2014年高考理科数学总复习试卷第21卷题目及其答案

合集下载

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)答案与解析

2014年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2014•安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i•=()代入+i•∴∴==取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cosθ,则直线l被的参数方程是=<=2,5.(5分)(2014•安徽)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a 或﹣16.(5分)(2014•安徽)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()(()+sin)+sin+sin)+sin+sin+sin=sin+sin+sin==8+=21+.=66解:,﹣﹣﹣∴﹣≥,+1>﹣,+1或﹣时,﹣10.(5分)(2014•安徽)在平面直角坐标系xOy中.已知向量、,||=||=1,•=0,点Q满足=(+),曲线C={P|=cosθ+sinθ,0≤θ≤2π},区域Ω={P|0<r≤||≤R,r<R}.若C∩Ω为两段分离的曲线,则()不妨令=),=||中.已知向量、,||=||=1•=0不妨令=),=则(+,=cos+|||二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置.11.(5分)(2014•安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.﹣轴对称可得,)的图象向右平移﹣,﹣﹣,故答案为:.的等比数列列式求出公差,则由得:整理得:q=13.(5分)(2014•安徽)设a≠0,n是大于1的自然数,(1+)n的展开式为a0+a1x+a2x2+…+a n x n.若点A i(i,)的展开式的通项为)的展开式的通项为,,14.(5分)(2014•安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E 于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为x2+=1.(﹣,﹣bc,﹣代入椭圆方程可得==++15.(5分)(2014•安徽)已知两个不相等的非零向量,,两组向量,,,,和,,,,均由2个和3个排列而成,记S=•+•+•+•+•,S min表示S所有可能取值中的最小值.则下列命题正确的是②④(写出所有正确命题的编号).①S有5个不同的值;②若⊥,则S min与||无关;③若∥,则S min与||无关;④若||>4||,则S min>0;⑤若||=2||,S min=8||2,则与的夹角为.++++•+++=+•++•+=﹣•≥+2|||≥个个S=2+3S=+2•+2S=4•++++,=•+•+,=+•++•++2•+﹣2||≥⊥,则=||∥,则=4•,与||||4||=4|||4||||+>﹣=0||=2||=8|=与的夹角为.区域.16.(12分)(2014•安徽)设△ABC的内角为A、B、C所对边的长分别是a、b、c,且b=3,c=1,A=2B.(Ⅰ)求a的值;(Ⅱ)求sin(A+)的值.A+)的值.a=6a=2cosB=sinB=sinA=sin2B=,A+)则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;,,(+(+×(=,,=,,×+3×+4×+5×=.18.(12分)(2014•安徽)设函数f(x)=1+(1+a)x﹣x﹣x,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;<<)和(在(19.(13分)(2014•安徽)如图,已知两条抛物线E1:y=2p1x(p1>0)和E2:y=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1、A2两点,l2与E1、E2分别交于B1、B2两点.(Ⅰ)证明:A1B1∥A2B2;(Ⅱ)过O作直线l(异于l1,l2)与E1、E2分别交于C1、C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.的方程,然后分别和两抛物线联立求得交点坐标,得到的联立,解得联立,解得联立,解得联立,解得因此11111且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.(Ⅰ)证明:Q为BB1的中点;(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;,则,== ahd====,ahdahd所分成上、下两部分的体积之比=1,.21.(13分)(2014•安徽)设实数c>0,整数p>1,n∈N.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.=a+a a,写成相加,上式左边当且仅当,即a a,即>a a c成立,即从数列。

2014年全国高考数学试题及答案word版

2014年全国高考数学试题及答案word版

2014年全国高考数学试题及答案word版一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是正确的。

1. 若函数f(x) = ax^2 + bx + c,其中a ≠ 0,且f(1) = 3,f(-1) = 1,则f(0)的值为:A. 2B. 3C. -1D. 12. 设等差数列{an}的前n项和为Sn,若a1 = 1,a4 = 4,则S5的值为:A. 15B. 10C. 5D. 33. 若复数z满足|z| = 1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i4. 设函数f(x) = x^3 - 3x^2 + 2,若f(x)在区间(1,2)内有极值,则该极值点为:A. 1B. 2D. 1/25. 若直线l:y = kx + b与圆C:x^2 + y^2 = 1相交于两点A、B,且|AB| = √2,则k的取值范围为:A. (-∞, -1] ∪ [1, +∞)B. [-1, 1]C. (-1, 1)D. [0, 1]6. 设函数f(x) = x^2 - 4x + 3,若f(x)在区间[0,3]上单调递增,则f(x)的最大值为:A. 0B. 3C. 9D. 127. 若向量a = (1, 2),b = (2, 1),则向量a与向量b的数量积为:A. 3B. 4C. 5D. 68. 若直线l的倾斜角为45°,则直线l的斜率为:A. 1B. -1C. √2D. -√29. 设函数f(x) = x^3 - 3x^2 + 2x,若f(x)在区间(0,1)内有极值,则该极值点为:B. 1C. 2/3D. 1/210. 若复数z满足|z| = 1,且z的实部为1,则z的虚部为:A. 0B. 1C. -1D. √3/211. 设等比数列{an}的前n项和为Sn,若a1 = 2,q = 2,则S4的值为:A. 30B. 16C. 8D. 412. 若函数f(x) = x^2 - 4x + 3,若f(x)在区间[1,3]上单调递减,则f(x)的最小值为:A. 0B. 3C. -1D. 2二、填空题:本题共4小题,每小题5分,共20分。

2014年全国高考理科数学试题及答案-四川卷(20210928210013)

2014年全国高考理科数学试题及答案-四川卷(20210928210013)

梦想不会辜负一个努力的人2014 年一般高等学校招生全国一致考试(四川卷)理科数学一.选择题:本大题共 10 小题,每题 5 分,共 50 分.在每题给出的四个选项中,只有一个是切合题目要求的。

1.已知会合 A { x | x 2x 2 0} ,会合 B 为整数集,则 A BA . { 1,0,1,2}B . { 2, 1,0,1} C. {0,1} D .{ 1,0}2.在 x(1x)6 的睁开式中,含 x 3 项的系数为A .30B .20C .15D .103.为了获取函数 y sin(2 x 1) 的图象,只要把函数 ysin 2x 的图象上全部的点A .向左平行挪动1个单位长度 B .向右平行挪动1个单位长度22C .向左平行挪动 1个单位长度D .向右平行挪动 1个单位长度4.若 a b0 , c d 0 ,则必定有A .a bB .a bC .a bD .a bcdc d dcd c5.履行如图 1 所示的程序框图,假如输入的x, y R ,则输出的 S 的最大值为A .0B .1C .2D .36.六个人从左至右排成一行,最左端只好排甲或乙,最右端不可以拍甲,则不一样的排法共有A . 192种B . 216种C . 240种D . 288种7.平面向量a (1,2),,(R ),b (4, 2)c ma b m且 c 与 a 的夹角等于 c 与 b 的夹角,则 m A .2B .1C .1D .28.如图, 在正方体 ABCD A 1 B 1C 1 D 1 中,点 O 为线段 BD 的中点。

设点 P 在线段 CC 1 上,直线 OP与平面 A 1BD 所成的角为,则 sin的取值范围是all`试题 1A . [3 B . [6,1],1]33C . [6 , 2 2 ] D .[2 2,1]3339.已知 f (x) ln(1 x)ln(1 x) , x ( 1,1)。

现有以下命题:① f ( x) f ( x) ;②f (22x)2 f ( x);x 1③ | f ( x) | 2 | x |。

2014年高考——安徽卷(理科数学)试题及答案(WORD版)

2014年高考——安徽卷(理科数学)试题及答案(WORD版)

2014年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间为120分钟。

参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+;如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一. 选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设i 是虚数单位,z 表示复数z 的共轭复数,若z =1+i ,则i z +i ·z = (A )-2 (B )-2i(C )2 (D )2i(2)“0<x ”是“0)1ln(<+x ”的(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(3)如图所示,程序框图(算法流程图)的输出结果是(A )34 (B )55(C )78 (D )89(4)以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位。

已知直线l 的参数方程是⎩⎨⎧-=+=3,1t y t x (t 为参数),圆C 的极坐标方程是θρcos 4=,则直线l 被圆C 截得的弦长为(A )14 (B )214(C )2 (D )22(5)x , y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若z=y-ax 取得最大值的最优解不唯一...,则实数a 的值为 (A )21 或-1 (B )2或21 (C )2或1 (D )2或-1(6)设函数f(x)(x ∈R )满足f(x+π)=f(x)+sinx.当0≤x <π时,f(x)=0,则)623(πf = (A )21 (B )23 (C )0 (D )21- (7)一个多面体的三视图如图所示,则该多面体的表面积为(A )321+ (B )318+ (C )21 (D )18(8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(A )24对 (B )30对 (C )48对 (D )60对(9)若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a 的值为(A )5或8 (B )-1或5(C )-1或 -4 (D )-4或8(10)在平面直角坐标系xOy 中,已知向量a, b, |a|=|b| = 1 , a ·b = 0,点Q 满足OQ =2(a+b).曲线C={P|OP=acos θ+bsin θ,0≤θ<2π},区域Ω={P|0<r ≤|PQ |≤R, r <R}.若C ∩Ω为两段分离的曲线,则(A )1<r <R <3 (B )1<r <3≤R(C )r ≤1<R <3 (D )1<r <3<R第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ 的最小正值是 .(13)设a ≠0,n是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为.2210n n x a x a x a a ++++ 若点),(i i a i A (i =0,1,2)的位置如图所示,则a= . (14)若F 1,F 2分别是椭圆E :1222=+b y x (0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若B F AF 113=,x AF ⊥2轴,则椭圆E 的方程为 .(15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S=x 1`y 1+x 2`y 2+x 3`y 3+x 4`y 4+x 5`y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是 (写出所有正确命题的编号).①S 有5个不同的值②若a ⊥b ,则S min 与a 无关③若a ∥b ,则S min 与b 无关 ④若a b 4>,则S min >0 ⑤若a b 2=,S min =28a ,则a 与b 的夹角为4π 三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)(本小题满分12分)设△ABC 的内角A,B,C 所对边的长分别是a,b,c,且b=3,c=1,A=2B.(Ⅰ)求a 的值;(Ⅱ)求⎪⎭⎫ ⎝⎛+4sin πA 的值.(17)(本小题满分 12 分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 5 局仍未出现连胜,则判定获胜局数多者赢得比赛。

(2021年整理)2014年高考全国卷1理科数学试题及答案-(word版)(2)

(2021年整理)2014年高考全国卷1理科数学试题及答案-(word版)(2)

(完整)2014年高考全国卷1理科数学试题及答案-(word版)(2) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2014年高考全国卷1理科数学试题及答案-(word版)(2))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2014年高考全国卷1理科数学试题及答案-(word版)(2)的全部内容。

2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效。

4. 考试结束,将本试题和答题卡一并交回。

第Ⅰ卷一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1。

已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A 。

[-2,-1] B .[-1,2) C 。

[-1,1] D .[1,2) 2. 32(1)(1)i i +-=A 。

1i +B .1i -C .1i -+D .1i --3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C 。

()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5。

2014年高考理科数学湖南卷(含详细答案)

2014年高考理科数学湖南卷(含详细答案)

数学试卷 第1页(共45页) 数学试卷 第2页(共45页) 数学试卷 第3页(共45页)绝密★启用前2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足ii z z +=(i 为虚数单位)的复数z =( )A .11i 22+B .11i 22-C .11i 22-+D .11i 22--2.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽 样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则( ) A .123p p p =< B .231p p p =< C .132p p p =<D .123p p p ==3.已知()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且32()()1f x g x x x -=++,则(1)(1)f g += ( ) A .3-B .1-C .1D .34.51(2)2x y -的展开式中23x y 的系数是 ( )A .20-B .5-C .5D .205.已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧;②p q ∨;③()p q ∧⌝;④()p q ⌝∨中,真命题是( )A .①③B .①④C .②③D .②④6.执行如图1所示的程序框图,如果输入的[2,2]t ∈-,则输出的S 属于 ( )A .[6,2]--B .[5,1]--C .[4,5]-D .[3,6]-7.一块石材表示的几何体的三视图如图2所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .48.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A .2p q+ B .(1)(1)12p q ++-CD19.已知函数()sin()f x x ϕ=-,且2π30()d 0f x x =⎰,则函数()f x 的图象的一条对称轴是( )A .5π6x =B .7π12x =C .π3x =D .π6x = 10.已知函数21()e (0)2x f x x x =+-<与2()ln()g x x x a =++的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.(-∞ B.(-∞ C.( D.(二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题(请考生在第11,12,13三题中任选两题作答,如果全做,则按前两题记分)11.在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :2cos ,1sin ,x y αα=+⎧⎨=+⎩(α为参数)交于A ,B 两点,且||2AB =.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是 .12.如图3,已知AB ,BC 是O 的两条弦,AO BC ⊥,AB =BC =则O 的半径等于 .13.若关于x 的不等式|2|3ax -<的解集为51{|}33x x -<<,则a = . (二)必做题(14~16题)14.若变量x ,y 满足约束条件,4,,y x x y y k ⎧⎪+⎨⎪⎩≤≤≥且2z x y =+的最小值为6-,则k = .15.如图4,正方形ABCD 和正方形DEFG 的边长分别为,()a b a b <,原点O 为AD 的中点,抛物线22(0)y px p =>经过C ,F 两点,则ba= . 16.在平面直角坐标系中,O 为原点,(1,0)A -,(0,3)B ,(3,0)C ,动点D 满足||1CD =,则||OA OB OD ++的最大值是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;(Ⅱ)若新产品A 研发成功,预计企业可获利润120 万元;若新产品B 研发成功,预计企业可获利润100 万元,求该企业可获利润的分布列和数学期望.-----在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效---------姓名________________ 准考证号_____________图1图2图3图4数学试卷 第4页(共45页) 数学试卷 第5页(共45页) 数学试卷 第6页(共45页)18.(本小题满分12分)如图5,在平面四边形ABCD 中,1AD =,2CD =,AC (Ⅰ)求cos CAD ∠的值;(Ⅱ)若cos BAD ∠=,sin CBA ∠= 求BC 的长.19.(本小题满分12分)如图6,四棱柱1111ABCD A B C D -的所有棱长都相等,AC BD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形. (Ⅰ)证明:1O O ⊥底面ABCD ;(Ⅱ)若60CBA ∠=,求二面角11C OB D --的余弦值.20.(本小题满分13分)已知数列{}n a 满足11a =,1||n n n a a p +-=,*n ∈N .(Ⅰ)若{}n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值; (Ⅱ)若12p =,且21{}n a -是递增数列,2{}n a 是递减数列,求数列{}n a 的通项公式.21.(本小题满分13分)如图7,O 为坐标原点,椭圆1C :()222210x y a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线2C :22221x y a b -=的左、右焦点分别为3F ,4F ,离心率为2e .已知12e e =且241F F . (Ⅰ)求1C ,2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点.当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值.21.(本小题满分13分)已知常数0a >,函数2()ln(1)2xf x ax x =+-+. (Ⅰ)讨论()f x 在区间(0+)∞,上的单调性; (Ⅱ)若()f x 存在两个极值点1x ,2x ,且12()()0f x f x +>,求a 的取值范围.图5图6图73 / 152014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案解析【提示】根据复数的基本运算即可得到结论. 【考点】复数的四则运算 2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,系统抽样和分层抽样都必须满足每个个体被抽到的概率相等,即123p p p ==.故选D.【提示】利用二项式定理的展开式的通项公式,求解所求项的系数即可. 【考点】二项式定理 5.【答案】C【解析】根据不等式的性质可知,若x y >,则x y -<-成立,即p 为真命题,当1x =,1y =-时,满足x y >,数学试卷 第10页(共45页)数学试卷 第11页(共45页) 数学试卷 第12页(共45页)但22x y >不成立,即命题q 为假命题,则①p q ∧为假命题;②p q ∨为真命题;③()p q ∧⌝为真命题;④()p q ⌝∨为假命题,故选:C.【提示】根据不等式的性质分别判定命题p ,q 的真假,利用复合命题之间的关系即可得到结论. 【考点】非、或、且,真假命题 6.【答案】D【解析】当[2,0)t ∈-时,运行程序如下,221(1,9]t t =+∈,(26]3,S t -=∈-,当[0,2]t ∈时,[,1]33S t ∈--=-,则(2,6][3,1][3,6]S ∈---=-,故选D.r5 / 15【提示】由题意可得001e ln()0x x a ---+=有负根,采用数形结合的方法可判断出a 的取值范围.BD DC AD DE DE =⇒=O 的半径等于R ,先计算AD ,再计算数学试卷 第16页(共45页)数学试卷 第17页(共45页)数学试卷 第18页(共45页)【提示】可先由图中的点与抛物线的位置关系,写出C ,F 两点的坐标,再将坐标代入抛物线方程中,消去参数p 后,得到a ,b 的关系式,再寻求b的值.||OA OB OD ++=||OA OB OD ++的取值范围为cos,sin )θθ,求得||8OA OB OD ++=+||OA OB OD ++的最大值.【提示】(Ⅰ)利用对立事件的概率公式,计算即可,AC AD7 / 15数学试卷 第22页(共45页)数学试卷 第23页(共45页) 数学试卷 第24页(共45页)21277217147⎛⎫-- ⎪ ⎪⎝⎭ 37sin 23sin 216AC BACCBA∠=∠. 【提示】(Ⅰ)利用余弦定理,利用已知条件求得cos CAD ∠的值.(Ⅱ)根据cos CAD ∠,cos BAD ∠的值分别,求得sin BAD ∠和sin CAD ∠,进而利用两角和公式求得sin BAC ∠的值,最后利用正弦定理求得BC . 【考点】解三角形,余弦定理,正弦定理19.【答案】(Ⅰ)如图,因为四边形11ACC A 为矩形,所以1CC AC ⊥. 同理1DD BD ⊥.因为11CC DD ∥,所以1CC BD ⊥. 而ACBD O =,因此1C C B D C A ⊥底面.由题设知,11O O C C ∥. 故1C O B D O A ⊥底面.(Ⅱ)如图2,过1O 作11O H OB ⊥于H ,连接1HC . 由(Ⅰ)知,1C O B D O A ⊥底面, 所以11111O O A B C D ⊥底面, 于是111O O AC ⊥.又因为四棱柱1111A B ABC C D D -的所有棱长都相等,所以四边形1111A B C D 是菱形,11112OO O BOB=19【提示】(Ⅰ)由已知中,四棱柱1111ABCD A B C D-的所有棱长都相等,AC BD O=,11111AC B D O=,四边形11ACC A和四边形11BDD B均为矩形.可得111O O CC BB∥∥且1CC AC⊥,1BB BD⊥,进而1OO AC⊥,1OO BD⊥,再由线面垂直的判定定理得到1O O ABCD⊥底面;(Ⅱ)由线面垂直,线线垂直推得111AC OB⊥,11OB C H⊥,所以11C HO∠是二面角11C OB D--的平面角.再由三角函数求得二面角11C OB D--的余弦值.【考点】线线关系、线面关系,二面角9 / 15数学试卷 第29页(共45页) 数学试卷 第30页(共45页)11(1)32nn -- 【解析】解(Ⅰ)因为{}n a 1(1)2n n --++112121()121n ---+11 / 1511(1)32nn --. }n 的通项公式为11(1)32nn --. 【提示】(Ⅰ)根据条件去掉式子的绝对值,分别令1n =,2代入求出2a 和3a ,再由等差中项的性质列出关于p 的方程求解,利用“{}n a 是递增数列”对求出的p 的值取舍;(Ⅱ)根据数列的单调性和式子“1||n n n a a p +-=”、不等式的可加性,求出221n n a a --和1n n a a +-,再对数列{}n a 的项数分类讨论,利用累加法和等比数列前n 项和公式,求出数列{}n a 的奇数项、偶数项对应22a b a +=,从而2(F数学试卷 第34页(共45页)数学试卷 第35页(共45页) 数学试卷 第36页(共45页) 22212m m ++,22214m m ++.2222213|222122m d m m +==-+--. S 取得最小值2.13 / 15【提示】(Ⅰ)由斜率公式写出1e ,2e 把双曲线的焦点用含有a ,b 的代数式表示,结合已知条件列关于a ,b 的方程组求解a ,b 的值,则圆锥曲线方程可求;(Ⅱ)设出AB 所在直线方程,和椭圆方程联立后得到关于y 的一元二次方程,由根与系数的关系得到AB 中点M 的坐标,并由椭圆的焦点弦公式求出AB 的长度,写出PQ 的方程,和双曲线联立后解出P ,Q 的坐标,由点到直线的距离公式分别求出P ,Q 到AB 的距离,然后代入三角形面积公式得四边形APBQ n数学试卷第40页(共45页)数学试卷第41页(共45页)数学试卷第42页(共45页)【提示】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决. 【考点】函数单调性,极值,导数的性质与应用15 / 15。

高考理科数学试题及答案2014

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

(2021年整理)2014年全国一卷高考理科数学试卷及答案(2)

(完整)2014年全国一卷高考理科数学试卷及答案(2)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2014年全国一卷高考理科数学试卷及答案(2))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2014年全国一卷高考理科数学试卷及答案(2)的全部内容。

2014年普通高等学校招生全国统一考试全国课标I 理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1。

已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[—2,-1]B .[—1,2)C 。

[-1,1]D .[1,2) 2.32(1)(1)i i +-= A 。

1i + B .1i - C .1i -+ D 。

1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A 。

()f x ()g x 是偶函数B 。

|()f x |()g x 是奇函数C 。

()f x |()g x |是奇函数D 。

|()f x ()g x |是奇函数4。

已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A 。

3 B .3 C 。

3mD 。

3m5。

4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C 。

58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72D .158 8。

2014年高考试题(全国课标Ⅰ卷)数学(理科)试卷及答案

2014年普通高等学校招生全国统一考试全国课标Ⅰ理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效.4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂= ( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)2.32(1)(1)i i +-= ( ) A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是( )A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 ( )A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为 ( )7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = ( )A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 ( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是 ( )A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = ( )A .72 B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 ( )A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 ( )A .62B .42C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)(附答案解析)

2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1. 设集合M ={0, 1, 2},N ={x|x 2−3x +2≤0},则M ∩N =( ) A.{1} B.{2} C.{0, 1} D.{1, 2}2. 设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A.−5 B.5 C.−4+i D.−4−i3. 已知向量a →,b →满足|a →+b →|=√10,|a →−b →|=√6,则a →⋅b →= ( ) A.1 B.2 C.3 D.54. 钝角三角形ABC 的面积是12,AB =1,BC =√2,则AC =( ) A.5 B.√5C.2D.15. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75C.0.6D.0.456. 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.137. 执行如图所示的程序框图,若输入的x ,t 均为2,则输出的S =( )A.4B.5C.6D.78. 设曲线y =ax −ln (x +1)在点(0, 0)处的切线方程为y =2x ,则a =( ) A.0 B.1 C.2 D.39. 设x ,y 满足约束条件{x +y −7≤0x −3y +1≤03x −y −5≥0 ,则z =2x −y 的最大值为( )A.10B.8C.3D.210. 设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30∘的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.3√34B.9√38C.6332D.9411. 直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110 B.25C.√3010D.√2212. 设函数f(x)=√3sinπxm,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是() A.(−∞, −6)∪(6, +∞) B.(−∞, −4)∪(4, +∞)C.(−∞, −2)∪(2, +∞)D.(−∞, −1)∪(1, +∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)(x+a)10的展开式中,x7的系数为15,则a=________12.函数f(x)=sin(x+2φ)−2sinφcos(x+φ)的最大值为________.已知偶函数f(x)在[0, +∞)单调递减,f(2)=0,若f(x−1)>0,则x的取值范围是________.设点M(x0, 1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45∘,则x0的取值范围是________.三、解答题:解答应写出文字说明,证明过程或验算步骤.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{a n}的通项公式;(2)证明:1a1+1a2+⋯+1a n<32.如图,四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB // 平面AEC;(2)设二面角D−AE−C为60∘,AP=1,AD=√3,求三棱锥E−ACD的体积.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:b̂=∑ni=1(t i−t¯)(y i−y¯)∑n i=1(t i−t¯)2,â=y¯−b̂t¯.设F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为34,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.已知函数f(x)=e x−e−x−2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)−4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD⋅DE=2PB2.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=]2cosθ,θ∈[0, π2(Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=√3x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)|+|x−a|(a>0).设函数f(x)=|x+1a(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.参考答案与试题解析2014年贵州省高考数学试卷(理科)(全国新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求. 1.【答案】 D【考点】一元二次不等式的解法 交集及其运算【解析】求出集合N 的元素,利用集合的基本运算即可得到结论. 【解答】解:∵ N ={x|x 2−3x +2≤0} ={x|(x −1)(x −2)≤0} ={x|1≤x ≤2}, ∴ M ∩N ={1, 2}. 故选D . 2. 【答案】 A【考点】 复数的运算 【解析】根据复数的几何意义求出z 2,即可得到结论. 【解答】z 1=2+i 对应的点的坐标为(2, 1),∵ 复数z 1,z 2在复平面内的对应点关于虚轴对称, ∴ (2, 1)关于虚轴对称的点的坐标为(−2, 1), 则对应的复数,z 2=−2+i ,则z 1z 2=(2+i)(−2+i)=i 2−4=−1−4=−5, 3.【答案】 A【考点】平面向量数量积的性质及其运算律 【解析】将等式进行平方,相加即可得到结论. 【解答】解:∵ |a →+b →|=√10,|a →−b →|=√6, ∴ 分别平方得a →2+2a →⋅b →+b →2=10,a →2−2a →⋅b →+b →2=6.两式相减得4a →⋅b →=10−6=4, 即a →⋅b →=1. 故选A . 4. 【答案】 B【考点】 解三角形 余弦定理同角三角函数间的基本关系【解析】利用三角形面积公式列出关系式,将已知面积,AB ,BC 的值代入求出sin B 的值,分两种情况考虑:当B 为钝角时;当B 为锐角时,利用同角三角函数间的基本关系求出cos B 的值,利用余弦定理求出AC 的值即可. 【解答】解:∵ 钝角三角形ABC 的面积是12,AB =c =1,BC =a =√2, ∴ S =12ac sin B =12,即sin B =√22, 当B 为钝角时,cos B =−√1−sin 2B =−√22, 利用余弦定理得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =1+2+2=5, 即AC =√5,当B 为锐角时,cos B =√1−sin 2B =√22, 利用余弦定理得:AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos B =1+2−2=1,即AC =1,此时AB 2+AC 2=BC 2,即△ABC 为直角三角形,不合题意,舍去, 则AC =√5. 故选B . 5. 【答案】 A【考点】相互独立事件的概率乘法公式 【解析】设随后一天的空气质量为优良的概率为p ,则由题意可得0.75×p =0.6,由此解得p 的值. 【解答】解:设随后一天的空气质量为优良的概率为p , 则由题意可得0.75×p =0.6, 解得p =0.8.故选A.6.【答案】C【考点】由三视图求体积【解析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π⋅2+22π⋅4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:54π−34π54π=1027.7.【答案】D【考点】程序框图【解析】根据条件,依次运行程序,即可得到结论.【解答】若x=t=2,则第一次循环,1≤2成立,则M=11×2=2,S=2+3=5,k=2,第二次循环,2≤2成立,则M=22×2=2,S=2+5=7,k=3,此时3≤2不成立,输出S=7,8.【答案】D【考点】利用导数研究曲线上某点切线方程【解析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】y′=a−1x+1,∴y′(0)=a−1=2,∴a=3.9. 【答案】B【考点】简单线性规划【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x−y得y=2x−z,平移直线y=2x−z,由图象可知当直线y=2x−z经过点C时,直线y=2x−z的截距最小,此时z最大.由{x+y−7=0x−3y+1=0,解得{x=5y=2,即C(5, 2)代入目标函数z=2x−y,得z=2×5−2=(8)10.【答案】D【考点】直线与抛物线结合的最值问题抛物线的标准方程【解析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=32,则F(34, 0).∴过A,B的直线方程为y=√33(x−34),即x=√3y+34.联立{y2=3x,x=√3y+34,得4y2−12√3y−9=0.设A(x1, y1),B(x2, y2),则y1+y2=3√3,y1y2=−94.∴S△OAB=S△OAF+S△OFB=12×34|y1−y2|=38√(y 1+y 2)2−4y 1y 2 =38×√(3√3)2+9 =94. 故选D . 11. 【答案】 C【考点】异面直线及其所成的角 【解析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值. 【解答】 解:如图,直三棱柱ABC −A 1B 1C 1中,∠BCA =90∘, M ,N 分别是A 1B 1,A 1C 1的中点, 设BC 的中点为O ,连结ON , 则MN = // 12B 1C 1=OB ,则MNOB 是平行四边形, BM 与AN 所成角就是∠ANO , ∵ BC =CA =CC 1, 设BC =CA =CC 1=2,∴ CO =1,AO =√5,AN =√5, MB =√B 1M 2+BB 12=√(√2)2+22=√6, 在△ANO 中,由余弦定理可得: cos ∠ANO =AN 2+NO 2−AO 22AN⋅NO=62×√5×√6=√3010. 故选C . 12.【答案】 C【考点】正弦函数的定义域和值域 【解析】由题意可得,f(x 0)=±√3,且 πx0m =kπ+π2,k ∈z ,再由题意可得当m 2最小时,|x 0|最小,而|x 0|最小为12|m|,可得m 2>14m 2+3,由此求得m 的取值范围. 【解答】解:由题意可得,f(x 0)=±√3,且 πx0m =kπ+π2,k ∈Z , 即 x 0=2k+12m .再由x 02+[f(x 0)]2<m 2,可得当m 2最小时,|x 0|最小,而|x 0|最小为12|m|,∴ m 2>14m 2+3,∴ m 2>4.求得 m >2或m <−2, 故选C .二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答) 【答案】12【考点】二项式定理及相关概念 【解析】在二项展开式的通项公式中,令x 的幂指数等于3,求出r 的值,即可求得x 7的系数,再根据x 7的系数为15,求得a 的值. 【解答】(x +a)10的展开式的通项公式为 T r+1=C 10r⋅x 10−r ⋅a r ,令10−r =7,求得r =3,可得x 7的系数为a 3⋅C 103=120a 3=15, ∴ a =12,【答案】 1【考点】三角函数的最值三角函数中的恒等变换应用【解析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sin x ,从而求得函数的最大值. 【解答】解:函数f(x)=sin(x+2φ)−2sinφcos(x+φ)=sin[(x+φ)+φ]−2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ−2sinφcos(x+φ) =sin(x+φ)cosφ−cos(x+φ)sinφ=sin[(x+φ)−φ]=sin x,故函数f(x)的最大值为1,故答案为:1.【答案】(−1, 3)【考点】函数奇偶性的性质函数单调性的性质【解析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x−1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0, +∞)单调递减,f(2)=0,∴不等式f(x−1)>0等价为f(x−1)>f(2),即f(|x−1|)>f(2),∴|x−1|<2,解得−1<x<3.故答案为:(−1, 3).【答案】[−1, 1]【考点】直线与圆的位置关系【解析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】由题意画出图形如图:点M(x0, 1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45∘,则∠OMN的最大值大于或等于45∘时一定存在点N,使得∠OMN=45∘,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[−1, 1].三、解答题:解答应写出文字说明,证明过程或验算步骤. 【答案】证明:(1)a n+1+12a n+12=3a n+1+12a n+12=3(a n+12)a n+12=3,∵a1+12=32≠0,∴数列{a n+12}是以首项为32,公比为3的等比数列,∴a n+12=32×3n−1=3n2,即a n=3n−12;(2)由(1)知1a n=23n−1,当n≥2时,∵3n−1>3n−3n−1,∴1a n=23n−1<23n−3n−1=13n−1,∴当n=1时,1a1=1<32成立,当n≥2时,1a1+1a2+⋯+1a n<1+13+132+⋯+13n−1=1−(13)n1−13=32(1−13n)<32.∴对n∈N+时,1a1+1a2+⋯+1a n<32.【考点】数列与不等式的综合等比数列的前n项和等比关系的确定等比数列的通项公式【解析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即b n+1b n=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n }的通项公式;(Ⅱ)将1a n 进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】 证明:(1)a n+1+12a n +12=3a n +1+12a n +12=3(a n +12)a n +12=3,∵ a 1+12=32≠0,∴ 数列{a n +12}是以首项为32,公比为3的等比数列,∴ a n +12=32×3n−1=3n 2,即a n =3n −12;(2)由(1)知1a n=23n −1,当n ≥2时,∵ 3n −1>3n −3n−1, ∴1a n=23n −1<23n −3n−1=13n−1,∴ 当n =1时,1a 1=1<32成立,当n ≥2时, 1a 1+1a 2+⋯+1a n <1+13+132+⋯+13n−1 =1−(13)n1−13=32(1−13n )<32.∴ 对n ∈N +时,1a 1+1a 2+⋯+1a n<32.【答案】(1)证明:连接BD 交AC 于O 点,连接EO ,∵ O 为BD 中点,E 为PD 中点, ∴ EO // PB ,∵ EO ⊂平面AEC ,PB ⊄平面AEC , ∴ PB // 平面AEC .(2)解:延长AE 至M 连结DM ,使得AM ⊥DM ,∵ 四棱锥P −ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD , ∴ CD ⊥平面AMD ,∵ 二面角D −AE −C 为60∘, ∴ ∠CMD =60∘,∵ AP =1,AD =√3,∠ADP =30∘, ∴ PD =2,E 为PD 的中点.AE =1, ∴ DM =√32, CD =√32×tan 60∘=32.三棱锥E −ACD 的体积为:13×12AD ⋅CD ⋅12PA=13×12×√3×32×12×1=√38.【考点】与二面角有关的立体几何综合题 直线与平面平行的判定 柱体、锥体、台体的体积计算【解析】(1)连接BD 交AC 于O 点,连接EO ,只要证明EO // PB ,即可证明PB // 平面AEC ;(2)延长AE 至M 连结DM ,使得AM ⊥DM ,说明∠CMD =60∘,是二面角的平面角,求出CD ,即可三棱锥E −ACD 的体积.【解答】(1)证明:连接BD 交AC 于O 点,连接EO ,∵O为BD中点,E为PD中点,∴EO // PB,∵EO⊂平面AEC,PB⊄平面AEC,∴PB // 平面AEC.(2)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∵二面角D−AE−C为60∘,∴∠CMD=60∘,∵AP=1,AD=√3,∠ADP=30∘,∴PD=2,E为PD的中点.AE=1,∴DM=√32,CD=√32×tan60∘=32.三棱锥E−ACD的体积为:13×12AD⋅CD⋅12PA=13×12×√3×32×12×1=√38.【答案】解:(1)由题意,t¯=17×(1+2+3+4+5+6+7)=4,y¯=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑(t i−t¯)27i=1=28,∑(t i−t¯)7i=1(y i−y¯)=14b̂=1428=0.5â=y¯−b̂t¯=4.3−0.5×4=2.3.∴y关于t的线性回归方程为ŷ=0.5t+2.3;(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入ŷ=0.5t+2.3,得:ŷ=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【考点】回归分析的初步应用求解线性回归方程【解析】(1)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(2)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(1)由题意,t¯=17×(1+2+3+4+5+6+7)=4,y¯=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑(t i−t¯)27i=1=28,∑(t i−t¯)7i=1(y i−y¯)=14b̂=1428=0.5â=y¯−b̂t¯=4.3−0.5×4=2.3.∴y关于t的线性回归方程为ŷ=0.5t+2.3;(2)由(1)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入ŷ=0.5t+2.3,得:y ̂=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 【答案】解:(1)由题意,知M(c,b 2a ),则b 2a2c =34,化简得2b 2=3ac .将b 2=a 2−c 2代入2b 2=3ac , 解得ca =12或ca =−2(舍去). 故椭圆C 的离心率为12.(2)由题意,如图所示:知原点O 为F 1F 2的中点,MF 2//y 轴,所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a , ①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0, 则{2(−c −x 1)=c ,−2y 1=2,解得{x 1=−32c ,y 1=−1.将(−32c,−1)代入椭圆C 的方程,得9c 24a 2+1b 2=1,②将①及c 2=a 2−b 2代入②,得9(a 2−4a)4a 2+14a =1,所以a =7,b 2=4a =28. 故a =7,b =2√7.【考点】 椭圆的离心率直线与椭圆结合的最值问题 椭圆的应用 【解析】 此题暂无解析 【解答】解:(1)由题意,知M(c,b 2a ), 则b 2a2c =34,化简得2b 2=3ac . 将b 2=a 2−c 2代入2b 2=3ac , 解得ca=12或ca=−2(舍去).故椭圆C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2//y 轴, 所以直线MF 1与y 轴的交点D(0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a , ①由|MN|=5|F 1N|,得|DF 1|=2|F 1N|. 设N(x 1,y 1),由题意知y 1<0, 则{2(−c −x 1)=c ,−2y 1=2,解得{x 1=−32c ,y 1=−1.将(−32c,−1)代入椭圆C 的方程,得9c 24a 2+1b 2=1,②将①及c 2=a 2−b 2代入②,得9(a 2−4a)4a 2+14a=1,所以a =7,b 2=4a =28. 故a =7,b =2√7. 【答案】解:(1)由f(x)得f′(x)=e x +e −x −2≥2√e x ⋅e −x −2=0, 即f′(x)≥0,当且仅当e x =e −x 即x =0时,f′(x)=0, ∴ 函数f(x)在R 上为增函数. (2)g(x)=f(2x)−4bf(x)=e 2x −e −2x −4b(e x −e −x )+(8b −4)x ,则g′(x)=2[e 2x +e −2x −2b(e x +e −x )+(4b −2)] =2[(e x +e −x )2−2b(e x +e −x )+(4b −4)] =2(e x +e −x −2)(e x +e −x +2−2b). e x +e −x ≥2,e x +e −x +2≥4,①当2b ≤4,即b ≤2时,g′(x)≥0,当且仅当x =0时取等号, 从而g(x)在R 上为增函数,而g(0)=0, ∴ x >0时,g(x)>0,符合题意.②当b >2时,若x 满足2<e x +e −x <2b −2, 即{2<e x +e −xe x +e −x <2b −2, 得0<x <ln (b −1+√b 2−2b),此时,g′(x)<0, 又由g(0)=0知,当0<x ≤ln (b −1+√b 2−2b)时, g(x)<0,不符合题意.综合①、②知,b ≤2,得b 的最大值为2.(3)∵ 1.4142<√2<1.4143,根据(2)中g(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,为了凑配ln2,并利用√2的近似值,故将ln√2即12ln2代入g(x)的解析式中,得g(ln√2)=32−2√2b+2(2b−1)ln2.当b=2时,由g(x)>0,得g(ln√2)=32−4√2+6ln2>0,从而ln2>8√2−312>8×1.4142−312=0.6928;令ln(b−1+√b2−2b)=ln√2,得b=3√24+1>2,当0<x≤ln(b−1+√b2−2b)时,由g(x)<0,得g(ln√2)=−32−2√2+(3√2+2)ln2<0,得ln2<18+√228<18+1.414328<0.6934.所以ln2的近似值为0.693.【考点】利用导数研究函数的最值利用导数研究函数的单调性对数及其运算【解析】对第(1)问,直接求导后,利用基本不等式可达到目的;对第(2)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(3)问,根据第(2)问的结论,设法利用√2的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算g(ln√2),最后可估计ln2的近似值.【解答】解:(1)由f(x)得f′(x)=e x+e−x−2≥2√e x⋅e−x−2=0,即f′(x)≥0,当且仅当e x=e−x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(2)g(x)=f(2x)−4bf(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,则g′(x)=2[e2x+e−2x−2b(e x+e−x)+(4b−2)]=2[(e x+e−x)2−2b(e x+e−x)+(4b−4)]=2(e x+e−x−2)(e x+e−x+2−2b).e x+e−x≥2,e x+e−x+2≥4,①当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e−x<2b−2,即{2<e x+e−xe x+e−x<2b−2,得0<x<ln(b−1+√b2−2b),此时,g′(x)<0,又由g(0)=0知,当0<x≤ln(b−1+√b2−2b)时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(3)∵ 1.4142<√2<1.4143,根据(2)中g(x)=e2x−e−2x−4b(e x−e−x)+(8b−4)x,为了凑配ln2,并利用√2的近似值,故将ln√2即12ln2代入g(x)的解析式中,得g(ln√2)=32−2√2b+2(2b−1)ln2.当b=2时,由g(x)>0,得g(ln√2)=32−4√2+6ln2>0,从而ln2>8√2−312>8×1.4142−312=0.6928;令ln(b−1+√b2−2b)=ln√2,得b=3√24+1>2,当0<x≤ln(b−1+√b2−2b)时,由g(x)<0,得g(ln√2)=−32−2√2+(3√2+2)ln2<0,得ln2<18+√228<18+1.414328<0.6934.所以ln2的近似值为0.693.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】【答案】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90∘,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90∘,∴OE⊥BC,∴E是BĈ的中点,∴BE=EC;(2)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB⋅PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD⋅DC=PB⋅2PB,∵AD⋅DE=BD⋅DC,∴AD⋅DE=2PB2.【考点】相似三角形的判定与圆有关的比例线段【解析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是BĈ的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD⋅DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90∘,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90∘,∴OE⊥BC,∴E是BĈ的中点,∴BE=EC;(2)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB⋅PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD⋅DC=PB⋅2PB,∵AD⋅DE=BD⋅DC,∴AD⋅DE=2PB2.【选修4-4:坐标系与参数方程】【答案】(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, π2],即ρ2=2ρcosθ,可得C的普通方程为(x−1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cos ty=sin t(t为参数,0≤t≤π).(2)设D(1+cos t, sin t),由(1)知C是以C(1, 0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32, √32).【考点】参数方程与普通方程的互化【解析】(1)利用{ρ2=x2+y2x=ρcosθ即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=√3x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0, π2],即ρ2=2ρcosθ,可得C的普通方程为(x−1)2+y2=1(0≤y≤1).可得C的参数方程为{x=1+cos ty=sin t(t为参数,0≤t≤π).(2)设D(1+cos t, sin t),由(1)知C是以C(1, 0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tan t=√3,t=π3.故D的直角坐标为(1+cosπ3,sinπ3),即(32, √32).六、解答题(共1小题,满分0分)【答案】(1)证明:∵a>0,∴f(x)=|x+1a|+|x−a|≥|(x+1a)−(x−a)|=|a+1a|=a+1a≥2√a⋅1a=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+1a|+|3−a|<5,∴当a>3时,不等式即a+1a<5,即a2−5a+1<0,解得3<a<5+√212.当0<a≤3时,不等式即6−a+1a<5,即a2−a−1>0,求得1+√52<a≤3.综上可得,a的取值范围(1+√52, 5+√212).【考点】不等式的证明绝对值不等式的解法与证明【解析】(Ⅰ)由a>0,f(x)=|x+1a|+|x−a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+1a|+|3−a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】(1)证明:∵a>0,∴f(x)=|x+1a |+|x−a|≥|(x+1a)−(x−a)|=|a+1a |=a+1a≥2√a⋅1a=2,故不等式f(x)≥2成立.(2)解:∵f(3)=|3+1a|+|3−a|<5,∴当a>3时,不等式即a+1a<5,即a2−5a+1<0,解得3<a<5+√212.当0<a≤3时,不等式即6−a+1a<5,即a2−a−1>0,求得1+√52<a≤3.综上可得,a的取值范围(1+√52, 5+√212).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档