时的音源数量或回放时相应的扬声器数量。
声卡所支持的声道声卡所支持的声道数是衡量声卡档次的重要指标之一,从单声道到最新的环绕立体声,下面一一详细介绍:1、单声道(Mono):单声道是比较原始的声音复制形式,早期的声卡采用的比较普遍。
当通过两个扬声器回放单声道信息的时候,我们可以明显感觉到声音是从两个音箱中间传递到我们耳朵里的。
这种缺乏位置感的录制方式用现在的眼光看自然是很落后的,但在声卡刚刚起步时,已经是非常先进的技术了。
2、立体声(Stereo):单声道缺乏对声音的位置定位,而立体声技术则彻底改变了这一状况。
声音在录制过程中被分配到两个独立的声道,从而达到了很好的声音定位效果。
这种技术在音乐欣赏中显得尤为有用,听众可以清晰地分辨出各种乐器来自的方向,从而使音乐更富想象力,更加接近于临场感受。
立体声技术广泛运用于自Sound Blaster Pro以后的大量声卡,成为了影响深远的一个音频标准。
时至今日,立体声依然是许多产品遵循的技术标准。
3、准立体声(Prospective stereo):准立体声声卡的基本概念就是:在录制声音的时候采用单声道,而放音有时是立体声,有时是单声道。
采用这种技术的声卡也曾在市面上流行过一段时间,但现在已经销声匿迹了4、四声道环绕:人们的欲望是无止境的,立体声虽然满足了人们对左右声道位置感体验的要求,但是随着技术的进一步发展,大家逐渐发现双声道已经越来越不能满足我们的需求。
由于PCI声卡的出现带来了许多新的技术,其中发展最为神速的当数三维音效。
三维音效的主旨是为人们带来一个虚拟的声音环境,通过特殊的HRTF技术营造一个趋于真实的声场,从而获得更好的游戏听觉效果和声场定位。
而要达到好的效果,仅仅依靠两个音箱是远远不够的,所以立体声技术在三维音效面前就显得捉襟见肘了,但四声道环绕音频技术则很好的解决了这一问题。
四声道环绕规定了4个发音点:前左、前右,后左、后右,听众则被包围在这中间。
同时还建议增加一个低音音箱,以加强对低频信号的回放处理(这也就是如今4.1声道音箱系统广泛流行的原因)。
就整体效果而言,四声道系统可以为听众带来来自多个不同方向的声音环绕,可以获得身临各种不同环境的听觉感受,给用户以全新的体验。
如今四声道技术已经广泛融入于各类中高档声卡的设计中,成为未来发展的主流趋势。
5、5.1声道:5.1声道已广泛运用于各类传统影院和家庭影院中,一些比较知名的声音录制压缩格式,譬如杜比AC-3(Dolby Digital)、DTS等都是以5.1声音系统为技术蓝本的,其中“.1”声道,则是一个专门设计的超低音声道,这一声道可以产生频响范围20~120Hz的超低音。
其实5.1声音系统来源于4.1环绕,不同之处在于它增加了一个中置单元。
这个中置单元负责传送低于80Hz的声音信号,在欣赏影片时有利于加强人声,把对话集中在整个声场的中部,以增加整体效果。
相信每一个真正体验过Dolby AC-3音效的朋友都会为5.1声道所折服。
6、7.1声道:7.1声道系统的作用简单来说就是在听者的周围建立起一套前后声场相对平衡的声场,不同于5.1声道声场的是,它在原有的基础上增加了后中声场声道,同时它也不同于普通6.1声道声场,因为7.1声道有双路后中置,而这双路后中置的最大作用就是为了防止听者因为没有坐在皇帝位而在听觉上产生声场的偏差。
因为人的耳朵分左右两个,这时如果你的后面只有一个中置喇叭,声场就会有所偏差,这个偏差会造成有时你觉得声音是比较靠近左边,因为你左耳先收到声音,有时又会觉得声音在右边,而且声场不会有立体感,几乎是很平面的声音,听起来不对劲。
道理是:当你的耳朵正面不是正对着发音点时,你需要两只喇叭来修正相位差,这是为什么听音乐要至少用两只喇叭(立体声)。
所以,用两个后环绕喇叭所能营造的音场与相位是家庭影院领域里更高级的配置。
从单声道到多声道19世纪70年代留声机诞生,人们迎来了最早的单声道音响系统。
不过,在那个时代,留声机是贵族、富豪们才能享用的奢侈品,并不能普及到大众中来。
后来,电子管收音机和晶体管收音机逐渐走入人们的日常生活中,但人们所能听到的仍是一成不变的单声道音响系统。
从上个世纪20年代开始,立体声系统在美、英、法等发达国家的商业运营中被使用。
随着1957年美国无线电公司(RCA)第一次将立体声唱片引入商业应用领域,立体声技术开始逐渐被大规模采用。
1977年,杜比实验室又成功研发出了多声道环绕系统—Dolby Stereo(杜比立体声),至此,音响正式进入多声道环绕时代。
而今天,我们的主题正是一次从单声道向多声道的发展之旅。
1、单声道普通的单声道录放系统使用一只话筒录音,信号录在一条轨迹上,放音时使用一路放大器和一只扬声器,所以重放出来的声音是一个点声源。
无论扬声器的音色多么明艳动人,多么丰润饱满,给人的感觉是所有声音都是从一个点发出的。
这些声音以及它们在实际环境中的混响声、反射声等都来自一个方向,即扬声器所处的位置,因而只能重现声音的强度和音调,而不能再现声音的方位和空间感,更不能精确地再现不同声源在不同位置上的方位感。
随着时代的发展,单声道的音响系统越来越难以满足人们越来越高的欣赏水准和要求,因此,除了在无线广播和电视单声道伴音这两个传统领域继续发挥余热外,单声道音响系统在其他领域早已开始被效果更为出色的立体声系统所取代。
2、双声道人耳之所以能准确辨别发音点的方位,是因为声源与双耳之间存在着角度差。
这个角度差使声源传到左右耳的时候产生微小的时间差,而人耳对这微小的时间差非常敏感,从而使人能够产生准确的方向感。
同时,这个角度差又使声源到达左右耳的距离产生微小的距离差,造成两只人耳在接收同一声音信号时的声音强度差,而人耳可以通过声音强弱的微小差异来判断声源离自己的距离。
有了准确的方向和距离感,声像就可以得到准确的定位,这种原理被称为哈斯效应。
正是通过对这种声像定位原理的逆向运用,人们发明了最早的也是最简单的双声道立体声系统。
高水准的立体声音响给予我们的美好感受和愉悦是单声道音响所无法比拟的。
立体声具有强烈的空间感(方位感和深度感),用一套高水准的双声道音响系统播放音乐节目时,听众几乎感觉不到音箱的存在,整个乐队就像活生生地坐在你面前演奏一样。
3、多声道双声道立体声系统只能再现一个二维平面的空间感,即整个声场是平平地摆在我们面前,并不能让我们有置身其中的现场感。
在欣赏影片时,整体声场全方位的三维空间感无疑可以给观众一种鲜活的,置身于其中的临场感,因此,多声道技术也开始发展起来。
1977年,杜比实验室又成功研发出了多声道环绕系统—Dolby Stereo(杜比立体声),电影正式进入多声道环绕时代。
这一系统也就是目前流行的Dolby Digital 5.1声道系统的前身。
1994年,杜比实验室与日本先锋公司成功推出了一种崭新的采用数字技术的环绕声制式—Dolby Surround Audio Coding-3,也就是我们所熟知的杜比AC-3系统,由此,电影音频技术进入了数字时代。
1998年,杜比实验室正式将杜比AC-3环绕声命名为杜比数码环绕声(Dolby Surround Digital),也就是我们现在常说的Dolby Digital。
从声道中释放音效:杜比全景声概念在7.1声道中,声音从右环绕到右后环绕,再到左后环绕,最后到左环绕,实现了声音的移动效果,但是还不够精确。
杜比公司尝试了9.1、11.1、13.1声道,但声道的增加只是量变,不能带来质变。
其实早在1953年,早期电影立体声最伟大的改革者之一Harvey Fletcher就说过,重要的不是有多少声道,而是要让人感觉声音无处不在。
而基于声道的声音解决方案并不能满足电影制作者更精确地控制声音的愿望,也不能完全让观众感受到声音的无处不在。
因此在这种情况下,杜比推出一种本质上不同于以往的声音格式,那就是杜比全景声。
与基于声道的声音解决方案不同,杜比全景声是基于声音对象的。
通过向影院音效引入两大概念,杜比全景声(Dolby Atmos) 可营造撼人心魄的流动音效:音频对象和置顶扬声器。
通过将二者相结合,即可彻底颠覆音轨的制作和聆听方式。
传统的环绕声音轨会将所有音效限定为少数几个声道,因而只能从几个感知的角度发出音效。
此类环绕声无法在您的头顶施加音效。
此外,音效也仅仅作为声道混音的其中一部分而存在。
如果某一音效在传统混音中得以加强,其他音效则会受到抑制。
相比之下,采用杜比全景声(Dolby Atmos) 时则可将音效从声道中解放出来。
借助该技术,艺术家即可将特定音效视为独立实体(名为“音频对象”)。
音轨创作者可在影院三维空间的任意位置精确地部署和移动此类对象而不会将其限定于特定的声道;当然,艺术家仍可按需继续使用原有声道功能。
随后,杜比全景声(Dolby Atmos) 影院处理器便会从影院中各类前置、后置、侧面以及置顶扬声器中选择使用其中哪些设备来重现这一逼真的动感。
如此一来,杜比全景声(Dolby Atmos) 音轨便可将屏幕上的情节以前所未有的形式活灵活现地展现给观众。
影片的音效将充斥于您的四周并使您彻底沉浸在故事情节之中,从而增强了故事的感染力并营造出动感十足的影院体验。
结语从单声道到5.1声道是一个质变,而从7.1到杜比全景声同样是一个质变,声音在细节度、逼真度等方面都有质变。
杜比全景声是一项年轻的技术,在美国、欧洲、中国都进行着各项研究。
最初是应用在电影这个比较大的媒介上,现在也开始可以应用在小一些的媒介上,比如家庭影院、平板电脑等,未来还可以尝试在广播上运用杜比全景声。