电磁兼容设计与屏蔽技术

合集下载

浅谈电子设备的电磁兼容设计

浅谈电子设备的电磁兼容设计




_

。 ¨ 一 伸





图1
a 错 误 接 法 b . 正 确 接 法 ; 经检查 该设 备的E M I 电源 滤波器 与壳体 之 ~ 二 ~ 图5滤波器安装时应注意输入/ 输 出的空间隔离 间的保护漆未 处理掉 ,导致 接地阻抗偏 大,造 一 成该项试验 不达标 。将该 部分漆处理掉 ,试验 三 、辐射性耦合处理方法 顺 利通 过 ,如图2 所 示 ,从 图上 可 以看 出,整 对于 辐射性耦合 ,最有效 的处理方法就是 个 传导干扰均有明显的下降 。 屏蔽 ,还 可 以采用 。屏 蔽是通过 由金 属制成的 壳 、盒、板等屏蔽体 ,将 电磁波局 限于某一区 域 内的一种方法 。由于辐射源分为近 场的 电场 % , 一 。 源 、磁场源和远场 的平面波 ,因此 屏蔽体的屏 蔽性 能依据辐射源 的不 同,在材料 选择、结构 : : . . … : | . . . : … . . : … . : = … 一一 . … 一: 2 . : : . 一? : . . 一 : . 形状 和对 孔缝 隙泄漏 控制等方面都 有所不 同。 图2 因此 在设计 中要达 到所需的屏 蔽性 能,则需要 总 结:E M I 电源 滤波器 为低通 滤波器 ,它 首先确定辐射源 ,明确辐射源 的频 率范 围,再 无衰减 的把 直流 、5 0 H z 、4 0 0 H z 等 直流 或低频 根 据各个频段 的典型泄漏结构 ,进 而选择恰 当 电源功 率传 送到设 备上去 ,而对经 电源传入 的 的屏蔽材 料,设计屏蔽壳体等。 : 。 ;一 E M I 噪声 进行衰 减 ,保护设 备不 受干扰 ; 同时 r善… … …… … … … …… … … … …… … … …… … … 一 i ~ 一 一 ≮ 孙 。 又 能抑制 设备本 身产 生的E M I 传 导干扰 ,防止 : i 暑 矗 它进 入 电源 ,污 染电磁环境 ,危 害其他设备 。

电磁兼容技术实验报告

电磁兼容技术实验报告

电磁兼容技术实验报告实验目的:本实验旨在通过实际操作,使学生了解电磁兼容性(EMC)的基本概念,掌握电磁干扰(EMI)的测试方法,以及学习如何评估和改进设备或系统的电磁兼容性。

实验原理:电磁兼容性是指设备或系统在电磁环境中能够正常工作,同时不对其他设备产生不可接受的电磁干扰。

电磁干扰主要来源于电源线、信号线和空间辐射。

通过测量设备在特定条件下的辐射和传导干扰水平,可以评估其电磁兼容性。

实验设备与材料:1. 电磁兼容性测试设备一套,包括接收机、天线、测试软件等。

2. 待测设备,例如个人电脑、手机等。

3. 屏蔽室或开放场,用于进行辐射干扰测试。

4. 电源线、信号线等连接线。

实验步骤:1. 准备实验环境,确保测试设备和待测设备均处于正常工作状态。

2. 将待测设备放置在屏蔽室内或开放场中,连接好所有必要的电源线和信号线。

3. 打开测试设备,设置测试参数,包括频率范围、测试模式等。

4. 进行辐射干扰测试,记录待测设备在不同频率下的干扰水平。

5. 进行传导干扰测试,使用接收机测量待测设备通过电源线和信号线产生的干扰。

6. 分析测试结果,评估待测设备的电磁兼容性。

实验结果:在本次实验中,我们对个人电脑和手机进行了电磁兼容性测试。

测试结果显示,个人电脑在高频段的辐射干扰水平较高,而手机在低频段的传导干扰水平较高。

这可能与设备内部的电路设计和屏蔽措施有关。

实验结论:通过本次实验,我们了解到电磁兼容性的重要性,以及如何通过测试来评估设备的电磁兼容性。

实验结果表明,不同设备在不同频率下的干扰水平存在差异,这提示我们在设计和使用电子设备时,需要考虑其电磁兼容性,以减少对其他设备的干扰。

建议:1. 加强对电子设备内部电路的屏蔽,减少辐射干扰。

2. 优化电源线和信号线的布局,降低传导干扰。

3. 在设计电子设备时,应充分考虑电磁兼容性标准,确保设备能够在复杂的电磁环境中稳定工作。

实验心得:通过本次电磁兼容技术实验,我们不仅学习到了理论知识,还通过实际操作加深了对电磁兼容性的认识。

电磁兼容原理

电磁兼容原理

电磁兼容原理电磁兼容是指不同电子设备之间能够协调共存,不互相干扰,并能在同一电磁环境中正常工作的能力。

在现代电子技术高度发达的时代,电磁兼容成为了一个重要的问题。

本文将介绍电磁兼容的原理以及如何通过适当的设计来提高设备的电磁兼容性。

一、电磁兼容的原理1. 电磁耦合电子设备之间的互相干扰主要是通过电磁耦合传递的。

电磁耦合可以分为导线耦合和空间耦合两种形式。

导线耦合是指电磁干扰通过导线传递,例如电源线、信号线、地线等。

当一个设备产生电磁辐射时,通过导线就会传递到其他设备,造成干扰。

空间耦合是指电磁波通过空气传播,直接干扰其他设备。

这种干扰主要通过电磁波的辐射或者敏感部件的接收来实现。

2. 电磁辐射任何电子设备在工作时都会产生电磁辐射。

这些电磁波会以一定的频率振荡并传播到空气中。

不同频率的电磁波对其他设备的干扰程度也不同。

电磁辐射可以通过适当的设计进行控制。

例如,在电路板布局上可以采用良好的地线规划、信号和电源线的分离等方法来减少辐射。

3. 电磁感应电子设备在接收到其他设备的电磁波时也会产生干扰。

这是因为电磁波产生的电场和磁场可以感应到设备中的导线、元器件等。

对于感应干扰,可以采取屏蔽、过滤等措施来减少干扰。

例如,在信号线上可以添加屏蔽层,以减少外部电磁波对信号线的感应。

二、提高电磁兼容性的设计原则1. 地线设计良好的地线设计是提高电磁兼容性的重要手段。

地线应该具有低的阻抗,以便将电磁干扰引流至地。

同时,地线应该规划合理,避免形成地线回路,增加传导噪声的可能性。

2. 信号和电源线分离在电路板布局设计中,将信号和电源线分离是减少电磁耦合的有效方法。

信号线和电源线在布线时应尽量保持距离,并采用交错敷铜等技术来减少彼此之间的相互影响。

3. 屏蔽和过滤对于敏感的信号线或电路,可以采用屏蔽或过滤器来减少外部电磁波的干扰。

屏蔽层可以采用金属材料制作,对电磁波进行屏蔽。

过滤器则可以针对特定频率的干扰进行滤波,以保证信号的准确传输。

浅谈电子设备结构屏蔽设计技术

浅谈电子设备结构屏蔽设计技术

类。工程中 , 实际的辐射干扰源大致分为两类 :电偶极子 ( 非闭合载流导线辐射源 ) 和磁偶极子 ( 闭合载流导线辐 射 源 )。由于 电偶极 子 和磁 偶极 子是 上述 两种 源的 最基 本
形 式 ,实 际的辐 射 源在 空间 某点 产生 的场 ,均 可 由若干 个 基本源 的场 叠加 而成 。电磁屏 蔽的 分类 见表 1 。 根据 电屏 蔽 的原 理 ,电屏 蔽 的实质 是在 保证 良好接 地 的条件 下 ,将干 扰源 发生 的 电力 线终 止于 由 良好导体 制 成 的屏 蔽体 , 从而 切 断了干 扰源 与受 感器 之间 的电 力线 交链 。 因此对 于 电屏蔽 来说 ,屏蔽 体必 须选 用导 电性 能好 的材 料 ( 铜 、铝 等 ),同时必 须接 地 。而磁 屏蔽 无; 像 电屏蔽 那
场源 类型 近场 ( r <^ / 21 r) 远场 ( r >^ / 2 1 1 " )
电偶 极子 磁偶 极子
电屏 蔽 ( 场特 洼为非平 面波 ,传 播特 性以 1 / r 3衰 减 ) 磁屏 蔽 ( 场特 性 为非平 面波 ,传 播特 性以 1 / r 3衰 减 )
电磁屏 蔽 ( 场特 性为 平面 波 ,传播 特性 以 1 / r 衰 减 电磁屏 蔽 ( 场特 性为 平面 波 ,传播特 性 以 衰 减
买 用 狡 木 推 厂
钟 文彬
的选用 、结构屏蔽设计技术要点和原则 ,同时对屏蔽效 能的
D OI :1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 — 8 9 7 2 . 2 0 1 5 . 0 3 . 0 8 1
浅谈 电子设备结构屏 蔽设计技术
细 长 的缝 隙 ,改 善这 些缝 隙 的电接 触 是至关 重要 的 问题 。

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法知识电磁干扰是指在电磁波传播的过程中,外部电磁波对其他电子设备的干扰现象。

随着电子设备的日益普及和电磁波的频谱增加,电磁干扰问题变得越来越严峻。

为了保证电子设备的正常工作和通信质量,人们不断探索和研究电磁干扰的屏蔽方法。

电磁干扰可以分为传导干扰和辐射干扰两种。

传导干扰是指电磁波通过导线或介质传输到其他设备中,造成设备之间的相互干扰;辐射干扰是指电磁波通过空气传播到其他设备中,也会造成相互干扰。

针对这两种干扰现象,人们采取了多种屏蔽方法。

在传导干扰屏蔽方面,主要包括以下几种方法:1.选择合适的材料:用良好的导电材料制作外壳或覆盖物,能够有效屏蔽传导干扰。

常用的材料有金属、导电橡胶和导电涂层等。

2.设计合理的接地系统:通过合适的接地设计和接地导线的布置,可以有效地降低传导干扰。

接地系统主要包括设备接地、建筑物接地和电气系统接地等。

3.使用滤波器:在输入输出端口上安装合适的滤波器可以有效地抵御传导干扰。

滤波器是根据干扰信号频率特性进行设计,可以提供有效的衰减。

在辐射干扰屏蔽方面,主要包括以下几种方法:1.合理布局:对设备的线路、电缆和天线等进行合理布局,避免产生不必要的电磁辐射。

特别是要避免平行布置的线路和电缆之间产生电磁耦合。

2.屏蔽罩:在干扰源和受干扰设备之间设置屏蔽罩,可以有效地降低辐射干扰。

屏蔽罩可以用金属网、金属板或金属化塑料等材料制作。

3.磁屏蔽:对于强磁场干扰,可以采用磁屏蔽材料进行屏蔽。

常用的磁屏蔽材料有镍铁合金和铁氟龙等。

除了以上屏蔽方法,还有一些其他的技术手段用于电磁干扰的屏蔽:1.圆形线缆:圆形线缆可以减少电磁辐射,降低辐射干扰。

它与矩形线缆相比,能够减小电磁辐射的距离。

2.电磁封闭室:电磁封闭室是一种特殊的屏蔽装置,能够完全屏蔽外界的电磁波,用于测试电磁兼容性和电磁辐射等。

3.使用差模传输线:差模传输线的优点是可以减少传输线上的电磁辐射和传导干扰。

差模传输线可以将正负信号在同一传输线上进行传输,减小电磁辐射。

电磁兼容培训课件(2024)

电磁兼容培训课件(2024)

屏蔽措施
采用金属屏蔽体、吸波材料等,实现对电磁波的 有效屏蔽。
滤波技术
运用滤波器等手段,滤除设备间不必要的电磁干 扰信号。
2024/1/28
17
系统整体性能优化策略
2024/1/28
兼容性设计
01
在系统设计阶段考虑电磁兼容性要求,从源头减少潜在干扰。
协同优化
02
综合考虑系统各组成部分的电磁特性,实现系统整体性能的最
2024/1/28
26
THANKS
感谢观看
2024/1/28
27
航空航天器在复杂电磁环境中运行,对电 磁兼容性能要求极高,以确保通信和导航 系统的可靠性。
轨道交通
智能家居
轨道交通系统涉及大量电气设备和信号传 输,电磁兼容性能对于保障列车运行安全 和乘客舒适度至关重要。
2024/1/28
智能家居设备种类繁多,电磁兼容问题直接 影响家居环境的舒适度和设备间的互联互通 。
2024/1/28
25
未来发展趋势预测和挑战应对
发展趋势
随着科技的不断进步,未来电磁兼容技术将更加注重智能化、自适应等方面的发展,同时还将面临更 高的性能要求和更复杂的电磁环境挑战。
挑战应对
为应对未来发展趋势带来的挑战,需要加强电磁兼容技术的基础研究,推动技术创新和成果转化;同 时,还需要加强行业合作和标准制定,共同推动电磁兼容技术的进步和发展。
指任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害 作用的电磁现象。
Hale Waihona Puke 电磁干扰与电磁兼容性的关系电磁干扰是导致电磁兼容问题的主要原因,而电磁兼容性则是解决电磁干扰问题 的关键。提高设备的电磁兼容性可以减少电磁干扰对设备性能的影响,确保设备 在复杂电磁环境中的正常工作。

什么是电磁干扰如何避免它对电路的影响

什么是电磁干扰如何避免它对电路的影响

什么是电磁干扰如何避免它对电路的影响电磁干扰(Electromagnetic Interference,简称EMI)是指电磁波在工作环境中相互干扰,造成电路或设备正常运行的干扰现象。

它会导致电路信号的失真、传输错误以及设备的故障或性能下降。

为了避免电磁干扰对电路的影响,我们可以采取以下几种方法。

1. 屏蔽技术屏蔽技术是一种常用的抑制电磁干扰的方法。

通过在电路周围添加金属屏蔽罩或屏蔽壳,可以有效地阻隔外部电磁波的干扰。

同时,在电路布局设计中,应尽量减少敏感元件与干扰源之间的距离,避免信号受到干扰。

2. 地线设计良好的地线设计可以有效减少电磁干扰。

在电路设计中,应首先确保地线的连续性和稳定性,以提供最短的信号回路和最低的接地电阻。

同时,应避免地线回路与其他信号回路的交叉,减少互相干扰的可能性。

3. 滤波器滤波器是一种通过筛选电磁波频率,抑制不同频率干扰的装置。

可以根据不同的干扰频带,选择合适的滤波器进行安装。

滤波器可以将干扰信号滤除,使电路仅接收需要的信号。

4. 接地和屏蔽电缆使用符合标准的接地电缆和屏蔽电缆是减少电磁干扰的有效手段。

接地电缆能够将干扰信号引至地面,屏蔽电缆则能够在传输信号的同时阻挡外部干扰信号的进入。

5. 合理布局在电路设计中,合理布局是避免电磁干扰的关键。

应将敏感元件与干扰源、高功率元件相互隔离,避免它们之间互相干扰。

同时,尽量减少布线长度,缩短信号传输路径,可有效降低干扰的可能性。

6. 使用屏蔽材料在电路设计中使用屏蔽材料,如铁氧体、铜箔等,能够有效地吸收、反射或屏蔽外部电磁波,减少干扰的传输。

7. 电磁兼容测试在电路设计完成后,应进行电磁兼容测试。

通过测试和评估电路系统在电磁环境中的性能,可以发现潜在的干扰问题,并采取相应的措施加以解决。

同时,对电路中的关键元件和主要干扰源进行监测和分析,有助于提前预防和识别干扰问题。

综上所述,电磁干扰对电路的影响是不容忽视的。

通过合理设计布局、使用屏蔽技术和滤波器等措施,可以有效降低电磁干扰对电路的影响,保证电路的正常运行和稳定性。

电磁屏蔽技术原理概述

电磁屏蔽技术原理概述

电磁屏蔽技术原理概述摘要:讨论了电磁屏蔽技术,包括电磁屏蔽的技术原理、屏蔽资料的功用和运用场所、屏蔽技术的本卷须知、屏蔽效能的检测以及特殊部位的屏蔽措施。

关键词:电磁屏蔽;屏蔽资料;屏蔽效能引言近几年来,随着电磁兼容任务的展开,电磁屏蔽技术运用得越来越普遍。

为了对电磁屏蔽技术有更深化的了解,应当对屏蔽资料的功用和运用场所、屏蔽技术的本卷须知、屏蔽效能的检测以及特殊部位的屏蔽措施等停止更深化的讨论。

1 电磁屏蔽的技术原理电磁屏蔽是电磁兼容技术的主要措施之一。

即用金属屏蔽资料将电磁搅扰源封锁起来,使其外部电磁场强度低于允许值的一种措施;或用金属屏蔽资料将电磁敏感电路封锁起来,使其外部电磁场强度低于允许值的一种措施。

1.1 静电屏蔽用完整的金属屏蔽体将带正电导体包围起来,在屏蔽体的内侧将感应出与带电导体等量的负电荷,外侧出现与带电导体等量的正电荷,假设将金属屏蔽体接地,那么外侧的正电荷将流入大地,外侧将不会有电场存在,即带正电导体的电场被屏蔽在金属屏蔽体内。

1.2 交变电场屏蔽为降低交变电场对敏感电路的耦合搅扰电压,可以在搅扰源和敏感电路之间设置导电性好的金属屏蔽体,并将金属屏蔽体接地。

交变电场对敏感电路的耦合搅扰电压大小取决于交变电场电压、耦合电容和金属屏蔽体接地电阻之积。

只需设法使金属屏蔽体良好接地,就能使交变电场对敏感电路的耦合搅扰电压变得很小。

电场屏蔽以反射为主,因此屏蔽体的厚度不用过大,而以结构强度为主要思索要素。

1.3 交变磁场屏蔽交变磁场屏蔽有高频和低频之分。

低频磁场屏蔽是应用高磁导率的资料构成低磁阻通路,使大局部磁场被集中在屏蔽体内。

屏蔽体的磁导率越高,厚度越大,磁阻越小,磁场屏蔽的效果越好。

当然要与设备的重量相协调。

高频磁场的屏蔽是应用高电导率的资料发生的涡流的反向磁场来抵消搅扰磁场而完成的。

1.4 交变电磁场屏蔽普通采用电导率高的资料作屏蔽体,并将屏蔽体接地。

它是应用屏蔽体在高频磁场的作用下发生反方向的涡流磁场与原磁场抵消而削弱高频磁场的搅扰,又因屏蔽体接地而完成电场屏蔽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁兼容设计与屏蔽技术
1 、引言
对电子、电气工程师而言,在研究开发新产品的过程中,仅按照理想情况进行目标功能和一般性能设计是不够的。

这是因为各种电子、电气设备(或含有电子、电气部分的设备)都将实际工作在电磁环境之中,它必然受到外界的电磁骚扰,同时它本身又作为骚扰源去骚扰别的设备。

电磁兼容设计就是针对电磁干扰来进行的,它与可靠性一样,要保证设备或系统在存在电磁干扰的情况下可靠地工作,就必须对它进行电磁兼容设计。

电磁兼容设计也是电磁兼容标准规范和认证制度对产品的要求。

电磁兼容性检测认证合格报告证书,是电子、电气产品进入市场必备的一份通行证。

一权威机构的统计分析报告指出,未进行电磁兼容设计的电子、电气产品,其电磁兼容性能指标满足有关标准要求的可能性仅为25% 左右。

电磁兼容设计的理论基础是电磁场理论、电路理论和信号分析等。

应用中的电磁兼容设计包括接地技术、滤波和吸收技术、屏蔽和隔离技术以及结构设计等。

电磁兼容设计的基本方法有问题解决法、规范法和系统法。

电磁兼容设计的内容包括电磁环境分析、频率选用、电磁兼容性指标和电磁兼容设计技术应用等。

2 、电磁兼容的设计要点
形成电磁干扰必然具备三个基本要素,即①电磁骚扰源,②耦合途径或传播通道,③敏感设备。

电磁兼容设计的出发点就是这三个基本要素。

1 )抑制电磁骚扰源的设计要点
尽量去掉对设备(或系统)工作用处不大的潜在电磁骚扰源,减少骚扰源的个数;恰当选择元器件和线路的工作模式,尽量使设备工作在特性曲线的线性区域,以使谐波成分降低;对有用的电磁发射或信号输出也要进行功率限制和频带控制;合理选择电磁波发射天线的类型和高度,不盲目追求覆盖面积和信号强度;合理选择电磁脉冲形状,不盲目追求上升时间和幅度;控制产生电弧放电和电火花,宜选用工作电平低的或有触点保护的开关或继电器,宜选用加工精密的直流电机;应用良好的接地技术来抑制接地干扰、地环路干扰并抑制高频噪声。

2 )抑制干扰耦合的设计要点
把携带电磁噪声的元件和导线与连接敏感元件(或电磁骚扰特性测量端口、界面)隔离;缩短干扰耦合路径的长度,应使导线尽量短,必要时使用屏蔽线或加屏蔽套;注意布线和结构件的天线效应,对通过电场耦合的辐射,尽量减少电路的阻抗,而对通过磁场耦合的辐射,则尽量增加电路的阻抗;应用
屏蔽等技术隔离或减少辐射途径的电磁骚扰;应用滤波器、脉冲吸收器、隔离变压器和光电耦合器等滤除或减少传导途径的电磁骚扰。

3 )敏感设备的设计要点
对于骚扰源的各种电磁防护措施,一般也同样适用于敏感设备,可以采用滤波、脉冲吸收、内部屏蔽、隔离技术、内部去耦电路及线路和结构的合理布局等来抑制电磁干扰。

此外,在设计中尽量少用低电平器件,不盲目选择高速器件,去掉那些不十分需要的敏感部件,适当控制输入灵敏度,等等。

3 、电磁兼容设计的应用技术之一──屏蔽技术
通过分析波阻抗和能量密度,可知电偶极子在近场(r377Ω),近场的能量主要为电场分量,可忽略磁场分量;磁偶极子在近场的波阻抗为低阻抗
(λ/2π)的波阻抗相等(均为377 Ω),此时电场和磁场分量相等。

这就是说两类源在近场的差别较大,因此可根据其波阻抗和能量性质,将上述两种源称为高阻抗电场源和低阻抗磁场源。

注意,上述近场和远场的条件即r 的大小,是与频率f 有关的。

所以又可以说,在较低的频率范围内,干扰一般发生在近场。

高阻抗电场源的近场主要为电场分量,低阻抗磁场源的近场主要为磁场分量。

当频率增高时,干扰趋于远场,此时电场和磁场分量均不可忽略。

对应于三种情况的屏蔽分别称为:电(场)屏蔽、磁(场)屏蔽和电磁(场)屏蔽。

静电屏蔽和恒定磁场的屏蔽分别是电屏蔽和磁屏蔽的特例。

屏蔽是利用导电或导磁材料将电磁能量限制在一定空间范围内的抑制辐射干扰的一种有效措施。

目前,屏蔽材料种类很多,形态各异。

在各种屏蔽材料中,涂料以其方便、轻量、不占空间以及与基材一体化等众多优势成为其中的佼佼者,被广泛应用于各类电子产品、装置、系统的电磁辐射防护。

象日本海尔兹化学株式会社生产的波鲁斯PLS-200 、PLS-A50 等系列屏蔽涂料,在世界各国都得到了广泛应用。

屏蔽的有效性采用屏蔽效能(简称屏效)来进行度量,定义为屏蔽前后空间某点的场强之比,用公式表示即为:SE=20lg (Ei/Et )。

对于电路而言,屏效可用屏蔽前后电路某点上的功率、电流和电压之比来定义,也可以利用由外界耦合到某个关键器件上的干扰与器件所产生的噪声之比来定义。

屏效可用分贝(dB)或奈比(Nep )来计量,dB与Nep 的换算关系为:1dB=0.115Nep. 如前面提到的屏蔽涂料波鲁斯,根据我国权威部门的检测结果显示,其PLS-200 系列的屏蔽效能在30MHz —1.2GHz范围内高达53—77dB.
电子时代的到来,使屏蔽材料领域的竞争已进入白热化。

电磁波屏蔽涂料作为材料科学的分支,其应用的广泛性及与其电子信息产业的紧密相关性将使之成为崛起的新兴产业。

材料是技术进步的基础,新材料技术是现代技术革命的基础,是人类进步的重要里程碑,如钢铁材料的开发利用带动了第一次产业革命,硅半导体材料的发明推动了电子、计算机、信息技术的产业发展,屏蔽涂料(如波鲁斯PLS-200 、PLS-A50 )的诞生必将带动下一次产业革命。

相关文档
最新文档