TSP问题的遗传算法实验报告

合集下载

TSP实验报告

TSP实验报告

TSP实验报告(实验报告、研究报告)考核科⽬:算法分析与复杂性理论学⽣所在学院:计算机科学与技术学院学⽣所在学科:计算机应⽤技术姓名:学号:学⽣类别:研究⽣⼀、实验⽬的1.通过TSP算法的具体实现,加深对算法复杂分析的理解。

2.通过TSP算法的具体实现,提⾼对NP完全问题的认识。

3.通过TSP算法的具体实现,理解不确定性算法。

4.通过TSP算法的具体实现,理解不确定性算法。

⼆、实验环境实验平台:Visual C++编程语⾔:C++编程电脑配置:三、实验内容描述TSP(Travelling Salesman Problem)⼜称货郎担或巡回售货员问题,在运筹学、管理科学及⼯程实际中具有⼴泛的⽤途。

及⼯程实际中具有⼴泛的⽤途。

TSP问题是组合优化中的著名难题,⼀直受到⼈们的极⼤关注。

由于其NP难题性质,⾄今尚未完全解决。

此问题可以抽象描述为:给出⼀个n个顶点⽹络(有向或⽆向),要求找出⼀个包含所有n个顶点的具有最⼩耗费的环路。

其中,任何⼀个包含所有n个顶点的环路被称作⼀个旅⾏。

对于旅⾏商问题,顶点表⽰旅⾏商所要旅⾏的城市(包括起点)。

边上权值给出了在两个城市旅⾏所需的路程。

旅⾏表⽰当旅⾏商游览了所有城市后再回到出发点时所⾛的路线。

四、实验原理许多研究表明,应⽤蚁群优化算法求解TSP问题优于模拟退⽕法、遗传算法、神经⽹络算法、禁忌算法等多种优化⽅法。

为说明该算法,引⼈如下的标记: m表⽰蚁群中蚂蚁的数量;表⽰城市i和城市j之间的距离;表⽰t时刻位于城市i的蚂蚁数,显然应满⾜,表⽰t时刻在ij连线上的信息数量。

在算法的初始时刻,将m只蚂蚁随机地放到n座城市上,此时各路径上的信息量相等,设。

每只蚂蚁根据路径上保留的信息量独⽴地选择下⼀个城市。

在时刻t,蚂蚁k从城市i转移到城市j 的概率为其中,表⽰蚂蚁⾛下⼀步允许选择的所有城市,列表纪录了当前蚂蚁k所⾛过的城市,当所有n个城市都加⼊到中时,蚂蚁k便完成了⼀次循环,此时蚂蚁⾛所⾛过的路径便是问题的⼀个解。

毕业论文--基于遗传算法的tsp问题研究

毕业论文--基于遗传算法的tsp问题研究

目录摘要 (I)Abstract (II)第1章绪论............................................................... - 1 -1.1旅行商问题......................................................... - 1 -1.2研究意义........................................................... - 1 -1.3 论文的组织结构..................................................... - 1 - 第2章遗传算法理论概述................................................... - 2 -2.1遗传算法的起源和发展............................................... - 2 -2.2遗传算法基本原理................................................... - 3 -2.3遗传算法的基本步骤................................................. - 4 -2.4 遗传算法的流程图................................................... - 4 -2.5遗传算法的特点..................................................... - 5 -2.6遗传算法的应用..................................................... - 6 - 第3章 TSP问题及研究的基本方法............................................ - 8 -3.1 TSP问题概述....................................................... - 8 -3.2 TSP的应用与价值................................................... - 8 -3.3 TSP问题的数学模型................................................. - 9 -3.4 TSP 问题的分类..................................................... - 9 -3.5 现有的求解TSP问题的几种算法...................................... - 10 - 第4章遗传算法在TSP的应用.............................................. - 12 -4.1遗传算法在TSP上的应用............................................ - 12 -4.2算法的实现........................................................ - 12 -4.3编码.............................................................. - 12 -4.4初始化种群........................................................ - 13 -4.5适应度函数........................................................ - 13 -4.6选择操作.......................................................... - 13 -4.7交叉操作.......................................................... - 15 -4.8变异操作.......................................................... - 17 -4.9实验结果.......................................................... - 18 - 结论................................................................... - 20 - 展望..................................................................... - 20 - 参考文献.............................................................. - 21 - 致谢................................................................... - 22 - 附录程序................................................................. - 23 -摘要TSP问题(Traveling Salesman Problem)是已知有n个城市,现有一推销员必须遍访这n个城市,且每个城市只能访问一次,最后又必须返回出发城市。

TSP问题的遗传算法求解

TSP问题的遗传算法求解

TSP问题的遗传算法求解一、问题描述假设有一个旅行商人要拜访N个城市,要求他从一个城市出发,每个城市最多拜访一次,最后要回到出发的城市,保证所选择的路径长度最短。

二、算法描述(一)算法简介遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,通过模拟自然进化过程搜索最优解。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择个体,并借助于自然遗传学的遗传算子(geneticoperators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

(摘自百度百科)。

(二)遗传算子遗传算法中有选择算子、交叉算子和变异算子。

选择算子用于在父代种群中选择进入下一代的个体。

交叉算子用于对种群中的个体两两进行交叉,有Partial-MappedCrossover、OrderCrossover、Position-basedCrossover等交叉算子。

变异算子用于对种群中的个体进行突变。

(三)算法步骤描述遗传算法的基本运算过程如下:1.初始化:设置进化代数计数器t=0、设置最大进化代数T、交叉概率、变异概率、随机生成M个个体作为初始种群P2.个体评价:计算种群P中各个个体的适应度3.选择运算:将选择算子作用于群体。

以个体适应度为基础,选择最优个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代4.交叉运算:在交叉概率的控制下,对群体中的个体两两进行交叉5.变异运算:在变异概率的控制下,对群体中的个体两两进行变异,即对某一个体的基因进行随机调整6.经过选择、交叉、变异运算之后得到下一代群体P1。

遗传算法解决TSP问题,C++版(带注释)

遗传算法解决TSP问题,C++版(带注释)

//遗传算法解决简单TSP问题,(VC6.0)//一、定义头文件(defines.h)#ifndef DEFINES_H#define DEFINES_H///////////////////////////////// DEFINES /////////////////////////////////////// //窗口定义大小#define WINDOW_WIDTH 500#define WINDOW_HEIGHT 500//城市数量及城市在窗口显示的大小#define NUM_CITIES 20#define CITY_SIZE 5//变异概率,交叉概率及种群数量#define MUTATION_RATE 0.2#define CROSSOVER_RATE 0.75#define POP_SIZE 40//倍数#define NUM_BEST_TO_ADD 2//最小容许误差#define EPSILON 0.000001#endif//二、一些用得到的小函数(utils.h)// utils.h: interface for the Cutils class.//头文件名//////////////////////////////////////////////////////////////////////#ifndef UTILS_H#define UTILS_H#include <stdlib.h>#include <math.h>#include <sstream>#include <string>#include <iostream>using namespace std;//--------定义一些随机函数--------//----定义随机整数,随机[x,y]之间的整数---inline int RandInt(int x, int y){return rand()%(y-x+1)+x;}//--------------随机产生0到1之间的小数----------inline float RandFloat(){return rand()/(RAND_MAX + 1.0);}//-----------------随机产生0和1-------------inline bool RandBool(){if (RandInt(0,1))return true;elsereturn false;}//-----定义一些方便的小功能包括:整形转字符型,浮点型转字符型--- string itos(int arg);//converts an float to a std::stringstring ftos (float arg);//限制大小void Clamp(double &arg, double min, double max);void Clamp(int &arg, int min, int max);#endif//三、地图头文件(CmapTSP)#ifndef CMAPTSP_H#define CMAPTSP_H//如果没有定义那么就定义////////////////////////////////////////////////////类名:CmapTSP.h////描述:封装地图数据、城市坐标以及适应度计算。

(完整)用遗传算法求解TSP问题

(完整)用遗传算法求解TSP问题

用遗传算法求解TSP问题遗传算法(Genetic Algorithm——GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J。

Holland教授于1975年首先提出的。

J.Holland 教授和它的研究小组围绕遗传算法进行研究的宗旨有两个:抽取和解释自然系统的自适应过程以及设计具有自然系统机理的人工系统。

遗传算法的大致过程是这样的:将每个可能的解看作是群体中的一个个体或染色体,并将每个个体编码成字符串的形式,根据预定的目标函数对每个个体进行评价,即给出一个适应度值。

开始时,总是随机的产生一些个体,根据这些个体的适应度,利用遗传算子-—选择(Selection)、交叉(Crossover)、变异(Mutation)对它们重新组合,得到一群新的个体.这一群新的个体由于继承了上一代的一些优良特性,明显优于上一代,以逐步向着更优解的方向进化.遗传算法主要的特点在于:简单、通用、鲁棒性强。

经过二十多年的发展,遗传算法已经在旅行商问题、生产调度、函数优化、机器学习等领域得到成功的应用。

遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象.传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子.2、遗传算法直接以适应度作为搜索信息,无需导数等其它辅助信息。

3、遗传算法使用多个点的搜索信息,具有隐含并行性。

4、遗传算法使用概率搜索技术,而非确定性规则。

遗传算法是基于生物学的,理解或编程都不太难。

下面是遗传算法的一般算法步骤:1、创建一个随机的初始状态初始种群是从解中随机选择出来的,将这些解比喻为染色体或基因,该种群被称为第一代,这和符号人工智能系统的情况不一样;在那里,问题的初始状态已经给定了。

用遗传算法求解中国34个省会TSP的问题

用遗传算法求解中国34个省会TSP的问题

用遗传算法求解中国34个省会TSP问题一、TSP问题的描述旅行商问题(TSP)可以具体描述为:已知n个城市之间的相互距离,现有一个推销员从某一个城市出发,必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回到出发城市,如何安排他对这些城市的访问次序,可使其旅行路线的总长度最短。

现给出中国34个省会数据,要求基于此数据使用遗传算法解决该TSP问题。

中国34省会位置city =1.西藏2.云南3.四川4.青海5.宁夏6.甘肃7.内蒙古8.黑龙江9.吉林10.辽宁 11.北京 12天津 13.河北 14.山东 15.河南 16.山西 17.陕西18.安徽 19.江苏20.上海 21.浙江 22.江西 23.湖北 24.湖南 25.贵州 26.广西27.广东28.福建 29.海南 30.澳门 31.香港 32.台湾 33.重庆 34.新疆像素坐标如下:Columns 1 through 11100 187 201 187 221 202 258 352 346 336 290 211 265 214 158 142 165 121 66 85 106 127 Columns 12 through 22297 278 296 274 265 239 302 316 334 325 293 135 147 158 177 148 182 203 199 206 215 233 Columns 23 through 33280 271 221 233 275 322 250 277 286 342 220 216 238 253 287 285 254 315 293 290 263 226 Column 34 104 77二、遗传算法的介绍2.1 遗传算法遗传算法的基本原理是通过作用于染色体上的基因寻找好的染色体来求解问题,它需要对算法所产生的每个染色体进行评价,并基于适应度值来选择染色体,使适应性好的染色体有更多的繁殖机会,在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗产操作后的个体集合形成下一代新的种群,对这个新的种群进行下一轮的进化。

一种改进的求解TSP问题的遗传算法

第 l卷 第 2 0 期 2 1 2 O1年 月
Vo11 . 0NO. 2 Fe . Ol b2 l

种 改 进 的 求 解 T 问题 的遗 传 算 法 S P
陈 智 军
( 北 大 学 数 学 与 计 算 机 科 学 学 院 ,湖 北 武 汉 4 0 6 ) 湖 3 0 2
摘 要 : S T P问题 是 典 型 的 N P难 组 合优 化 问题 , 而遗 传 算 法 是 求 解 此 类 问题 的一 种 方 法 。 但 遗 传 算 法存 在 收 敛 速
0 引 言
1 改进 遗 传 算 法设 计
TS ( a eigS ls nP o lm, 行 商 问题 ) 简 P Tr v l ae ma rbe 旅 n 的
单 描 述为 : 位 推 销 商 要 在 ~ 个 城 市 推 销 商 品 。他 从 起 一
点 城 市 出发 , 过每 个 城 市 一次 且 只经 过一 次 后 再 回 到 起 经 点 城 市 。需 要 求得 一 条 推 销 商 的最 短 旅 行 路 径 。该 问 题 用 数学 语 言描 述 为 : 有 N 个 城 市 C一 ( , , … … , , 设 1 2 3, N) 其 中任 意 两个 城市 的 距 离 记 为 d( , ) 求 一 条 经 过 C 中 iJ ,
关键词 : 旅行 商 问题 ; 传 算 法 ; 进 遗 改
中 图分 类 号 : 3 2 TP 1
文献 标 识 码 : A
文 章编 号 : 6 2 7 0 ( 0 1 0 — 0 20 1 7 —8 0 2 1 ) 20 5 — 3 限性 , 出 了一种 改进 的遗 传算 法 , 验 证 了其 有 效 性 。 提 并
1 1 编 码 方 案 .

遗传算法解决tsp问题算法流程

遗传算法解决tsp问题算法流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!遗传算法解决 TSP 问题的算法流程。

1. 初始化群体。

改进的遗传算法求解TSP问题_3旅行商问题_24_34

3 旅行商问题3.1 旅行商问题概述3.1.1 旅行商问题的定义和数学模型① 定义旅行商问题(Traveling Salesman Problem ,简记TSP)是组合数学中一个古老而又困难的问题,它易于描述但至今尚未彻底解决,现己归入所谓的NP 完全问题类,经典提法为:有一货物推销员要去若干个城市推销货物,从城市1出发,经其余各城市一次,然后回到城市1,问选择怎样的行走路线,才能使总行程最短(各城市间距离为己知)。

该问题在图论的意义下就是所谓的最小Hamilton 圈问题,由于在许多领域中都有着广泛的应用,因而寻找其实际而有效的算法就显得颇为重要了。

遗憾的是,计算复杂性理论给予我们的结论却是,这种可能性尚属未知。

若设城市数目为n 时,那么组合路径数则为(n-1)!。

很显然,当城市数目不多时要找到最短距离的路线并不难,但随着城市数目的不断增大,组合路线数将呈指数级数规律急剧增长,以至达到无法计算的地步,这就是所谓的“组合爆炸问题”。

假设现在城市的数目增为20个,组合路径数则为(20-1)! ,如此庞大的组合数目,若计算机以每秒检索1000万条路线的速度计算,也需要花上386年的时间。

尽管现在计算机的计算速度大大提高,而且已有一些指数级的算法可精确地求解旅行商问题,但随着它们在大规模问题上的组合爆炸,人们退而求其次,转向寻找近似算法或启发式算法,经过几十年的努力,取得了一定的进展。

② 数学模型设(,)G V E =为赋权图,{1,2,}V n ="为顶点集,E 为边集,各顶点间距离为ij c ,已知(0,,,)ij ij c c i j V >=+∞∈,并设则旅行商问题的数学模型可写成如下的线性规划形式:ij ij i jMinZ c x ≠=∑1,(,)0,ij i j x ⎧=⎨⎩边在最优路线上其它,1,1,.1,{0,1},ij j i ij i jij i j S ij x i V x j V s t x K K V x i j V ≠≠∈⎧=∈⎪⎪=∈⎪⎨⎪≤−⊂⎪⎪∈∈⎩∑∑∑这里,K 为V 的所有非空子集,K 为集合K 中所含图G 的顶点个数。

遗传算法解决TSP问题

遗传算法解决TSP问题姓名:学号:专业:问题描叙TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。

通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。

算法设计遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交叉和变异。

数值方法求解这一问题的主要手段是迭代运算。

一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。

遗传算法很好地克服了这个缺点,是一种全局优化算法。

生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。

这是自然环境选择的结果。

人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。

一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。

算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。

适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。

一定数量的个体组成一个群体。

对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下:第一步准备工作(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。

通常用二进制编码。

(2)选择合适的参数,包括群体大小(个体数M )、交叉概率PC和变异概率Pm。

(3)确定适应值函数f (x)。

f(x)应为正值。

第二步形成一个初始群体(含M个个体)。

在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。

第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TSP问题的遗传算法实验报告
一 实验题目
TSP问题的遗传算法实现
二 实验目的
1 熟悉和掌握遗传算法的基本概念和基本思想;
2 加深对遗传算法的理解,理解和掌握遗传算法的各个操作算子;
3 理解和掌握利用遗传算法进行问题求解的基本技能。
三 实验要求
1 以10/30个结点的TSP问题为例,用遗传算法加以求解;
2 掌握遗传算法的基本原理、各个遗传操作和算法步骤;
3 能求出问题最优解,若得不出最优解,请分析原因;
4 要求界面显示每次迭代求出的局部最优解和最终求出的全局最优解。
四 数据结构
请说明染色体个体和群体的定义方法。
typedef struct{
int colony[POPSIZE][CITY_NUM+1];//城市种群,默认出发城市编号为0,则城市编
号的最后一个城市还应该为0 每CITY_NUM个城市的排列组合为一个染色体
double fitness[POPSIZE];// 路径适应值
double Distance[POPSIZE];//路径实际长度
int BestRooting[CITY_NUM+1];//最优城市路径序列
double BestFitness;//最优路径适应值
double BestValue;//最优路径长度
}TSP,*PTSP;
五 实验算法
1 说明算法中对染色体的编码方法,适应度函数定义方法;
染色体的编码方法:0~9一个排列组合为一条染色体。
适应度函数的定义方法:取路径长度的倒数。
void CalFitness(PTSP city,int m)
{
int i,j,t=0;
int start,end;
for(i=0;i {//求适应值
city->Distance[i]=0;
for(j=1;j<=CITY_NUM;j++)
{
start=city->colony[i][j-1];end=city->colony[i][j];
city->Distance[i]=city->Distance[i]+CityDistance[start][end];
}
city->fitness[i]=N/(city->Distance[i]);
}

2 采用的选择、交叉、变异操作算子的具体操作;
void Select(PTSP city)
{//选择算子
int i,j;
double sum=0,r,t;
double p[POPSIZE],q[POPSIZE+1];
int copey[POPSIZE][CITY_NUM+1];
q[0] = 0;
for (i=0;isum+=city->fitness[i];
for (i=0;i{
p[i] = city->fitness[i]/sum;
q[i+1] = q[i]+p[i];
}
for (i=0;i{
t = rand()%(10000);
r = t/10000;
for (j=0;jif (r<=q[j+1])
{
*copey[i] = *city->colony[j];
break;
}
}
for (i=0;i*city->colony[i] = *copey[i];
}

void AOX(PTSP city,int n,int m)//改进启发式算法
{
int A[CITY_NUM-1],B[CITY_NUM-1];
int i,j;
int k=1+CROSS_NUM,t=1+CROSS_NUM;
for (i=0;i{
A[i] = city->colony[n][i+1];
B[i] = city->colony[m][i+1];
}
for (i=3;i{
city->colony[n][i-2] = B[i];
city->colony[m][i-2] = A[i];
}
for (i=0;i{
for (j=0;jif (A[i] == B[j+3])
break;
if (j == CROSS_NUM)
city->colony[n][k++] = A[i];
for (j=0;jif (B[i] == A[j+3])
break;
if (j == CROSS_NUM)
city->colony[m][t++] = B[i];
}
}

int check1(int r[],int n)//判重
{
int i;
for (i=0;iif (r[i] == r[n])
{
return true;
}
return false;
}
void Cross(PTSP city,double pc)
{//交叉概率是p
int i;
int r[20];
for (i=0; i{
r[i] = rand()%(POPSIZE);
while (check1(r,i))
r[i] = rand()%(POPSIZE);
}
for (i=0;iAOX(city,r[i],r[i+1]);
}

void XCH(PTSP city,int n)//对换变异
{
int r,t;
int c;
r = rand()%(CITY_NUM-1)+1;
t = rand()%(CITY_NUM-1)+1;
while (r==t)
t = rand()%(CITY_NUM-1)+1;
c = city->colony[n][r];
city->colony[n][r] = city->colony[n][t];
city->colony[n][t] = c;
}

void Mutation(PTSP city,double pm)
{//变异概率是pm
int i;
int r[20];
for (i=0; i{
r[i] = rand()%(POPSIZE);
while (check1(r,i))
r[i] = rand()%(POPSIZE);
XCH(city,r[i]);
}
}

3 实验中采用的算法参数的最佳选择值是多少。
由于我是随机抽取参加交叉的染色体,没有选择性的抽取那些适应度大的染色体,故交
叉率pc很难确定最佳最佳值。我的取值是:
POPSIZE = 20 PCROSS = 0.6 PMUTATION = 0.05
六 实验结果
1 要求有实验运行结果截图,以及必要的说明;

需要输入进化次数。

相关文档
最新文档