相遇问题基本公式

合集下载

相向问题常用的公式

相向问题常用的公式

相向问题常用的公式
相向而行相遇问题公式是:追及距离=速度差×追及时间;追及时间=追及距离÷速度差;速度差=追及距离÷追及时间。

两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。

这类常常会在考试考到,是行程中的一大类问题。

相遇问题是研究速度,时间和路程三者数量之间的关系。

解答这类问题需要注意问题:
解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法。

相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。

驶的方向,是相向,同向还是背向,不同的方向解题方法就不一样。

是否相遇,有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程。

相向而行相遇问题是指两个相对运动的物体从相同距离开始同时运动,并且在某一时刻相遇的问题。

解决相向而行相遇问题的方法通常包括以下步骤:
确定两个物体的速度和运动距离。

计算两个物体相遇所需的时间。

使用时间和速度公式来计算两个物体相遇时的位置。

下面是解决相向而行相遇问题所使用的公式:
时间公式:t = (d2 - d1) / (v1 + v2)
位置公式:d = d0 + vt
其中,t是两个物体相遇所需的时间,d是两个物体相遇时的位置,d0是物体开始运动时的位置,v是物体的速度。

相向而行公式

相向而行公式

相向而行公式
相向而行相遇问题公式是:追及距离=速度差×追及时间;追及时间=追及距离÷速度差;速度差=追及距离÷追及时间。

两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。

这类常常会在考试考到,是行程中的一大类问题。

相遇问题是研究速度,时间和路程三者数量之间的关系。

解答这类问题需要注意问题:
解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法。

相遇问题除了要弄清路程,速度与相遇时间外,在审题时还
要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。

驶的方向,是相向,同向还是背向,不同的方向解题方法就不一样。

是否相遇,有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程。

小学六年级数学相遇问题公式及例题

小学六年级数学相遇问题公式及例题

小学六年级数学相遇问题公式及例题
小学六年级数学相遇问题公式及例题
相遇问题公式
1.相遇路程=速度和×相遇时间
2.相遇时间=相遇路程÷速度和
3.速度和=相遇路程÷相遇时间
例1.甲乙两站相距360千米。

客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的`地点离乙站多少千米?
解答:
客车从甲站行至乙站需要
360÷60=60(小时)
客车在乙站停留0.5小时后开始返回甲站时,货车行了
40×(6+0.5)=260(千米)
货车此时距乙站还有360-260=100(千米)
货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为100÷(60+40)=1(小时)
所以,相遇点离乙站
60×1=60(千米)
例2.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
解答:
甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即
(60+70)×2=260(米)
甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需
260÷(60-50)=26(分)所以,A、B两地相距
(50+70)×26=3120(米)。

相遇问题基本公式【VIP专享】

相遇问题基本公式【VIP专享】

相遇问题基本公式相遇路程÷(速度和)=相遇时间(速度和)×相遇时间=相遇路程甲的速度=相遇路程÷相遇时间-乙的速度标准型 1、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?已知相遇路程和(速度和)求相遇时间2、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?已知相遇时间和(速度和)求相遇路程3 、甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。

甲列车每小时行93千米,乙列车每小时行多少千米?已知相遇路程、相遇时间和一个人的速度,求另外一人的速度?4. 一列火车长152米,它的速度是每秒钟18米.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒多少米.变化型(一) “走路或者开车”只是相遇问题的一个基本载体,还有一些习题,看上去和“走路、开车”没什么关系,其实质也是相遇问题。

事实上,两人共同完成一项工作也属于相遇问题。

1、师、徒两人合作加工550个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后加工完?2、甲、乙两队合修一条1800米的公路,甲队10天修完,乙队15天修完,两队合修几天完成?3、一份稿件共有3600字,甲30分钟打完,甲乙两人合打需要12分钟,乙单独打需要几分钟?变化型(二)有时会遇到“还相距某某千米”或者“还有某某工作没完成”这样的条件,这时候要把这部分没完成的工作从工作总量中减掉。

1、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。

已知乙船每小时行42千米,甲船每小时行多少千米?2、甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?3、师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?4、王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了多少米?拓展练习还有一些练习题相对就比较难一些,其中一些条件不直接给,需要找到隐含的的条件,在进行分析、解答。

小学数学复习必备公式大全相遇问题

小学数学复习必备公式大全相遇问题

小学数学复习必备公式大全:相遇问题相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间相遇问题的基本模型甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间举例:甲骑摩托车,乙骑自行车,同时从相距126千米的A、B两城出发、相向而行。

3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。

求甲、乙二人的速度各是多少?解:甲的速度(126÷2+24)÷3=29 (千米/小时)乙的速度(126÷2-24)÷3= 13(千米/小时)答:甲骑摩托车的速度是29千米/小时,乙骑自行车的速度13千米/小时。

上面的例题是相遇问题的基本题型,但数学题是具有延展性的,比如相遇问题的另一个模型——二次相遇问题二次相遇问题甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。

则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。

举例:A、B两城间有一条公路长240千米,甲、乙两车同时从A、B两城出发,甲以每小时45千米的速度从A城到B城,乙以每小时35千米的速度从B城到A 城,各自到达对方城市后立即以原速沿原路返回,几小时后,两车在途中第二次相遇?相遇地点离A城多少千米?解析:甲乙两人第一次相遇时,行了一个全程。

然后甲乙两人到达对方城市后立即以原速沿原路返回,当小华和小明第二次相遇时,共行了3个全程,这时甲乙共行了多少个小时呢?可以用两城全长的3倍除以甲乙速度和就可以了。

解:出发到第二次相遇时共行 240×3=720(千米)甲、乙两人的速度和 45+35=80(千米)从出发到第二次相遇共用时间 720÷80=9(小时) 35×9-240=75(千米)答:9小时后,两车在途中第二次相遇,相遇地点离A城75千米。

四下 相遇、追及问题 教案+练习

四下 相遇、追及问题 教案+练习
2、哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?
3、小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?
4、一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。在甲乙两地的中点处火车追上汽车,甲乙两地相距多少千米?
5、小云以每分钟40米的速度从家去商店买东西,5分钟后,小英去追小云,结果在离家600米的地方追上小云,小英的速度是多少?
6、一队中学生到某地进行军事训练,他们以每小时5千米的速度前进,走了6小时后,学校派秦老师骑自行车以每小时15千米的速度追赶学生队伍,传达学校通知。秦老师几小时可追上队伍?追上时队伍已经行了多少路?
20、甲乙两队学生从相隔18千米的两地同时出发相向而行。一个同学骑自行车以每小时14千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米,两队相遇时,骑自行车的同学共行多少千米?
追及题型
1、甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?
9、王明从甲村去乙村,每小时行4千米,他出发2小时后,李立从乙村出发去甲村,每小时行5千米,又经过3小时二人相遇,甲乙两村相距多少千米?
10、两个工程队共同开凿一条隧道,各从一端相向施工。甲队每天开凿4米,乙队每天开凿3米,21天完工,这条隧道长多少米?
11、一辆汽车每小时行38千米,另一辆汽车每小时行41千米。两车同时从相距237千米的两地相向开出,经过几小时两车相遇?
教学内容

小升初数学复习课件-行程问题(相遇问题)+人教版(共32张PPT)

小升初数学复习课件-行程问题(相遇问题)+人教版(共32张PPT)

2、两辆汽车同时从A,B两地相向而行,甲车每小时行的63干米,乙车每小时 行57千米,相遇时甲车比乙车多行24千米。A,B两地相距多少千米?
• 相遇时间·:24÷(63-57)=4(小时) • AB两地相距:(63+57)x4=480(千米) • 答:A,B两地相距480米
3.甲、乙两辆卡车同时从A,B两地相向而行,甲车每小时行75千米,乙车每小 时行60千米,两车在距中点14.4千米处相遇。求A,B两地的距离。
• 多次相遇问题
• 本题主要考查多次相遇问题,本题的关键是理解甲乙两人到第二次相遇时总共走了3个 全程,然后再进一步解答即可
• 两辆汽车第一次相遇走了一个全程,甲到达B地加上乙到达A地走了第二个全程,第二 次相遇走了第三个全程.第二次相遇时一共走了三个全程,然后再根据路程=速度×时 间
• (75+65)×6÷3=280(千米);
• 第二次相遇,共走了3个全程,假设李明从A地出发,在离A地52米处相遇, • 那第二次相遇时,他走了3个52米,在离A地44米处相遇说明再走44米就走了两个全程,
据此列式计算即可解答.
• (52×3+44)÷2=100(米); • 答:A,B两地相距100米.
3.甲乙两辆汽车同时分别从A、B两站相对开出,第一次在离A站90千米处相遇, 相遇后两车继续以原速前进,到达目的地后又立刻返回,第二次相遇在离A站 50千米处,求A、B两站之间的路程?
• 乙两车分别从A、B两地同时相对开出,经过2小时相遇后各自继续前进,又经过1.5小时, 甲车到达B地,这时乙车距A地还有35千米,可知乙2小时行的路程甲只要1.5小时就能行 完
• 因此甲乙的速度比是2:1.5=4:3
• 则相同时间内甲乙所行的路程的比也是4:3

相遇问题解决公式(一)

相遇问题解决公式(一)

相遇问题解决公式(一)相遇问题解决公式引言相遇问题是一类常见的实际问题,涉及到两个或多个运动物体在空间中的相遇时间、位置等问题。

本文将介绍一些解决相遇问题的公式,并通过例子进行解释说明。

相遇时间计算公式1.相遇时间公式:若两个物体分别以速度v1和v2沿着同一直线运动,初始位置分别为s1和s2,则它们相遇的时间t可以通过以下公式计算:t = (s2 - s1) / (v1 - v2)示例:假设物体A以每小时50公里的速度向东行驶,物体B以每小时60公里的速度向西行驶,初始位置A在原点,B在位置100公里处,则它们相遇的时间t为:t = (100 - 0) / (50 + 60) = 1 小时2.相遇时间公式(考虑相对速度):若两个物体分别以速度v1和v2沿着同一直线运动,相对速度为v,初始位置分别为s1和s2,则它们相遇的时间t可以通过以下公式计算:t = (s2 - s1) / v示例:假设物体A以每小时50公里的速度顺时针绕着一个圆形轨道运动,物体B以每小时60公里的速度逆时针绕着同一个圆形轨道运动,初始位置A在圆心,B在圆周上与A相距200公里处,则它们相遇的时间t为:t = 200 / (50 + 60) = 2 小时相遇位置计算公式1.相遇位置公式:若两个物体分别以速度v1和v2沿着同一直线运动,初始位置分别为s1和s2,则它们相遇的位置s可以通过以下公式计算:s = s1 + v1 * t = s2 + v2 * t示例:假设物体A以每小时50公里的速度向东行驶,物体B以每小时60公里的速度向西行驶,初始位置A在原点,B在位置100公里处,它们相遇的位置s为:s = 0 + 50 * 1 = 50 公里2.相遇位置公式(考虑相对速度):若两个物体分别以速度v1和v2沿着同一直线运动,相对速度为v,初始位置分别为s1和s2,则它们相遇的位置s可以通过以下公式计算:s = s1 + v * t = s2 + v * t示例:假设物体A以每小时50公里的速度顺时针绕着一个圆形轨道运动,物体B以每小时60公里的速度逆时针绕着同一个圆形轨道运动,初始位置A在圆心,B在圆周上与A相距200公里处,它们相遇的位置s为:s = 0 + (50 + 60) * 2 = 220 公里结论以上是相遇问题解决的一些常用公式,可以帮助我们计算相遇时间和相遇位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题基本公式相遇路程÷(速度和)=相遇时间(速度和)×相遇时间=相遇路程甲的速度=相遇路程÷相遇时间-乙的速度标准型1、甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?已知相遇路程和(速度和)求相遇时间2、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。

两个车站之间的铁路长多少千米?已知相遇时间和(速度和)求相遇路程3 、甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。

甲列车每小时行93千米,乙列车每小时行多少千米?已知相遇路程、相遇时间和一个人的速度,求另外一人的速度?4. 一列火车长152米,它的速度是每秒钟18米.一个人与火车相向而行,全列火车从他身边开过用8秒钟.这个人的步行速度是每秒多少米.变化型(一)“走路或者开车”只是相遇问题的一个基本载体,还有一些习题,看上去和“走路、开车”没什么关系,其实质也是相遇问题。

事实上,两人共同完成一项工作也属于相遇问题。

1、师、徒两人合作加工550个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后加工完?2、甲、乙两队合修一条1800米的公路,甲队10天修完,乙队15天修完,两队合修几天完成?3、一份稿件共有3600字,甲30分钟打完,甲乙两人合打需要12分钟,乙单独打需要几分钟?变化型(二)有时会遇到“还相距某某千米”或者“还有某某工作没完成”这样的条件,这时候要把这部分没完成的工作从工作总量中减掉。

1、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。

已知乙船每小时行42千米,甲船每小时行多少千米?2、甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?3、师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?4、王明回家,距家门300米,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了多少米?拓展练习还有一些练习题相对就比较难一些,其中一些条件不直接给,需要找到隐含的的条件,在进行分析、解答。

变化型(三)给两个量速度之间的关系1、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。

已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?【思考可以用方程,设一个速度为X,再用含有X的式子表示出另一个速度,然后根据等量关系列出方程】2、两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。

已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米??3、甲乙两地相距258千米.一辆汽车和一辆拖拉机同时分别从两地相对开出,经过4小时两车相遇.已知汽车的速度比拖拉机速度多1倍.相遇时,汽车比拖拉机多行多少千米?变化型(四)已知相遇时间后再用多少时间,从而明确两个量的倍数关系1、甲乙两人分别从A、B两地同时相向出发,甲乙二人经6分钟相遇,甲再走3分钟到达B 地,已知乙每分钟走70米,求AB两地路程是多少千米?2、甲乙两人在一条环形跑道A点处,同时向相反方向跑,当两人30秒钟相遇后,乙又跑了1分钟回到A点,已知甲每秒钟跑4米,求环形跑道长多少米?变化型(五)一个量工作时间多,另一个量工作时间少1、甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?【普通客车先出发了2小时,这两小时的路程不是两车共同走的路程,该怎么处理?】2、师徒两人合作加工530个零件,师傅每小时加工30个,徒弟每小时加工20个,师傅因有事外出稍作1小时,如果每天工作8小时,这些工作一天能完成么?3、甲、乙两车分别同时从A、B两城相向行驶,甲车因途中发生故障抛描,修理2小时后才继续行驶,因此两车6小时后,在途中某处相遇,已知A、B路程为600千米,甲车速度是乙车的1.5倍,求甲乙两车速度格式多少?变化型(六)折返的路程1、姐妹俩同时从家里到少年宫,路程全长770米。

妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。

这时妹妹走了几分钟?【两人相遇时一共走了多少路程?】2、大客车、小客车同时从甲城到乙城,大客车每小时行80千米,小客车每小时行72千米,大客车到达乙城后,立即返回,两车几小时相遇?(甲城到乙城全长为456千米)?3、、学校组织200米往返跑,小明、小红同时出发,已知小明每分钟跑5米、小红每分钟跑3米,结果,两人在离出发点多少米处相遇?变化型(七)路程差÷(速度差)=共同行走的时间1、小明和小华从甲、乙两地同时出发,相向而行。

小明步行每分钟走60米,小华骑自行车每分钟行190米,几分钟后两人在距中点650米处相遇?【在距中点650米处相遇,说明小华比小明多走了多少米?这就是他们的路程差。

路程差÷(速度差)=共同行走的时间】2、从甲城到乙城,大客车每小时行80千米,小客车每小时行72千米,两辆汽车分别从两城同时相对开出,在离公路中点24千米处相遇.甲、乙两城的公路长多少千米?3、姐妹俩同时从家里到少年宫,妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米的速度到达少年宫后立即返回,途中与妹妹相遇。

相遇时妹妹离少年宫300米,从家里到少年宫的路程是多少米?变化型(八)二次相遇问题1、A、B两地相距300千米,两辆汽车同时从两地出发,相向而行。

各自达到目的地后又立即返回,经过9小后它们第二次相遇。

已知甲车每小时行45去,千米,乙车每小时行多少千米? 【二次相遇问题,画画图看看,两人二次相遇时,一共走了几个全程?】2、甲、乙两车分别同时从A、B两城相向行驶,甲乙两车在距A城120千米处第一次相遇,然后又继续向前行驶,甲到B城后立即返回,乙到A城后也立即返回,直到第二次相遇,共用时3小时,如果乙每小时行80千米,那么A、B两城的路程是多少千米?3、甲、乙两车分别同时从A、B两城相向行驶,甲乙两车在距A城80千米处第一次相遇,然后又继续向前行驶,甲到B城后立即返回,乙到A城后也立即返回,直到第二次相遇,这时甲车在距A城40千米,那么A、B两城的路程是多少千米?4、甲、乙两车分别同时从A、B两城相向行驶,甲乙两车在距A城80千米处第一次相遇,然后又继续向前行驶,甲到B城后立即返回,乙到A城后也立即返回,直到第二次相遇,这时甲车在距B城40千米,那么A、B两城的路程是多少千米?变化型(九)三人相遇问题1、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地向B地出发,丙一人从B地同时相向出发,三人同时出发后,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?2、姐妹俩同时从家里到少年宫,妹妹步行每分钟行60米,姐姐骑自行车每分钟行160米,而爸爸同时从少年宫迎向两人,爸爸的速度是每分钟240米,,遇见姐姐后的2分钟遇见妹妹,求家里到少年宫的路程?3、、姐妹俩同时从家里到少年宫,妹妹步行每分钟行60米,姐姐骑自行车以每分钟160米,当爸爸看见姐姐后,以每分钟240米的骑车速度迎向妹妹,结果2分钟后与妹妹相遇。

这时妹妹走了几分钟?脑筋急转弯1、甲、乙两车分别同时从A、B两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理3小时后才继续行驶.因此,从出发到相遇经过7.5小时.那么,甲车从A城到B 城共有多少小时?2、甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的1.5倍,甲、乙到达途中C站的时刻依次为5:00和15:00,这两车相遇是什么时刻?3. 甲、乙两货车同时从相距300千米的A、B两地相对开出,甲车以每小时60千米的速度开往B地,乙车以每小时40千米的速度开往A地.甲车到达B地停留2小时后以原速返回,乙车到达A地停留半小时后以原速返回,返回时两车相遇地点与A地相距多远?一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程= 前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

2、甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。

四、航行问题1、飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速2、航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速速度和×相遇时间=总路程总路程÷速度和=相遇时间总路程÷相遇时间=速度和。

总路程÷相遇时间=速度和。

甲的路程+乙的路程=总路程甲速×甲时+乙速×乙时=总路程行程问题是反映物体匀速运动的应用题。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。

但归纳起来,不管是“一个物体的运动”还是“两个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:(路程=速度×时间)。

分类编辑追及问题两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。

这类常常会在考试考到,是行程中的一大类问题。

相遇问题多个物体相向运动,通常求相遇时间或全程。

流水问题船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度火车行程问题火车走过的长度其实还有本身车长,这是火车行程问题的特点。

钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。

但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。

相关文档
最新文档