江苏省苏锡常镇四市2020届高三第二次教学情况调研数学试题 Word版含解析
江苏省七市2020届高三第二次调研考试 数学

C. (选修 45:不等式选讲) 已知实数 x,y,z 满足1+x2x2+1+y2y2+1+z2z2=2,求证:1+x x2+1+y y2+1+z z2≤ 2.
·5·
【必做题】 第 22,23 题,每小题 10 分,共 20 分.解答时应写出必要的文字说明、证明过程 或演算步骤.
yN=3-t2+124t .(6
分)
由方程组
x=ty+2, 消去 x,得(t2+1)y2-2ty=0,所以
(x-3)2+y2=1,
yM=t2+2t 1.(8
分)
因为 AN=12AM,所以 yN=-12yM.(10 分)
7
7
即3-t2+124t =-172·t2+2t 1,解得 t=±1.(12 分)
4
4
于是 sin α-cos α=sin(α+π)cos α-cos(α+π)sin α,
4
4
从而 2sin(α-π)=sin π,即 sin(α-π)=1.(12 分)
4
4
42
因为 0<α<π,所以-π<α-π<π,于是α-π=π,即α=5π.(14 分)
2
4
44
46
12
16. 证明:(1) 取 AB 的中点 D,连结 PD,CD. 在△ABB1 中,因为点 P,D 分别为 AB1,AB 中点, 所以 PD∥BB1,且 PD=1BB1.
4
4
<α<π. 2
(1) 求(b-a)·a 的值;
(2) 若 c=(1,1),且(b+c)∥a,求α的值.
16.(本小题满分 14 分) 如图,在直三棱柱 ABCA1B1C1 中,CA=CB,点 P,Q 分别为 AB1,CC1 的中点.求证: (1) PQ∥平面 ABC; (2) PQ⊥平面 ABB1A1.
江苏省苏州市2019-2020学年高考数学第二次调研试卷含解析

江苏省苏州市2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数(1)(3)(z i i i =+-为虚数单位) ,则z 的虚部为( ) A .2 B .2iC .4D .4i【答案】A 【解析】 【分析】对复数z 进行乘法运算,并计算得到42z i =+,从而得到虚部为2. 【详解】因为(1)(3)42z i i i =+-=+,所以z 的虚部为2. 【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意21i =-. 2.已知函数()f x 是奇函数,且22()'()ln(1)ln(1)1f x f x x x x -=+----,若对11[,]62x ∀∈,(1)(1)f ax f x +<-恒成立,则a 的取值范围是( )A .(3,1)--B .(4,1)--C .(3,0)-D .(4,0)-【答案】A 【解析】 【分析】先根据函数奇偶性求得()(),f x f x ',利用导数判断函数单调性,利用函数单调性求解不等式即可. 【详解】因为函数()f x 是奇函数, 所以函数'()f x 是偶函数.22()'()ln(1)ln(1)1f x f x x x x ---=--+--, 即22()'()ln(1)ln(1)1f x f x x x x --=--+--, 又22()'()ln(1)ln(1)1f x f x x x x -=+----,所以()ln(1)ln(1)f x x x =+--,22'()1f x x =-. 函数()f x 的定义域为(1,1)-,所以22'()01f x x =>-,()(0)0f x f >=,所以()f x 为偶函数,且在(0,1)上单调递增.由(1)(1)fax f x +<-,可得11111ax x ax ⎧+<-⎨-<+<⎩,对11[,]62x ∈恒成立,则1120ax x a x ⎧+<-⎪⎨-<<⎪⎩,21120a x a x⎧-<<-⎪⎪⎨⎪-<<⎪⎩对11[,]62x ∈恒成立,,得3140a a -<<-⎧⎨-<<⎩, 所以a 的取值范围是(3,1)--. 故选:A. 【点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题. 3.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =„,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞UD .(3,1)--【答案】D 【解析】 【分析】先求出集合N 的补集U N ð,再求出集合M 与U N ð的交集,即为所求阴影部分表示的集合. 【详解】由U =R ,{|||1}N x x =„,可得{1U N x x =<-ð或1}x >, 又{|31}M x x =-<<所以{31}U M N x x ⋂=-<<-ð. 故选:D. 【点睛】4.已知定义在R 上的偶函数()f x 满足()()11f x f x +=-,当[]0,1x ∈时,()1f x x =-+,函数()1x g x e--=(13x -≤≤),则函数()f x 与函数()g x 的图象的所有交点的横坐标之和为( )A .2B .4C .5D .6【答案】B 【解析】 【分析】由函数的性质可得:()f x 的图像关于直线1x =对称且关于y 轴对称,函数()1x g x e--=(13x -≤≤)的图像也关于1x =对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线1x =对称,则()f x 与()g x 的图像所有交点的横坐标之和为4得解.【详解】由偶函数()f x 满足()()11f x f x +=-,可得()f x 的图像关于直线1x =对称且关于y 轴对称, 函数()1x g x e--=(13x -≤≤)的图像也关于1x =对称,函数()y f x =的图像与函数()1x g x e--=(13x -≤≤)的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线1x =对称, 则()f x 与()g x 的图像所有交点的横坐标之和为4. 故选:B 【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题. 5.已知复数()11z ai a R =+∈,212z i =+(i 为虚数单位),若12z z 为纯虚数,则a =( ) A .2- B .2C .12-D .12【答案】C 【解析】把()12112z ai a R z i =+∈=+,代入12z z ,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可. 【详解】∵()12112z ai a R z i =+∈=+,,∴121(1)(12)12212(12)(12)55z ai ai i a a i z i i i ++-+-===+++-, ∵12z z 为纯虚数, ∴12020a a +=⎧⎨-≠⎩,解得12a =-.故选C . 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.6.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y ,则221113x y +=,222213x y +=,相减得到22033k +=,解得答案. 【详解】设()11,A x y ,()22,B x y ,设直线斜率为k ,则221113x y +=,222213x y +=, 相减得到:()()()()1212121203x x x x y y y y -+++-=,AB 的中点为11,3P ⎛⎫⎪⎝⎭, 即22033k +=,故1k =-,直线AB 的方程为:43y x =-+. 故选:C .7.已知函数21()(1)()2x f x ax x e a R =--∈若对区间[]01,内的任意实数123x x x 、、,都有123()()()f x f x f x +≥,则实数a 的取值范围是( )A .[]12, B .[]e,4C .[]14, D .[)[]12,4e ⋃, 【答案】C 【解析】分析:先求导,再对a 分类讨论求函数的单调区间,再画图分析转化对区间[]01,内的任意实数123x x x 、、,都有()()()123f x f x f x +≥,得到关于a 的不等式组,再解不等式组得到实数a 的取值范围. 详解:由题得()[(1)]()xxxxf x ax e x e ax xe x a e =-+-=-=-'.当a <1时,()0f x '<,所以函数f (x )在[]01,单调递减, 因为对区间[]01,内的任意实数123x x x 、、,都有()()()123f x f x f x +≥, 所以(1)(1)(0)f f f +≥, 所以111,22a a +≥ 故a≥1,与a <1矛盾,故a <1矛盾.当1≤a<e 时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减. 所以2max 1()(ln )ln ln ,2f x f a a a a a a ==-+ 因为对区间[]01,内的任意实数123x x x 、、,都有()()()123f x f x f x +≥, 所以(0)(1)(ln )f f f a +≥,所以2111ln ln ,22a a a a a a +≥-+ 即211ln ln 1022a a a a a -+-≤令211()ln ln 1,(1)22g a a a a a a a e =-+-≤<,所以21()(ln 1)0,2g a a =-<'所以函数g(a)在(1,e )上单调递减, 所以max 1()(1)02g a g ==-<, 所以当1≤a<e 时,满足题意.当a e ≥时,函数f(x)在(0,1)单调递增,因为对区间[]01,内的任意实数123x x x 、、,都有()()()123f x f x f x +≥,故1+112a ≥, 所以 4.a ≤ 故 4.e a ≤≤综上所述,a ∈[]14,. 故选C.点睛:本题的难点在于“对区间[]01,内的任意实数123x x x 、、,都有()()()123f x f x f x +≥”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.8.设变量,x y 满足约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则目标函数2z x y =+的最大值是( )A .7B .5C .3D .2【答案】B 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,表示的可行域,如图,由20 2390x y x y +-=⎧⎨--=⎩可得31x y =⎧⎨=-⎩,将2z x y =+变形为2y x z =-+, 平移直线2y x z =-+,直线在y 轴上的截距最大, z 最大值为2315z =⨯-=,故选B.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 9.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题. 10.若x yi +(,)x y ∈R 与31ii+-互为共轭复数,则x y +=( ) A .0 B .3C .-1D .4【答案】C 【解析】 【分析】 计算3121ii i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121ii i+=+-Q,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C11.若复数221a ii++(a R ∈)是纯虚数,则复数22a i +在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B 【解析】 【分析】 化简复数221a ii++,由它是纯虚数,求得a ,从而确定22a i +对应的点的坐标. 【详解】221a i i ++2()(1)1(1)(1)(1)a i i a a i i i +-==++-+-是纯虚数,则1010a a +=⎧⎨-≠⎩,1a =-, 2222a i i +=-+,对应点为(2,2)-,在第二象限.故选:B . 【点睛】本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题. 12.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a < D .b a >【答案】C 【解析】 【分析】令23a b t ==,则0t >,1t ≠,将指数式化成对数式得a 、b 后,然后取绝对值作差比较可得. 【详解】令23a b t ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >.故选:C. 【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题. 二、填空题:本题共4小题,每小题5分,共20分。
江苏省七市2020届高三第二次调研考试数学试卷

绝密★启用前江苏省七市2020届高三第二次调研考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上参考公式:柱体的体积公式:V 柱体=Sh ,其中S 为柱体的底面积,h 为高.锥体的体积公式:V 锥体=13Sh ,其中S 为锥体的底面积,h 为高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={1,4},B ={a -5,7}.若A ∩B ={4},则实数a 的值是________.2. 若复数z 满足zi=2+i ,其中i 是虚数单位,则z 的模是________.(第4题)3. 在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8,则该农作物的年平均产量是________吨.4. 如图是一个算法流程图,则输出S 的值是________.5. “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头,甲、乙两人玩一次该游戏,则甲不输的概率是________.6. 在△ABC 中,已知B =2A ,AC =3BC ,则A 的值是________.7. 在等差数列{a n }(n ∈N *)中,若a 1=a 2+a 4,a 8=-3,则a 20的值是________.(第8题)8. 如图,在体积为V 的圆柱O 1O 2中,以线段O 1O 2上的点O 为顶点,上下底面为底面的两个圆锥的体积分别为V 1,V 2,则V 1+V 2V的值是________.9. 在平面直角坐标系xOy 中,双曲线x 2a 2-y2b 2=1(a >0,b >0)的左顶点为A ,右焦点为F ,过F 作x 轴的垂线交双曲线于点P ,Q.若△APQ 为直角三角形,则该双曲线的离心率是________.10. 在平面直角坐标系xOy 中,点P 在直线y =2x 上,过点P 作圆C :(x -4)2+y 2=8的一条切线,切点为T.若PT =PO ,则PC 的长是________.11. 若x >1,则2x +9x +1+1x -1的最小值是________.12. 在平面直角坐标系xOy 中,曲线y =e x在点P(x 0,ex 0)处的切线与x 轴相交于点A ,其中e 为自然对数的底数.若点B(x 0,0),△PAB 的面积为3,则x 0的值是________.13. 如图(1)是第七届国际数学教育大会(ICME7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,则A 6A 7→·A 7A 8→的值是________.14. 设函数f(x)=⎩⎪⎨⎪⎧|log 2x -a|,0<x ≤4,f (8-x ),4<x <8.若存在实数m ,使得关于x 的方程f(x)=m有4个不相等的实根,且这4个根的平方和存在最小值,则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在平面直角坐标系xOy 中,已知向量a =(cos α,sin α),b =(cos(α+π4),sin(α+π4)),其中0<α<π2. (1) 求(b -a )·a 的值;(2) 若c =(1,1),且(b +c )∥a ,求α的值.16.(本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,CA =CB ,点P ,Q 分别为AB 1,CC 1的中点.求证: (1) PQ ∥平面ABC ; (2) PQ ⊥平面ABB 1A 1.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知圆C :(x -3)2+y 2=1,椭圆E :x 2a 2+y2b2=1(a >b>0)的右顶点A 在圆C 上,右准线与圆C 相切.(1) 求椭圆E 的方程;(2) 设过点A 的直线l 与圆C 相交于另一点M ,与椭圆E 相交于另一点N.当AN =127AM时,求直线l 的方程.某公园有一块边长为3百米的正三角形ABC空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道DE将△ABC分成面积之比为2∶1的两部分(点D,E分别在边AB,AC上);再取DE的中点M,建造直道AM(如图).设AD=x,DE=y1,AM =y2(单位:百米).(1) 分别求y1,y2关于x的函数关系式;(2) 试确定点D的位置,使两条直道的长度之和最小,并求出最小值.若函数f(x)在x0处有极值,且f(x0)=x0,则称x0为函数f(x)的“F点”.(1) 设函数f(x)=kx2-2ln x(k∈R).①当k=1时,求函数f(x)的极值;②若函数f(x)存在“F点”,求k的值;(2) 已知函数g(x)=ax3+bx2+cx(a,b,c∈R,a≠0)存在两个不相等的“F点”x1,x2,且|g(x1)-g(x2)|≥1,求a的取值范围.在等比数列{a n }中,已知a 1=1,a 4=18.设数列{b n }的前n 项和为S n ,且b 1=-1,a n +b n =-12S n -1(n ≥2,n ∈N *).(1) 求数列{a n }的通项公式;(2) 求证:数列⎩⎨⎧⎭⎬⎫b n a n 是等差数列;(3) 是否存在等差数列{c n },使得对任意n ∈N *,都有S n ≤c n ≤a n ?若存在,求出所有符合题意的等差数列{c n };若不存在,请说明理由.数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤01a 0的逆矩阵A -1=⎣⎢⎡⎦⎥⎤02b 0.若曲线C 1:x 24+y 2=1在矩阵A 对应的变换作用下得到另一曲线C 2,求曲线C 2的方程.B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C 的方程为ρ=r(r >0),直线l 的方程为ρcos(θ+π4)= 2.设直线l 与曲线C 相交于A ,B 两点,且AB =27,求r 的值.C. (选修45:不等式选讲)已知实数x ,y ,z 满足x 21+x 2+y 21+y 2+z 21+z 2=2,求证:x 1+x 2+y 1+y 2+z1+z2≤ 2.【必做题】 第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是12,且是否休假互不影响.若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店铺维持营业,否则该店就停业.(1) 求发生调剂现象的概率;(2) 设营业店铺数为X ,求X 的分布列和数学期望.23.我们称n(n ∈N *)元有序实数组(x 1,x 2,…,x n )为n 维向量,为该向量的范数.已知n 维向量a =(x 1,x 2,…,x n ),其中x i ∈{-1,0,1},i =1,2,…,n.记范数为奇数的n 维向量a 的个数为A n ,这A n 个向量的范数之和为B n .(1) 求A 2和B 2的值;(2) 当n 为偶数时,求A n ,B n (用n 表示).。
2020届江苏省苏锡常镇四市高三第二次联考数学试卷

2020届江苏省苏锡常镇四市高三第二次联考数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A={x|1<x<3},B={x|2<x<4},则A∪B=________.2. 若复数z满足za+2i=i(i为虚数单位),且实部和虚部相等,则实数a的值为________.3. 某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组的人数为________.(第3题)(第4题)4. 如图是某算法的伪代码,输出的结果S的值为________.5. 现有5件相同的产品,其中3件合格,2件不合格,从中随机抽检2件,则一件合格,另一件不合格的概率为________.6. 在等差数列{a n }中,a 4=10,前12项的和S 12=90,则a 18的值为________.7. 在平面直角坐标系xOy 中,已知A 是抛物线y 2=4x 与双曲线x 24-y 2b2=1(b>0)的一个交点.若抛物线的焦点为F ,且FA =5,则双曲线的渐近线方程为____________________.8. 若函数f(x)=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点(π6,2),且相邻两条对称轴间的距离为π2,则f(π4)的值为________.9. 已知正四棱锥PABCD 的所有棱长都相等,高为2,则该正四棱锥的表面积为________.10. 已知函数f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=x 2-5x ,则不等式f(x -1)>f(x)的解集为________.11. 在平面直角坐标系xOy 中,已知点A(-1,0),B(5,0).若在圆M :(x -4)2+(y -m)2=4上存在唯一一点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为________.12. 已知AD 是直角三角形ABC 的斜边BC 上的高,点P 在DA 的延长线上,且满足(PB →+PC →)·AD →=4 2.若AD =2,则PB →·PC →的值为________.13. 已知函数f(x)=⎩⎪⎨⎪⎧|x +3|, x ≤0,x 3-12x +3,x>0.设g(x)=kx +1,且函数y =f(x)-g(x)的图象经过四个象限,则实数k 的取值范围是________.14. 在△ABC 中,若sin C =2cos Acos B ,则cos 2A +cos 2B 的最大值为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分)设向量a =(cos α,λsin α),b =(cos β,sin β),其中λ>0,0<α<β<π2,且a +b 与a -b 互相垂直.(1) 求实数λ的值;(2) 若a·b =45,且tan β=2,求tan α的值.16. (本小题满分14分)如图,在三棱柱ABCA 1B 1C 1中,AB =AC ,A 1C ⊥BC 1,AB 1⊥BC 1,D ,E 分别是AB 1和BC的中点.求证:(1) DE∥平面ACC1A1;(2) AE⊥平面BCC1B1.某公园内有一块以O 为圆心,半径为20米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形OAB 区域,其中两个端点A ,B 分别在圆周上;观众席为梯形ABQP 内且在圆O 外的区域,其中AP =AB =BQ ,∠PAB =∠QBA =120°,且AB ,PQ 在点O 的同侧.为保证视听效果,要求观众席内每一个观众到舞台O 处的距离都不超过60米.设∠OAB =α,α∈(0,π3).问:对于任意α,上述设计方案是否均能符合要求?在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,且椭圆C 短轴的一个顶点到一个焦点的距离等于 2.(1) 求椭圆C 的方程;(2) 设经过点P(2,0)的直线l 交椭圆C 于A ,B 两点,点Q(m ,0). ①若对任意直线l 总存在点Q ,使得QA =QB ,求实数m 的取值范围; ②设F 为椭圆C 的左焦点,若点Q 为△FAB 的外心,求实数m 的值.已知函数f(x)=ln x-2x-2x-1+2a,a>0.(1) 当a=2时,求函数f(x)的图象在x=1处的切线方程;(2) 若对任意x∈[1,+∞),不等式f(x)≥0恒成立,求实数a的取值范围;(3) 若函数f(x)存在极大值和极小值,且极大值小于极小值,求实数a的取值范围.已知数列{a n }各项均为正数,且对任意n ∈N *,都有(a 1a 2…a n )2=a n +11a n -1n +1. (1) 若a 1,2a 2,3a 3成等差数列,求a 2a 1的值;(2) ① 求证:数列{a n }为等比数列;② 若对任意n ∈N *,都有a 1+a 2+…+a n ≤2n -1,求数列{a n }的公比q 的取值范围.2019届高三年级第二次模拟考试(十)数学附加题(本部分满分40分,考试时间30分钟)21. 【选做题】 本题包括A 、B 、C 三小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4-2:矩阵与变换](本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤2b a 3,B =⎣⎢⎡⎦⎥⎤110-1,AB =⎣⎢⎡⎦⎥⎤2141.(1) 求a ,b 的值;(2) 求A 的逆矩阵A -1.B. [选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t ,y =3t +2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =cos θ,y =3sin θ(θ为参数),P 是曲线C 上的任意一点.求点P 到直线l 的距离的最大值.C. [选修4-5:不等式选讲](本小题满分10分) 解不等式:|2x -1|-x ≥2.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)如图是一旅游景区供游客行走的路线图,假设从进口A开始到出口B,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共4名游客结伴到旅游景区游玩,他们从进口A的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口B集中,设C是其中的一个交叉路口点.(1) 求甲经过点C的概率;(2) 设这4名游客中恰有X名游客都是经过点C,求随机变量X的概率分布和数学期望.23. (本小题满分10分)平面上有2n(n≥3,n∈N*)个点,将每一个点染上红色或蓝色.从这2n个点中,任取3个点,记3个点颜色相同的所有不同取法的总数为T.(1) 若n=3,求T的最小值;(2) 若n≥4,求证:T≥2C3n.数学参考答案1. {x|1<x<4}2. -23. 184. 165. 356. -47. y =±233x 8. 3 9. 4+4 310. (-2,3) 11. ±21 12. 2 13. ⎝⎛⎭⎫-9,13 14.2+1215. (1) 由a +b 与a -b 互相垂直,可得(a +b )·(a -b )=a 2-b 2=0, 所以cos 2α+λ2sin 2α-1=0.(2分) 又因为sin 2α+cos 2α=1, 所以(λ2-1)sin 2α=0.(4分)因为0<α<π2,所以sin 2α≠0,所以λ2-1=0.又因为λ>0,所以λ=1.(6分) (2) 由(1)知a =(cos α,sin α).由a·b =45,得cos αcos β+sin αsin β=45,即cos(α-β)=45.(8分)因为0<α<β<π2,所以-π2<α-β<0,所以sin(α-β)=-1-cos 2(α-β)=-35.(10分)所以tan(α-β)=sin (α-β)cos (α-β)=-34,(12分)因此tan α=tan(α-β+β)=tan (α-β)+tan β1-tan (α-β)tan β=12.(14分)16. (1) 连结A 1B ,在三棱柱ABCA 1B 1C 1中,AA 1∥BB 1且AA 1=BB 1, 所以四边形AA 1B 1B 是平行四边形. 又因为D 是AB 1的中点,所以D 也是BA 1的中点.(2分)在△BA 1C 中,D 和E 分别是BA 1和BC 的中点,所以DE ∥A 1C. 又因为平面ACC 1A 1,A 1平面ACC 1A 1, 所以DE ∥平面ACC 1A 1.(6分)(2) 由(1)知DE ∥A 1C ,因为A 1C ⊥BC 1, 所以BC 1⊥DE.(8分)又因为BC 1⊥AB 1,AB 1∩DE =D ,AB 1,平面ADE ,所以BC 1⊥平面ADE. 又因为平面ADE ,所以AE ⊥BC 1.(10分) 在△ABC 中,AB =AC ,E 是BC 的中点, 所以AE ⊥BC.(12分)因为AE ⊥BC 1,AE ⊥BC ,BC 1∩BC =B , BC 1,平面BCC 1B 1,所以AE ⊥平面BCC 1B 1.(14分)17. 过点O 作OH 垂直于AB ,垂足为H.在直角三角形OHA 中,OA =20,∠OAH =α, 所以AH =20cos α,因此AB =2AH =40cos α.(4分) 由图可知,点P 处的观众离点O 最远.(5分) 在三角形OAP 中,由余弦定理可知 OP 2=OA 2+AP 2-2OA·AP·cos ⎝⎛⎭⎫α+2π3(7分) =400+(40cos α)2-2×20×40cos α·(-12cos α-32sin α)=400(6cos 2α+23sin αcos α+1)=400(3cos 2α+3sin 2α+4) =8003sin ⎝⎛⎭⎫2α+π3+1 600.(10分) 因为α∈⎝⎛⎭⎫0,π3,所以当2α=π6,即α=π12时, (OP 2)max =8003+1 600,即OP max =203+20.(12分)因为203+20<60,所以观众席内每一个观众到舞台O 处的距离都不超过60米.(13分) 故对于任意α,上述设计方案均能符合要求.(14分) 18. (1) 依题意得⎩⎪⎨⎪⎧c a =22,a =2,解得⎩⎨⎧c =1,a =2,所以b 2=a 2-c 2=1,所以椭圆C 的方程为 x 22+y 2=1.(2分)(2) 解法一:设直线的方程为y =k(x -2),代入椭圆C 的方程,消去y ,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 因为直线l 交椭圆C 于两点,所以Δ=(-8k 2)2-4(1+2k 2)(8k 2-2)>0, 解得-22<k<22.(4分) 设点A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2.①设AB 的中点为M(x 0,y 0),则x 0=x 1+x 22=4k 21+2k 2,y 0=k(x 0-2)=-2k1+2k 2.(6分) 当k ≠0时,因为QA =QB ,所以QM ⊥l , 即k QM ·k =-2k1+2k 2-04k 21+2k 2-m ·k =-1.解得m =2k 21+2k 2.(8分)当k =0时,可得m =0,符合m =2k 21+2k 2.因此m =2k 21+2k 2.由0≤k 2=m 2(1-m )<12,解得0≤m<12.(10分)②因为点Q 为△FAB 的外心,且点F(-1,0),所以QA =QB =QF.由⎩⎪⎨⎪⎧(m +1)2=(x -m )2+y 2,x 22+y 2=1,(12分) 消去y ,得x 2-4mx -4m =0, 所以x 1,x 2也是此方程的两个根, 所以x 1+x 2=4m ,x 1x 2=-4m.(14分) 又因为x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,所以8k 21+2k 2=-8k 2-21+2k 2,解得k 2=18, 所以m =2k 21+2k 2=15.(16分) 解法二:①设点A(x 1,y 1),B(x 2,y 2),AB 中点为M(x 0,y 0). 依题意⎩⎨⎧x 212+y 21=1,x 222+y 22=1,两式作差,得y 1-y 2x 1-x 2×y 0x 0=-12(x 0≠0).又因为y 1-y 2x 1-x 2=k AB =y 0-0x 0-2,所以y 20=-12x 0(x 0-2). 当x 0=0时,y 0=0,符合y 20=-12x 0(x 0-2).(ⅰ)(4分) 又因为QA =QB ,所以QM ⊥l ,所以(x 0-m)(x 0-2)+(y 0-0)(y 0-0)=0, 即y 20=-(x 0-m)(x 0-2).(ⅱ)(6分) 由(ⅰ)(ⅱ),解得x 0=2m ,因此y 20=2m -2m 2.(8分)因为直线l 与椭圆C 相交,所以点M 在椭圆C 内, 所以(2m )22+(2m -2m 2)<1,解得m<12.又y 20=2m -2m 2≥0,所以0≤m ≤1.综上,实数m 的取值范围是⎣⎡⎭⎫0,12.(10分) ②因为点Q 为△FAB 的外心,且点F(-1,0),所以QA =QB =QF.由⎩⎪⎨⎪⎧(m +1)2=(x -m )2+y 2,x 22+y 2=1消去y , 得x 2-4mx -4m =0.(ⅲ)(12分)当y 0≠0时,则直线l 为y =-x 02y 0(x -2),代入椭圆的方程,得(2y 20+x 20)x 2-4x 20x +4x 20-4y 20=0.将(ⅰ)代入上式化简得x 2-2x 0x +3x 0-2=0.(ⅳ)当y 0=0时,此时x 0=0,x 1=-2,x 2=2也满足上式.(14分) 由①可知m =x 02,代入(ⅲ)化简得x 2-2x 0x -2x 0=0.(ⅴ)因为(ⅳ)(ⅴ)是同一个方程, 所以3x 0-2=-2x 0,解得x 0=25,所以m =x 02=15.(16分)19. (1) 当a =2时,f(x)=lnx -2x -2x +3,f′(x)=1x -8(x +3)2,则f′(1)=12. 又因为f(1)=0,所以函数f(x)的图象在x =1处的切线方程为y =12(x -1),即x -2y -1=0.(2分)(2) 因为f(x)=ln x -2x -2x -1+2a ,所以f′(x)=1x -4a(x -1+2a )2=x 2-2x +4a 2-4a +1x (x -1+2a )2=(x -1)2+4a 2-4a x (x -1+2a )2,(4分)且f(1)=0.因为a>0,所以1-2a<1. ①当4a 2-4a ≥0,即a ≥1时,因为f′(x)>0在区间(1,+∞)上恒成立, 所以函数f(x)在区间(1,+∞)上单调递增. 当x ∈[1,+∞)时,f(x)≥f(1)=0, 所以a ≥1满足条件.(6分) ②当4a 2-4a<0,即0<a<1时,由f′(x)=0,得x 1=1-2a -a 2∈(0,1), x 2=1+2a -a 2∈(1,+∞), 当x ∈(1,x 2)时,f′(x)<0,则函数f(x)在区间(1,x 2)上单调递减,所以当x ∈(1,x 2)时,f(x)<f(1)=0,这与x ∈[1,+∞)时,f(x)≥0恒成立矛盾,所以0<a<1不满足条件.综上,实数a 的取值范围为[1,+∞).(8分) (3) ①当a ≥1时,因为函数f′(x)≥0在区间(0,+∞)上恒成立, 所以函数f(x)在区间(0,+∞)上单调递增, 所以函数f(x)不存在极值, 所以a ≥1不满足条件;(9分) ②当12<a<1时,1-2a<0,所以函数f(x)的定义域为(0,+∞), 由f′(x)=0,得x 1=1-2a -a 2∈(0,1), x 2=1+2a -a 2∈(1,+∞). 列表如下:由于函数f(x)在区间(x 1,x 2)是单调减函数,此时极大值大于极小值,不合题意, 所以12<a<1不满足条件.(11分)③当a =12时,由f′(x)=0,得x =2.列表如下:此时函数f(x)仅存在极小值,不合题意, 所以a =12不满足条件.(12分)④当0<a<12时,函数f(x)的定义域为(0,1-2a)∪(1-2a ,+∞),且0<x 1=1-2a -a 2<1-2a , x 2=1+2a -a 2>1-2a. 列表如下:所以函数f(x)存在极大值f(x 1)和极小值f(x 2),(14分) 此时f(x 1)-f(x 2)=ln x 1-2x 1-2x 1-1+2a -ln x 2+2x 2-2x 2-1+2a=ln x 1x 2-4a (x 1-x 2)(x 1-1+2a )(x 2-1+2a ).因为0<x 1<1-2a<x 2,所以ln x 1x 2<0,x 1-x 2<0,x 1-1+2a<0,x 2-1+2a>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 所以0<a<12满足条件.综上,实数a 的取值范围为⎝⎛⎭⎫0,12.(16分) 20. (1) 因为(a 1a 2)2=a 31a 3,所以a 22=a 1a 3, 因此a 1,a 2,a 3成等比数列.(2分)设公比为t ,因为a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,即4×a 2a 1=1+3×a 3a 1,于是4t =1+3t 2,解得t =1或t =13,所以a 2a 1=1或13.(4分)(2) ①因为(a 1a 2…a n )2=a n +11a n -1n +1,所以(a 1a 2…a n a n +1)2=a n +21a nn +2,两式相除得a 2n +1=a 1·a n n +2a n -1n +1,即a n +1n +1=a 1a nn +2,(*)(6分)由(*),得a n +2n +2=a 1a n +1n +3,(**)(*)(**)两式相除得a n +2n +2a n +1n +1=a n +1n +3a n n +2,即a 2n +2n +2=a n +1n +1a n +1n +3, 所以a 2n +2=a n +1a n +3,即a 2n +1=a n a n +2,n ≥2,n ∈N *,(8分)由(1)知a 22=a 1a 3,所以a 2n +1=a n a n +2,n ∈N *, 因此数列{a n }为等比数列.(10分) ②当0<q ≤2时,由n =1时,可得0<a 1≤1,所以a n =a 1q n -1≤2n -1,因此a 1+a 2+…+a n ≤1+2+…+2n -1=2n -1, 所以0<q ≤2满足条件.(12分) 当q>2时,由a 1+a 2+…+a n ≤2n-1,得a 1(1-q n )1-q≤2n-1,整理得a 1q n ≤(q -1)2n +a 1-q +1.(14分)因为q>2,0<a 1≤1,所以a 1-q +1<0, 因此a 1q n<(q -1)2n,即⎝⎛⎭⎫q 2n<q -1a 1,由于q 2>1,因此n<log q 2q -1a 1,与任意n ∈N *恒成立相矛盾,所以q>2不满足条件.综上,公比q 的取值范围为(0,2].(16分)21. A. (1) 因为A =⎣⎢⎡⎦⎥⎤2b a 3,B =⎣⎢⎡⎦⎥⎤110-1,AB =⎣⎢⎡⎦⎥⎤2141,所以⎩⎪⎨⎪⎧2-b =1,a =4,a -3=1,即⎩⎪⎨⎪⎧b =1,a =4.(4分)(2) 因为|A |=2×3-1×4=2,(6分)所以A-1=⎣⎢⎡⎦⎥⎤32-12-4222=⎣⎢⎢⎡⎦⎥⎥⎤32-12-21.(10分) B. 直线l 的参数方程为⎩⎨⎧x =t ,y =3t +2(t 为参数),化为普通方程为3x -y +2=0.(2分)设点P(cos θ,3sin θ), 则点P 到直线l 的距离d =|3cos θ-3sin θ+2|(3)2+1=⎪⎪⎪⎪6cos ⎝⎛⎭⎫θ+π4+22,(6分)取θ=-π4时,cos ⎝⎛⎭⎫θ+π4=1,此时d 取最大值, 所以距离d 的最大值为6+22.(10分) C. 当x ≥12时,由2x -1-x ≥2,得x ≥3.(4分)当x<12时,由1-2x -x ≥2,得x ≤-13.(4分)综上,原不等式的解集为{x|x ≥3或x ≤-13}.(10分)22. (1) 设“甲从进口A 开始到出口B 经过点C ”为事件M ,甲选中间的路的概率为13,在前面从岔路到达点C 的概率为12,这两个事件相互独立,所以选择从中间一条路走到点C 的概率为P 1=13×12=16.(2分)同理,选择从最右边的道路走到点C 的概率为P 2=13×12=16.因为选择中间道路和最右边道路行走的两个事件彼此互斥,所以P(M)=P 1+P 2=16+16=13.故甲从进口A 开始到出口B 经过点C 的概率13.(4分)(2) 随机变量可能的取值X =0,1,2,3,4,(5分) 则P(X =0)=C 04×⎝⎛⎭⎫130×⎝⎛⎭⎫234=1681,P(X =1)=C 14×⎝⎛⎭⎫131×⎝⎛⎭⎫233=3281, P(X =2)=C 24×⎝⎛⎭⎫132×⎝⎛⎭⎫232=2481, P(X =3)=C 34×⎝⎛⎭⎫133×⎝⎛⎭⎫231=881, P(X =4)=C 44×⎝⎛⎭⎫134×⎝⎛⎭⎫230=181,(8分) 概率分布为:数学期望E(X)=0×1681+1×3281+2×2481+3×881+4×181=43.(10分)23. (1) 当n =3时,共有6个点,若染红色的点的个数为0或6, 则T =C 36=20;若染红色的点的个数为1或5, 则T =C 35=10;若染红色的点的个数为2或4, 则T =C 34=4;若染红色的点的个数为3,则T =C 33+C 33=2; 因此T 的最小值为2.(3分)(2) 首先证明:任意n ,k ∈N *,n ≥k ,有C k n +1>C kn .证明:因为C k n +1-C k n =C k -1n >0,所以C k n +1>C kn .设这2n 个点中含有p(p ∈N ,p ≤2n)个染红色的点, ①当p ∈{0,1,2}时,T =C 32n -p ≥C 32n -2=(2n -2)(2n -3)(2n -4)6=4×(n -1)(n -2)(2n -3)6.因为n ≥4,所以2n -3>n ,所以T>4×n (n -1)(n -2)6=4C 3n >2C 3n .(5分) ②当p ∈{2n -2,2n -1,2n}时,T =C 3p ≥C 32n -2,同理可得T>2C3n.(6分)③当3≤p≤2n-3时,T=C3p+C32n-p,设f(p)=C3p+C32n-p,3≤p≤2n-3,当3≤p≤2n-4时,f(p+1)-f(p)=C3p+1+C32n-p-1-C3p-C32n-p=C2p-C22n-p-1,显然p≠2n-p-1,当p>2n-p-1即n≤p≤2n-4时,f(p+1)>f(p),当p<2n-p-1即3≤p≤n-1时,f(p+1)<f(p),即f(n)<f(n+1)<…<f(2n-3);f(3)>f(4)>…>f(n);因此f(p)≥f(n)=2C3n,即T≥2C3n.综上,当n≥4时,T≥2C3n.(10分)。
苏锡常镇四市2025届高三年级第二学期调研考试数学试题

苏锡常镇四市2025届高三年级第二学期调研考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列函数中,既是偶函数又在区间0,上单调递增的是( )A .y =B .()sin f x x x =C .()2f x x x =+ D .1y x =+ 2.费马素数是法国大数学家费马命名的,形如()221n n N +∈的素数(如:02213+=)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是( )A .215B .15C .415D .13 3.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( )A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=4.已知函数3(1),1()ln ,1x x f x x x ⎧-≤=⎨>⎩,若()()f a f b >,则下列不等关系正确的是( )A .221111a b <++ BC .2a ab <D .()()22ln 1ln 1a b +>+ 5.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,12n n T c c c =+++()*n ∈N ,则当2020n T <时,n 的最大值是( ) A .8 B .9 C .10 D .116.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( )A 1B 1C .2D 7.在棱长为2的正方体ABCD −A 1B 1C 1D 1中,P 为A 1D 1的中点,若三棱锥P −ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .12πB .21π2C .41π4D .10π8.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则AB =( ) A .{2} B .{1,0}-C .{}1-D .{1,0,1}-9.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令12121ln 2,,log 24a b c -⎛⎫=== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b << 10.已知复数z 在复平面内对应的点的坐标为(1,2)-,则下列结论正确的是( )A .2z i i ⋅=-B .复数z 的共轭复数是12i -C .||5z =D .13122z i i =++ 11.如图示,三棱锥P ABC -的底面ABC 是等腰直角三角形,90ACB ∠=︒,且2PA PB AB ===,3PC =,则PC 与面PAB 所成角的正弦值等于( )A .13B 6C 3D .23 12.已知集合2{|1}A x x =<,2{|log 1}B x x =<,则A .{|02}AB x x ⋂=<<B .{|2}A B x x ⋂=<C .{|2}A B x x ⋃=<D .{|12}A B x x =-<<二、填空题:本题共4小题,每小题5分,共20分。
江苏省七市2020届高三第二次调研考试数学试题Word版含解析

江苏省七市2020届高三第二次调研考试数学试题一、填空题:本大题共14小题,每小题5分,共计70分.1.a的值为____.【答案】4【解析】【分析】a值即可a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.(____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求故实部为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故答案为 35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2种,甲、乙两人中恰有1种,【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.___.【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.___.【解析】【分析】先由平移得f(x)【详解】=2sin(3x+【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.则b的值为___.【答案】2【解析】【分析】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C 120°,sinB 2 sinA,且△ABC的面积为AB的长为____.【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣°=28,解得即【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA 2 m,PB 3 m,PC 4 m,则球O的表面积为____m2.【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA 2 m,PB 3 m,PC 4 m,∴2R则球O的表面积S=4πR2=29π【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O 的半径,是解答本题的关键,是基础题11.定义在R满足上,___.【答案】5【解析】【分析】【详解】的周期为4,故f(x)关于(2,0)中心对称,又f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.,b,的解集为{ x | 3 < x < 4}___.【解析】【分析】由不等式解集知a<0,将b,c分别用a 表示代入利用基本不等式求最小值即可【详解】由不等式解集知a<0,,当且仅当-24a=即故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B点P(3,1,M的横坐标为x0,则x0的所有值为____.【解析】【分析】设AB中点为M将向量坐标【详解】设AB中点为②,将【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.,从集合;从集合中取出个不同元素,其和记为.若,则____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式且仅当m=t=22时取等,∵t为奇数,∴t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为4344故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.,其中(1(2【答案】(1);(2【解析】【分析】(1(2展开即可代入求解【详解】(1∥,,所以.解得.(2)因为,所以,,解得【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题16.如图所示,在直三棱柱ABC A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,进而BB1⊥A1B1,证得A1B1⊥平面BCC1B1,进而A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB平面ABB1 A1,DE平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1平面BCC1B1,BB1∩B1C1 B1,所以A1B1⊥平面BCC1B1.又因为BC1平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C B1,A1B1,B1C 平面A1B1C,所以BC1⊥平面A1B1C.【点睛】本题考查线面平行的证明,线面垂直的判定,熟记判断定理,准确推理是关键,是基础题.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD 和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH(1)求屋顶面积S关于(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当【答案】(1(2【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM 平面ABCD,得FH⊥HM.在R t△FHM中,HM 5因此△FBC所以S).(2)在Rt△FHM,所以主体高度为记,所以,,得列表:为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1C2C2与C1(1)求椭圆C2的标准方程;(2C2上一点.C1,且直线C1均有且只有一个公共点,求证:【答案】(1(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆b即可;(2)①当直线OP斜率不存在时,得OP斜率存在时,设直线OP,推求;②,直线的方程为,记,则C1的方程得,由,得,再将代入得由韦达定理及点P【详解】(1)设椭圆C2的焦距为2c,由题意,C2(2)①1°当直线OP斜率不存在时,2°当直线OP斜率存在时,设直线OP的方程为代入椭圆C1的方程,消去y,由题意,同号,所以为定值.,所以直线的方程为代入椭圆C1的方程,消去yC1有且只有一个公共点,k.又点在C2上,所以【点睛】本题考查直线与椭圆的位置关系,定值问题,熟练运用韦达定理,及构建二次方程思想是关键,要求较高的计算能力,是中档题19.(1时,求函数的极值;(2)在的值;(3【答案】(1的极大值为;极小值为(2(3)见解析【解析】【分析】(1(2(3)假设存在一条直线的图象有两个不同的切点同一直线理,,令构造函数,求导求得盾,说明假设不成立,则不存在【详解】(1)时,函数的定义域为,令得,或;极小值为(2)依题意,切线方程为变形得在,(当且仅当,,从而(3)假设存在一条直线与函数的图象有两个不同的切点的方程为:整理得,消去得,.,由与,得,所以为上的单调减函数,所以【点睛】本题考查导数与函数的单调性与极值,切线问题,转化与化归能力,准确计算是关键,第三问转化为函数与方程的关系是难点,是较难的题目.20.n项和为S n n项和为T n,且(1(2(3的所有值.【答案】(1(21为公比的等比数列;(3)0【解析】【分析】(1)令n=1,n=2列关方程求解即可;(2)因①,③n=1比数列(3)由(2)对任意的,当为奇数时恒成立,和,当为奇数时,单调减,(*),说明上面两个不等式不恒成立,推得矛盾,即可求得只有【详解】(1(2①②④又由(1,1为首项,为公比的等比数列.(3)由(2.,对任意的,当为奇数时,,因为所以,所以(*),时,有,所以,当为奇数时,时,有不符.综上,实数的所有值为0.【点睛】本题考查数列综合问题,由递推关系求数列通项公式,不等式恒成立问题,考查转化化归能力,准确计算是关键,是难题21.【选做题】A.[选修4-2:矩阵与变换](本小题满分10分)已知m3的一个特征向量,求矩阵M及另一个特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy为参数),椭圆C的参数方程为C交于A,B两点,求线段AB的长.C.[选修4-5:不等式选讲](本小题满分10分)已知x,y,z【答案】A B C:见解析【解析】【分析】A由矩阵的运算求解即可;B坐标,由弦长公式求得AB的长;C.由柯西不等式证明即可【详解】A.矩阵的特征多项式的另一个特征值为B,.C.由柯西不等式得,,所以当且仅当“”时取等号.【点睛】本题考查矩阵运算,直线的参数方程,弦长公式,柯西不等式证明不等式,熟练掌握矩阵运算,柯西不等式是关键,是基础题【必做题】第22题、第23题,每小题10分,共计20分.22.AB 1,AP AD 2.(1所成角的正弦值;(2)若点M,N分别在AB,PC M,N的位置.【答案】(1(2)M为AB的中点,N为PC的中点【解析】【分析】(1)由题意知,AB,AD,AP平面PCD的一个法向量为(2PCD M,N的位置【详解】(1)由题意知,AB,AD,AP两两垂直.设平面PCD不妨取则.所以平面PCD设直线PB与平面PCD即直线PB与平面PCD所成角的正弦值为.(21)知,平面PCDPCD所以M为AB的中点,N为PC的中点.【点睛】本题考查空间向量的应用,求线面角,探索性问题求点位置,熟练掌握空间向量的运算是关键,是基础题23.证明:(1(2,【答案】(1)见解析;(2)见解析【解析】【分析】(1(2)运用数学归纳法证明即可【详解】(1(2)①当时,由(1)可知,命题成立;均为非负实数,且所以【点睛】本题考查数学归纳法证明不等式,基本不等式证明问题,准确计算,严密的推理是关键,是中档题。
江苏省苏锡常镇四市2020~2021学年度第二学期高三一模数学试卷(含答案)
A.辛酉年
B.辛戊年
C.壬酉年
D.壬戊年
1/15
【答案】A 【考点】文化题:等差数列的应用 【解析】由题意天干是公差为 10 的等差数列,地支为公差为 12 的等差数列,则 100 年前可 得到为辛酉年,故答案选 A. 4.(3-2x)(x+1)5 式中 x3 的系数为 A.错误!未定义书签。-15 B.-10 C.10 错误!未定义书签。D.15 【答案】C 【考点】二项式定理展开式的应用
9.函数 f (x) = sin 2x + π ,则
4
A.函数 y=f(x)的图象可由函数 y=sin2x 的图象向右平移 π4个单位得到 B.函数 y=f(x)的图象关于直线 x=π8轴对称
2/6
C.函数 y=f(x)的图象关于点 (-π8,0)中心对称
D.函数 y=x2+f(x)在 0,π 上为增函数 8
A.辛酉年
B.辛戊年
C.壬酉年
D.壬戊年
4.(3-2x)(x+1)5 式中 x3 的系数为
A.错误!未定义书签。-15 B.-10 C.10 错误!未定义书签。D.15
( ) 5.函数 f (x) = sin x ln x2 +1 − x 的图象大致是
1/6
6.过抛物线 y2=2x上一点 P 作圆 C:x2 + (y − 6)2 = 1的切线,切点为 A,B,则当四边形
(2)设数列{an}的前 n 项和为 Sn ,证明:数列{sn}中的任意连续三项按适当顺序排列后,可
以成等差数列.
4/6
19.(12 分) 如图,在四棱锥 P-ABCD 中,△PAD 是以 AD 为斜边的等腰直角三角形,BC//AD,AB⊥ AD,AD=2AB=2BC=2,PC= 2,E 为 PD 的中点. (1)求直线 PB 与平面 PAC 所成角的正弦值; (2)设 F 是 BE 的中点,判断点 F 是否在平面 PAC 内,并请证明你的结论.
江苏省七市(南通、泰州、扬州、徐州、淮安、连云港、宿迁)2020届高三第二次调研考试数学试题含附加题答案
江苏省苏北七市2020届高三第二次调研考试数学试题2020.4一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........) 1.已知集合A ={1,4},B ={a ﹣5,7}.若A B ={4},则实数a 的值是 .答案:9考点:集合交集运算解析:∵集合A ={1,4},B ={a ﹣5,7}.A B ={4},∴a ﹣5=4,则a 的值是9. 2.若复数z 满足2i iz=+,其中i 是虚数单位,则z 的模是 .考点:复数 解析:∵2i iz=+,∴22i i 12i z =+=-+,则z =.3.在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8.则该农作物的年平均产量是 吨. 答案:10 考点:平均数 解析:9.49.79.810.310.8105x ++++==.4.右图是一个算法流程图,则输出的S 的值是 .答案:5 2考点:算法与流程图解析:第一次S=15,k=1;第二次S=15,k=2;第三次S=152,k=3;第四次S=52<3;所以输出的S的值是52.5.“石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头.甲、乙两人玩一次该游戏,则甲不输的概率是.答案:2 3考点:随机事件的概率解析:甲、乙两人玩一次该游戏,共有9种情况,其中甲不输有6种可能,故概率为62 93 =.6.在△ABC中,已知B=2A,AC BC,则A的值是.答案:6π考点:正弦定理,二倍角的正弦公式解析:∵AC,∴b=,即sinB sinA,∵B=2A,∴sin2A,则2sinAcosA sinA,∵sinA ≠0,∴cos A 2=,A ∈(0,π),则A =6π. 7.在等差数列{}n a (n N *∈)中,若124a a a =+,83a =-,则20a 的值是 . 答案:﹣15考点:等差数列的通项公式及性质解析:∵数列{}n a 是等差数列,∴1524a a a a +=+,又124a a a =+,∴50a =, ∴8531853a a d --===--,故2051515a a d =+=-. 8.如图,在体积为V 的圆柱O 1O 2中,以线段O 1O 2上的点O 为项点,上下底面为底面的两个圆锥的体积分别为V 1,V 2,则12V V V+的值是 .答案:13考点:圆柱圆锥的体积 解析:由12112121211113333O O O V V S OO S OO S O O V +=⋅+⋅=⋅=,得1213V V V +=. 9.在平面直角坐标系xOy 中,双曲线22221x y a b-=(a >0,b >0)的左顶点为A ,右焦点为F ,过F 作x 轴的垂线交双曲线于点P ,Q .若△APQ 为直角三角形,则该双曲线的离心率是 . 答案:2考点:双曲线的简单性质解析:由题意知,AF =PF ,即2b a c a +=,∴22c a a c a-+=,化简得:220e e --=,又e >1,∴e =2.10.在平面直角坐标系xOy 中,点P 在直线y =2x 上,过点P 作圆C :(x ﹣4)2+y 2=8的一条切线,切点为T .若PT =PO ,则PC 的长是 .考点:直线与圆解析:设P(p ,2p ),则2222(4)45816PC p p p p =-+=-+,2222588PT PC TC p p =-=-+,225PO p =,∵PT =PO ,∴225885p p p -+=,解得p =1,∴22581613PC p p =-+=,即PC 11.若x >1,则91211x x x +++-的最小值是 . 答案:8考点:基本不等式解析:91912116281111x x x x x x x ++=+++-+≥+=+-+-,当且仅当x =2时取“=”. 12.在平面直角坐标系xOy 中,曲线xy e =在点P(0x ,0xe )处的切线与x 轴相交于点A ,其中e 为自然对数的底数.若点B(0x ,0),△PAB 的面积为3,则0x 的值是 . 答案:ln6考点:利用导数研究函数的切线解析:∵xy e '=,∴0xk e =,则切线方程为000()x x y ee x x -=-,令y =0,求得01A x x =-,∴01132x e ⨯⋅=,解得0ln 6x =. 13.图(1)是第七届国际数学教育大会(ICME —7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,则6778A A A A ⋅的值是 .考点:平面向量数量积 解析:sin ∠A 6A 7O=67A O A O =,∴6778A A A A 117⋅=⨯=. 14.设函数2log , 04()(8), 48x a x f x f x x ⎧-<≤⎪=⎨-<<⎪⎩,若存在实数m ,使得关于x 的方程()f x m =有4个不相等的实根,且这4个根的平方和存在最小值,则实数a 的取值范围是 .答案:(-∞,1) 考点:函数与方程解析:当2a ≥时,2log 0x a -≤,此时22log , 04()log (8), 48a x x f x a x x -<≤⎧=⎨--<<⎩,此时函数()f x在(0,4)单调递减,在(4,8)单调递增,方程()f x m =最多2个不相等的实根,舍; 当a <2时,函数()f x 图像如下所示:从左到右方程()f x m =4个不相等的实根,依次为1x ,2x ,3x ,4x ,即1x <2x <3x <4x ,由图可知2122log log a x x a -=-,故124ax x =,且328x x =-,418x x =-,从而222222123411211442()16()128a ax x x x x x x x +++=+-++,令114a t x x =+,显然t >4a,22222112342161284a x x x x t t ++++=-+-,要使该式在t >4a时有最小值,则对称轴t =4>4a,解得a <1.综上所述,实数a 的取值范围是(-∞,1).二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)在平面直角坐标系xOy 中,已知向量a =(cos α,sin α),b =(cos(α+4π),sin(α+4π)),其中0<α<2π. (1)求()b a a -⋅的值;(2)若c =(1,1),且()b c +∥a ,求α的值.解:(1)因为向量()cos sin αα=,a ,()()()ππcos sin 44αα=++,b ,所以()2-⋅=⋅-b a a a b a …2分()()()22ππcos cos sin sin cos sin 44αααααα=+++-+ …4分()πcos 14=--1=. ……6分 (2)因为()11=,c ,所以+b c ()()()ππcos 1sin 144αα=++++,.因为()+b c ∥a ,所以()()()()ππcos 1sin sin 1cos 044αααα++-++=.…9分于是()()ππsin cos sin cos cos sin 44αααααα-=+-+,()ππsin 44α-=,即()π1sin 42α-=. ………………12分 因为π02α<<,所以πππ444α-<-<. 于是ππ46α-=,即5π12α=. …14分16.(本题满分14分)如图,在直三棱柱ABC —A 1B 1C 1中,CA =CB ,点P ,Q 分别为AB 1,CC 1的中点.求证:(1)PQ ∥平面ABC ; (2)PQ ⊥平面ABB 1A 1.解:(1)取AB 的中点D ,连结PD CD ,.在△1ABB 中,因为P D ,分别为1AB AB ,中点, 所以1PD BB ∥,且112PD BB =. 直三棱柱ABC -A 1B 1C 1中,11CC BB ∥,11CC BB =.因为Q 为棱1CC 的中点,所以1CQ BB ∥,且112CQ BB =. …3分于是PD CQ ∥,PD CQ =.所以四边形PDCQ 为平行四边形,从而PQ CD ∥. ……5分又因为CD ABC ⊂平面,PQ ABC ⊄平面,所以PQ ABC ∥平面. …7分(2)在直三棱柱ABC -A 1B 1C 1中,1BB ABC ⊥平面.又CD ABC ⊂平面,所以1BB CD ⊥.因为CA CB =,D 为AB 中点,所以CD AB ⊥. ……10分由(1)知CD PQ ∥,所以1BB PQ ⊥,AB PQ ⊥. ……12分 又因为1ABBB B =,11AB ABB A ⊂平面,111BB ABB A ⊂平面,所以11PQ ABB A ⊥平面. ……14分 17.(本题满分14分)如图,在平面直角坐标系xOy 中,已知圆C :(x ﹣3)2+y 2=1,椭圆E :22221x ya b+=(a>b >0)的右顶点A 在圆C 上,右准线与圆C 相切.(1)求椭圆E 的方程;(2)设过点A 的直线l 与圆C 相交于另一点M ,与椭圆E 相交于另一点N .当AN =127AM 时,求直线l 的方程.解:(1)记椭圆E 的焦距为2c (0c >).因为右顶点()0A a ,在圆C 上,右准线2a x c=与圆C :()2231x y -+=相切.所以()22230131a a c ⎧-+=⎪⎨-=⎪⎩,, 解得 21a c =⎧⎨=⎩,.于是2223b a c =-=,所以椭圆方程为:22143y x +=. ……4分 (2)法1:设()()N N M M N x y M x y ,,,, 显然直线l 的斜率存在,设直线l 的方程为:()2y k x =-.由方程组 ()222143y k x y x =-⎧⎪⎨+=⎪⎩,消去y 得,()2222431616120k x k x k +-+-=.所以221612243N k x k -⋅=+,解得228643N k x k -=+. ……6分 由方程组()()22231y k x x y =-⎧⎪⎨-+=⎪⎩,,消去y 得,()()2222146480k x k x k +-+++=, 所以224+821M k x k ⋅=+,解得222+41M k x k =+. ……8分 因为127AN AM =,所以()12227N M x x -=-. ……10分 即22121227431k k =⋅++,解得 1k =±, ……12分所以直线l 的方程为20x y --=或 20x y +-=. ……14分法2:设()()N N M M N x y M x y ,,,,当直线l 与x 轴重合时,不符题意.设直线l 的方程为:()20x ty t =+≠. 由方程组222143x ty y x =+⎧⎪⎨+=⎪⎩,消去x 得,()2234120tx ty ++=,所以21234N t y t -=+ . ……6分由方程组 ()22231x ty x y =+⎧⎪⎨-+=⎪⎩,消去x 得, ()22120t x ty +-=, 所以221M t y t =+ . ……8分 因为127AN AM =,所以127N M y y =-. ……10分即22121227341t t t t -=-⋅++,解得 1t =±, ……12分 所以直线l 的方程为20x y --=或 20x y +-=. ……14分18.(本题满分16分)某公园有一块边长为3百米的正三角形ABC 空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道DE 将△ABC 分成面积之比为2:1的两部分(点D ,E 分别在边AB ,AC 上);再取DE 的中点M ,建造直道AM (如图).设AD =x ,DE =1y ,AM =2y (单位:百米).(1)分别求1y ,2y 关于x 的函数关系式;(2)试确定点D 的位置,使两条直道的长度之和最小,并求出最小值.解:(1)因为23ADE ABC S S =△△,△ABC 是边长为3的等边三角形,又AD = x ,所以()2121sin =3sin 23323AD AE ππ⋅⋅⨯⨯,所以6AE x =. ……2分由03603AD x AE x <=⎧⎪⎨<=⎪⎩≤,≤,得23x ≤≤. ……4分 法1:在ADE △中,由余弦定理,得22222362cos 63DE AD AE AD AE x x π=+-⋅⋅=+-. 所以,直道DE 长度y 1关于x的函数关系式为[]123y x ∈,.……6分在ADM △和AEM △中,由余弦定理,得2222cos AD DM AM DM AM AMD =+-⋅⋅∠ ①()2222cos AE EM AM EM AM AMD =+-⋅⋅π-∠ ② …8分 因为M 为DE 的中点,所以12DM EM DE ==.由①+②,得22222221222AD AE DM EM AM DE AM +=++=+,所以()()222226136622x x AMxx +=+-+, 所以2229342x AM x =++. 所以,直道AM 长度y 2关于x 的函数关系式为[]223y x =∈,. ……10分法2:因为在ADE △中,DE AE AD =-,所以()2222222663622cos 63DE AE AE AD AD x x x xx xπ=-⋅+=-⋅+=+-. 所以,直道DE 长度y 1关于x 的函数关系式为[]123y x x ∈,.……6分在△ADE 中,因为M 为DE 的中点,所以()12AM AD AE =+. …8分所以()()2222211362644AM AD AE AD AE x x =++⋅=++. 所以,直道AM 长度y 2关于x 的函数关系式为[]223y x =∈,.……10分(2)由(1)得,两条直道的长度之和为12+DE AM y y =+=……12分=(当且仅当22223694x x x x⎧=⎪⎨⎪=⎩,即x =时取=“”). …14分 答:当AD 百米.16分19.(本题满分16分)若函数()f x 在0x 处有极值,且00()f x x =,则称0x 为函数()f x 的“F 点”. (1)设函数2()2ln f x kx x =-(k ∈R).①当k =1时,求函数()f x 的极值;②若函数()f x 存在“F 点”,求k 的值;(2)已知函数32()g x ax bx cx =++(a ,b ,c ∈R ,a ≠0)存在两个不相等的“F 点”1x ,2x ,且12()()1g x g x -≥,求a 的取值范围.解:(1)① 当k = 1时,f ( x ) = x 2- 2 ln x( k ∈R ),所以()()()()2110x x f x x x-+'=>,令()0f x '=,得x = 1, ……2分列表如下:所以函数()f x 在x = 1处取得极小值,极小值为1,无极大值. ……4分 ② 设x 0是函数()f x 的一个“F 点”()00x >.因为()()()2210kx f x x x-'=>,所以x 0是函数()f x '的零点.所以0k >,由()00f x '=,得201kx x ==, 由00()f x x =,得2002ln kx x x -=,即00+2ln 10x x -=. ……6分 设()+2ln 1x x x ϕ=-,则()21+0x xϕ'=>,所以函数()+2ln 1x x x ϕ=-在()0+∞,上单调增,注意到()10ϕ=, 所以方程00+2ln 10x x -=存在唯一实根1,所以0=1x =,得1k =,根据①知,1k =时,1x =是函数()f x 的极小值点, 所以1是函数()f x 的“F 点”.综上,得实数k 的值为1. ……9分 (2)因为g (x ) = ax 3+ bx 2+ cx ( a ,b ,c ∈ R ,a ≠ 0 ) 所以()()2320g x ax bx c a '=++≠.又因为函数g (x ) 存在不相等的两个“F 点”x 1和x 2,所以x 1,x 2是关于x 的方程()232=00ax bx c a ++≠的两个相异实数根. 所以21212412023.3b ac b x x a c x x a⎧=->⎪⎪⎪+=-⎨⎪⎪=⎪⎩△,,又g (x 1) = ax 13 + bx 12 + cx 1 = x 1,g (x 2) = ax 23 + bx 22+ cx 2 = x 2,所以g (x 1) - g (x 2) = x 1- x 2,即(a x 13 + bx 12 + cx 1)- (ax 23 + bx 22+ cx 2) = x 1- x 2, 从而( x 1- x 2) [a (x 12+ x 1x 2 +x 22)+ b (x 1+ x 2 )+ c ]= x 1- x 2.因为12x x ≠,所以()()21212121a x x x x b x x c ⎡⎤+-+++=⎣⎦,即()()2221333bc b a b c aa a⎡⎤--+-+=⎢⎥⎣⎦.所以()2239ac b a -=. ………13分 因为| g (x 1) - g (x 2) | ≥ 1, 所以()()1212g x g x x x -=-=1.=解得20a -<≤.所以,实数a 的取值范围为)20-⎡⎣,. ……16分 (2)(解法2) 因为g (x ) = ax 3+ bx 2+ cx ( a ,b ,c ∈ R ,a ≠ 0 ) 所以()()2320g x ax bx c a '=++≠.又因为函数g (x ) 存在不相等的两个“F 点”x 1和x 2,所以x 1,x 2是关于x 的方程组23232=0ax bx c ax bx cx x⎧++⎪⎨++=⎪⎩,的两个相异实数根. 由32ax bx cx x ++=得2010x ax bx c =++-=,. ……11分 (2.1)当0x =是函数g (x ) 一个“F 点”时,0c =且23b x a =-.所以()()2221033bb a b aa-+--=,即292a b =-.又()()12122013b g x g x x x a-=-=--≥,所以2249b a ≥,所以()2929a a -≤. 又a ≠ 0,所以20a -<≤.…13分 (2.2)当0x =不是函数g (x ) 一个“F 点”时,则x 1,x 2是关于x 的方程2232=010ax bx c ax bx c ⎧++⎪⎨++-=⎪⎩,的两个相异实数根. 又a ≠0,所以2313b b c c ⎧=⎪⎨⎪=-⎩,,得032b c =⎧⎪⎨=⎪⎩,. 所以212ax =-,得12x =, 所以()()12121g x g x x x -=-=,得20a -<≤.综合(2.1)(2.2),实数a 的取值范围为)20-⎡⎣,. ……16分20.(本题满分16分)在等比数列{}n a 中,已知11a =,418a =.设数列{}n b 的前n 项和为n S ,且11b =-,112n n n a b S -+=-(n ≥2,n N *∈).(1)求数列{}n a 的通项公式; (2)证明:数列n n b a ⎧⎫⎨⎬⎩⎭是等差数列; (3)是否存在等差数列{}n c ,使得对任意n N *∈,都有n n n S c a ≤≤?若存在,求出所有符合题意的等差数列{}n c ;若不存在,请说明理由.解:(1)设等比数列{}n a 的公比为q ,因为11a =,418a =,所以318q =,解得12q =.所以数列{}n a 的通项公式为:()112n n a -=. ……3分(2)由(1)得,当2n n *∈N ,≥时,()111122n nn b S --+=-, ①所以,()11122nn n bS ++=-, ②②-① 得,()11122nn n b b +-=, ……………5分所以,()()1111122n nnn b b +--=,即111n nn nb b a a ++-=,2n n *∈N ,≥. 因为11b =-,由① 得,20b =,所以()2121011b b a a -=--=, 所以111=-++nnn n a b a b ,n *∈N . 所以数列n n b a ⎧⎫⎨⎬⎩⎭是以1-为首项,1为公差的等差数列. ……8分(3)由(2)得b n a n=n -2,所以b n =n -22n -1,S n =-2(a n +1+b n +1)=-2(12n +n -12n )=-n2n -1.假设存在等差数列{c n },其通项c n =dn +c , 使得对任意*∈N n ,都有S n ≤c n ≤a n ,即对任意*∈N n ,都有-n 2n -1≤dn +c ≤12n -1. ③ ……10分首先证明满足③的d =0. 若不然,d ≠0,则d >0,或d <0. (i) 若d >0,则当n >1-c d ,*∈N n 时,c n =dn +c >1≥12n -1= a n ,这与c n ≤a n 矛盾.(ii) 若0<d ,则当n >-1+cd,*∈N n 时,c n =dn +c <-1.而S n +1-S n =-n +12n+n 2n -1=n -12n≥0,S 1= S 2<S 3<……,所以S n ≥S 1=-1.故c n =dn +c <-1≤S n ,这与S n ≤c n 矛盾. 所以d =0. ………12分 其次证明:当x ≥7时,f (x )=(x -1)ln2-2ln x >0.因为f ′(x )=ln2-1x >ln2-17>0,所以f (x )在[7,+∞)上单调递增,所以,当x ≥7时,f (x )≥f (7) =6ln2-2ln7= ln 6449>0.所以当n ≥7,*∈N n 时,2n -1>n 2. ……14分 再次证明c =0.(iii)若c <0时,则当n ≥7,n >-1c ,n ∈N*,S n =-n 2n -1>-1n >c ,这与③矛盾.(iv)若c >0时,同(i)可得矛盾.所以c =0. 当0n c =时,因为1012n n n S --=≤,()1102n n a -=>,所以对任意*∈N n ,都有S n ≤c n ≤a n .所以0n c n *=∈N ,.综上,存在唯一的等差数列{ c n },其通项公式为0n c n *=∈N ,满足题设.…16分江苏省苏北七市2020届高三第二次调研考试数学附加题21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知矩阵A =0 1 0a ⎡⎤⎢⎥⎣⎦的逆矩阵10 2A 0b -⎡⎤=⎢⎥⎣⎦.若曲线C 1:2214x y +=在矩阵A 对应的变换作用下得到另一曲线C 2,求曲线C 2的方程.解:因为1-=AA E ,所以010*******a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即0100201b a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦. 所以121b a =⎧⎨=⎩,,解得121a b ⎧=⎪⎨⎪=⎩,.所以01102⎡⎤⎢⎥=⎢⎥⎣⎦A . ……4分设()P x y '',为曲线C 1任一点,则2214x y ''+=,又设()P x y '',在矩阵A 变换作用得到点()Q x y ,, 则01102x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎣⎦,即2y x x y '⎡⎤⎡⎤⎢⎥='⎢⎥⎢⎥⎣⎦⎣⎦,所以2y x x y '=⎧⎪⎨'=⎪⎩,,即2x y y x '=⎧⎨'=⎩,. 代入2214x y ''+=,得221y x +=,所以曲线C 2的方程为221x y +=. ……10分B .选修4—4:坐标系与参数方程在极坐标系中,已知曲线C 的方程为r ρ= (r >0),直线l 的方程为cos()4πρθ+=l 与曲线C 相交于A ,B 两点,且AB=r 的值.解:以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系xOy ,于是曲线C :(0)r r ρ=>的直角坐标方程为222x y r +=,表示以原点为圆心,半径为r 的圆. ……3分由直线l 的方程()cos 4ρθπ+=cos cos sin sin 44ρθρθππ-,所以直线l 的直角坐标方程方程为20x y --=. …………6分 记圆心到直线l 的距离为d,则d ==又()2222ABr d =+,即2279r=+=,所以3r =. ……10分C .选修4—5:不等式选讲已知实数x ,y ,z 满足2222222111x y z x y z ++=+++,证明:222111x y z x y z ++≤+++. 解:因为2222222111x y z x y z ++=+++, 所以2222222221111111111111x y z x y z x y z ++=-+-+-=++++++. ……5分 由柯西不等式得,()()()2222222222222111111111111x y z x y zx y z x y z x y z +++++++++++++++≥.所以()22222111x y zx y z +++++≤ .所以222111x y zx y z +++++ ……10分【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天, 每名员工休假的概率都是12,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X ,求X 的分布列和数学期望.解:(1)记2家小店分别为A B ,,A 店有i 人休假记为事件()012i A i =,,,B 店有i 人,休假记为事件()012i B i =,,,发生调剂现象的概率为P . 则()()()2000211C 24P A P B ===, ()()()2111211C 22P A P B ===, ()()()2222211C 24P A P B ===.所以()()02201111144448P P A B P A B =+=⨯+⨯=.答:发生调剂现象的概率为18. ……4分(2)依题意,X 的所有可能取值为012,,. 则()()2211104416P X P A B ===⨯=,()()()122111111142244P X P A B P A B ==+=⨯+⨯=,()()()11112101116416P X P X P X ==-=-==--=. ……8分所以X 的分布表为:所以()111113210164168E X =⨯+⨯+⨯=. ……10分23.(本小题满分10分)我们称n (n N *∈)元有序实数组(1x ,2x ,…,n x )为n 维向量,1nii x=∑为该向量的范数.已知n 维向量a =(1x ,2x ,…,n x ),其中i x ∈{﹣1,0,1},i =1,2,…,n .记范数为奇数的n 维向量a 的个数为A n ,这A n 个向量的范数之和为B n .(1)求A 2和B 2的值;(2)当n 为偶数时,求A n ,B n (用n 表示).解:(1)范数为奇数的二元有序实数对有:()10-,,()01-,,()01,,()10,, 它们的范数依次为1111,,,,故2244A B ==,. ……3分 (2)当n 为偶数时,在向量()123n x x x x =,,,a 的n 个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为:131n -,,,进行讨论:a 的n 个坐标中含1个0,其余坐标为1或1-,共有11C 2n n -⋅个,每个a 的范数为1n -; a 的n 个坐标中含3个0,其余坐标为1或1-,共有33C 2n n -⋅个,每个a 的范数为3n -;… a 的n 个坐标中含1n -个0,其余坐标为1或1-,共有1C 2n n -⋅个,每个a 的范数为1;所以11331C 2C 2C 2n n n n n n n A ---=⋅+⋅++⋅,()()113311C 23C 2C 2n n n n n n n B n n ---=-⋅⋅+-⋅⋅++⋅. ……6分因为()0112221C 2C 2C 2C nn n n nn n n n --+=⋅+⋅+⋅++, ①()0112221C 2C 2C 2(1)C nn n n n n n n n n ---=⋅-⋅+⋅-+-,②2-①②得,113331C 2C 22nn n n n ---⋅+⋅+=,所以312n n A -=. ……8分 解法1:因为()()()()()11!!C C !!!1!k k n n n n n k n k n n k n k k n k ---=-⋅=⋅=---, 所以()()113311C 23C 2C 2n n n n n n n B n n ---=-⋅⋅+-⋅⋅++⋅.()11331111C 2C 2C 2n n n n n n n ------=⋅+⋅++⋅()123411112C 2C 2C n n n n n n n ------=⋅+⋅++()()11312312n n n n ---=⋅=⋅-. ……10分 解法2:2+①②得,022C 2C 2n n n n -⋅+⋅+=312n+. 又因为()()()()111!!C C !!1!!k k n n n n k k n n k n k k n k ---=⋅=⋅=---,所以 ()()113311C 23C 2C 2n n n n n n n B n n ---=-⋅⋅+-⋅⋅++⋅.()()()1133111331C 2C 2C 2C 23C 21C 2n n n n n n n n n n n n n n ------=⋅+⋅++⋅-⋅+⋅⋅++-⋅⋅()01232111C 2C 2C 2n n n n n n n nA n ------=-⋅+⋅++⋅()()1131313122n n n n n ---+=⋅-=⋅-. ……………10分。
江苏省七市2020届高三第二次调研考试 数学(含答案)
江苏省七市2020届高三第二次调研考试数 学(满分160分,考试时间120分钟)参考公式:柱体的体积公式:V 柱体=Sh ,其中S 为柱体的底面积,h 为高. 锥体的体积公式:V 锥体=13Sh ,其中S 为锥体的底面积,h 为高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={1,4},B ={a -5,7}.若A ∩B ={4},则实数a 的值是________.2. 若复数z 满足zi =2+i ,其中i 是虚数单位,则z 的模是________.3. 在一块土地上种植某种农作物,连续5年的产量(单位:吨)分别为9.4,9.7,9.8,10.3,10.8,则该农作物的年平均产量是________吨.4. 如图是一个算法流程图,则输出S 的值是________.5. “石头、剪子、布”是大家熟悉的二人游戏,其规则是:在石头、剪子和布中,二人各随机选出一种,若相同则平局;若不同,则石头克剪子,剪子克布,布克石头,甲、乙两人玩一次该游戏,则甲不输的概率是________. (第4题)6. 在△ABC 中,已知B =2A ,AC =3BC ,则A 的值是________.7. 在等差数列{a n }(n ∈N *)中,若a 1=a 2+a 4,a 8=-3,则a 20的值是________.8. 如图,在体积为V 的圆柱O 1O 2中,以线段O 1O 2上的点O 为顶点,上下底面为底面的两个圆锥的体积分别为V 1,V 2,则V 1+V 2V 的值是________.9. 在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,右焦点为F ,过F 作x 轴的垂线交双曲线于点P ,Q.若△APQ 为直角三角形,则该双曲线的离心率是________.10. 在平面直角坐标系xOy 中,点P 在直线y =2x 上,过点P 作圆C :(x -4)2+y 2=8的一条切线,切点为T.若PT =PO ,则PC 的长是________.11. 若x >1,则2x +9x +1+1x -1的最小值是________.12. 在平面直角坐标系xOy 中,曲线y =e x 在点P(x 0,ex 0)处的切线与x 轴相交于点A ,其中e 为自然对数的底数.若点B(x 0,0),△PAB 的面积为3,则x 0的值是________.13. 如图(1)是第七届国际数学教育大会(ICME7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,则A 6A 7→·A 7A 8→的值是________.14. 设函数f(x)=⎩⎪⎨⎪⎧|log 2x -a|,0<x ≤4,f (8-x ),4<x <8.若存在实数m ,使得关于x 的方程f(x)=m 有4个不相等的实根,且这4个根的平方和存在最小值,则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)在平面直角坐标系xOy 中,已知向量a =(cos α,sin α),b =(cos (α+π4),sin (α+π4)),其中0<α<π2.(1) 求(b -a )·a 的值;(2) 若c =(1,1),且(b +c )∥a ,求α的值.16.(本小题满分14分)如图,在直三棱柱ABCA 1B 1C 1中,CA =CB ,点P ,Q 分别为AB 1,CC 1的中点.求证:(1) PQ ∥平面ABC ; (2) PQ ⊥平面ABB 1A 1.如图,在平面直角坐标系xOy 中,已知圆C :(x -3)2+y 2=1,椭圆E :x 2a 2+y 2b2=1(a >b >0)的右顶点A 在圆C 上,右准线与圆C 相切.(1) 求椭圆E 的方程;(2) 设过点A 的直线l 与圆C 相交于另一点M ,与椭圆E 相交于另一点N.当AN =127AM 时,求直线l 的方程.18. (本小题满分16分)某公园有一块边长为3百米的正三角形ABC 空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道DE 将△ABC 分成面积之比为2∶1的两部分(点D ,E 分别在边AB ,AC 上);再取DE 的中点M ,建造直道AM(如图).设AD =x ,DE =y 1,AM =y 2(单位:百米).(1) 分别求y 1,y 2关于x 的函数关系式;(2) 试确定点D 的位置,使两条直道的长度之和最小,并求出最小值.19. (本小题满分16分)若函数f(x)在x 0处有极值,且f(x 0)=x 0,则称x 0为函数f(x)的“F 点”. (1) 设函数f(x)=kx 2-2ln x(k ∈R ). ① 当k =1时,求函数f(x)的极值; ② 若函数f(x)存在“F 点”,求k 的值;(2) 已知函数g(x)=ax 3+bx 2+cx(a ,b ,c ∈R ,a ≠0)存在两个不相等的“F 点”x 1,x 2,且|g(x 1)-g(x 2)|≥1,求a 的取值范围.在等比数列{a n }中,已知a 1=1,a 4=18.设数列{b n }的前n 项和为S n ,且b 1=-1,a n +b n =-12S n-1(n ≥2,n ∈N *).(1) 求数列{a n }的通项公式;(2) 求证:数列⎩⎨⎧⎭⎬⎫b n a n 是等差数列;(3) 是否存在等差数列{c n },使得对任意n ∈N *,都有S n ≤c n ≤a n ?若存在,求出所有符合题意的等差数列{c n };若不存在,请说明理由.2020届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤01a 0的逆矩阵A -1=⎣⎢⎡⎦⎥⎤02b 0.若曲线C 1:x 24+y 2=1在矩阵A 对应的变换作用下得到另一曲线C 2,求曲线C 2的方程.B. (选修44:坐标系与参数方程)在极坐标系中,已知曲线C 的方程为ρ=r(r >0),直线l 的方程为ρcos (θ+π4)= 2.设直线l 与曲线C 相交于A ,B 两点,且AB =27,求r 的值.C. (选修45:不等式选讲)已知实数x ,y ,z 满足x 21+x 2+y 21+y 2+z 21+z 2=2,求证:x 1+x 2+y 1+y 2+z1+z 2≤ 2.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是12,且是否休假互不影响.若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店铺维持营业,否则该店就停业.(1) 求发生调剂现象的概率;(2) 设营业店铺数为X,求X的分布列和数学期望.23.我们称n(n∈N*)元有序实数组(x1,x2,…,x n)为n维向量,为该向量的范数.已知n维向量a=(x1,x2,…,x n),其中x i∈{-1,0,1},i=1,2,…,n.记范数为奇数的n维向量a的个数为A n,这A n个向量的范数之和为B n.(1) 求A2和B2的值;(2) 当n为偶数时,求A n,B n(用n表示).2020届高三模拟考试试卷(七市联考)数学参考答案及评分标准1. 92. 53. 104. 525. 236. π67. -158. 13 9. 2 10. 13 11. 8 12. ln 613.42714. (-∞,1) 15. 解:(1) 因为向量a =(cos α,sin α),b =(cos (α+π4),sin (α+π4)),所以(b -a )·a =a·b -a 2(2分)=cos αcos (α+π4)+sin αsin (α+π4)-(cos 2α+sin 2α)(4分)=cos(-π4)-1=22-1.(6分)(2) 因为c =(1,1),所以b +c =(cos (α+π4)+1,sin (α+π4)+1).因为(b +c )∥a ,所以[cos (α+π4)+1]sin α-[sin (α+π4)+1]cos α=0.(9分) 于是sin α-cos α=sin (α+π4)cos α-cos (α+π4)sin α,从而2sin (α-π4)=sin π4,即sin (α-π4)=12.(12分) 因为0<α<π2,所以-π4<α-π4<π4,于是α-π4=π6,即α=5π12.(14分)16. 证明:(1) 取AB 的中点D ,连结PD ,CD. 在△ABB 1中,因为点P ,D 分别为AB 1,AB 中点, 所以PD ∥BB 1,且PD =12BB 1.在直三棱柱ABCA 1B 1C 1中,CC 1∥BB 1,CC 1=BB 1.因为点Q 为棱CC 1的中点,所以CQ ∥BB 1,且CQ =12BB 1.(3分)于是PD ∥CQ ,PD =CQ.所以四边形PDCQ 为平行四边形,从而PQ ∥CD.(5分)因为CD ⊂平面ABC ,PQ ⊄平面ABC ,所以PQ ∥平面ABC.(7分) (2) 在直三棱柱ABCA 1B 1C 1中,BB 1⊥平面ABC. 又CD ⊂平面ABC ,所以BB 1⊥CD.因为CA =CB ,点D 为AB 中点,所以CD ⊥AB.(10分) 由(1)知CD ∥PQ ,所以BB 1⊥PQ ,AB ⊥PQ.(12分)因为AB ∩BB 1=B ,AB ⊂平面ABB 1A 1,BB 1⊂平面ABB 1A 1, 所以PQ ⊥平面ABB 1A 1.(14分)17. 解:(1) 记椭圆E 的焦距为2c(c >0).因为右顶点A(a ,0)在圆C 上,右准线x =a 2c 与圆C :(x -3)2+y 2=1相切,所以⎩⎪⎨⎪⎧(a -3)2+02=1,⎪⎪⎪⎪a 2c -3=1,解得⎩⎪⎨⎪⎧a =2,c =1.于是b 2=a 2-c 2=3, 所以椭圆E 的方程为x 24+y 23=1.(4分)(2) (解法1)设N(x N ,y N ),M(x M ,y M ),显然直线l 的斜率存在,设直线l 的方程为y =k(x -2).由方程组⎩⎪⎨⎪⎧y =k (x -2),x 24+y 23=1,消去y ,得(4k 2+3)x 2-16k 2x +16k 2-12=0.所以x N ·2=16k 2-124k 2+3,解得x N =8k 2-64k 2+3.(6分)由方程组⎩⎪⎨⎪⎧y =k (x -2),(x -3)2+y 2=1,消去y ,得(k 2+1)x 2-(4k 2+6)x +4k 2+8=0, 所以x M ·2=4k 2+8k 2+1,解得x M =2k 2+4k 2+1.(8分)因为AN =127AM ,所以2-x N =127(x M -2),(10分)即124k 2+3=127·21+k 2,解得k =±1.(12分) 所以直线l 的方程为x -y -2=0或x +y -2=0.(14分)(解法2)设N(x N ,y N ),M(x M ,y M ),当直线l 与x 轴重合时,不符题意. 设直线l 的方程为x =ty +2(t ≠0).由方程组⎩⎪⎨⎪⎧x =ty +2,x 24+y 23=1,消去x ,得(3t 2+4)y 2+12ty =0,所以y N =-12t3t 2+4.(6分)由方程组⎩⎪⎨⎪⎧x =ty +2,(x -3)2+y 2=1,消去x ,得(t 2+1)y 2-2ty =0,所以y M=2t t 2+1.(8分) 因为AN =127AM ,所以y N =-127y M .(10分)即-12t 3t 2+4=-127·2tt 2+1,解得t =±1.(12分)所以直线l 的方程为x -y -2=0或x +y -2=0.(14分)18. 解:(1) 因为S △ADE =23S △ABC ,△ABC 是边长为3的等边三角形,又AD =x ,所以12AD ·AE ·sin π3=23(12×32×sin π3),所以AE =6x .(2分)由⎩⎪⎨⎪⎧0<AD =x ≤3,0<AE =x6≤3,得2≤x ≤3. (解法1)在△ADE 中,由余弦定理得DE 2=AD 2+AE 2-2AD·AE·cos π3=x 2+36x2-6. 所以,直道 DE 的长度y 1关于x 的函数关系式为y 1=x 2+36x2-6,x ∈[2,3].(6分)在△ADM 和△AEM 中,由余弦定理得AD 2=DM 2+AM 2-2DM·AM·cos ∠AMD ①, AE 2=EM 2+AM 2-2EM·AM·cos(π-∠AMD) ②.(8分) 因为点M 为DE 的中点,所以DM =EM =12DE.由①+②,得AD 2+AE 2=DM 2+EM 2+2AM 2=12DE 2+2AM 2.所以x 2+(6x )2=12(x 2+36x 2-6)+2AM 2,所以AM 2=x 24+9x 2+32. 所以,直道AM 的长度y 2关于x 的函数关系式为y 2=x 24+9x 2+32,x ∈[2,3].(10分)(解法2)在△ADE 中,因为DE →=AE →-AD →,所以DE →2=AE →2-2AE →·AD →+AD →2=(6x )2-2·6x ·xcos π3+x 2=x 2+36x 2-6.所以,直道DE 的长度y 1关于x 的函数关系式为y 1=x 2+36x2-6,x ∈[2,3].(6分)在△ADE 中,因为点M 为DE 的中点,所以AM →=12(AD →+AE →).(8分)所以AM →2=14(AD →2+AE →2+2AD →·AE →)=14(x 2+36x 2+6).所以,直道AM 的长度y 2关于x 的函数关系式为y 2=x 24+9x 2+32,x ∈[2,3].(10分) (2) 由(1)得,两条直道的长度之和为DE +AM =y 1+y 2=x 2+36x 2-6+x 24+9x 2+32≥2x 2·36x 2-6+2x 24·9x 2+32(12分) =6+322(当且仅当⎩⎨⎧x 2=36x2,x 24=9x 2,即x =6时取“=”).(14分)答:当AD =6百米时,两条直道的长度之和取得最小值(6+322)百米.(16分)19. 解:(1) ① 当k =1时,f(x)=x 2-2ln x(k ∈R ),所以f′(x)=2(x -1)(x +1)x (x >0).令f′(x)=0,得x =1.(2分)列表如下:x (0,1) 1 (1,+∞)f′(x) -0 +f(x)极小值所以函数f(x)在x ② 设x 0是函数f(x)的一个“F 点”(x 0>0).因为f′(x)=2(kx 2-1)x (x >0),所以x 0是函数f′(x)的零点.所以k >0.由f′(x 0)=0,得kx 20=1,x 0=1k. 由f(x 0)=x 0,得kx 20-2ln x 0=x 0,即x 0+2ln x 0-1=0.(6分)设φ(x)=x +2ln x -1,则φ′(x)=1+2x>0,所以函数φ(x)=x +2ln x -1在(0,+∞)上单调递增,注意到φ(1)=0, 所以方程x 0+2ln x 0-1=0存在唯一实数根1,所以x 0=1k=1,得k =1. 根据①知,k =1时,x =1是函数f(x)的极小值点,所以1是函数f(x)的“F 点”. 综上,实数k 的值为1.(9分)(2) 因为g(x)=ax 3+bx 2+cx(a ,b ,c ∈R ,a ≠0), 所以g′(x)=3ax 2+2bx +c(a ≠0).因为函数g(x)存在不相等的两个“F 点”x 1和x 2,所以x 1,x 2是关于x 的方程⎩⎪⎨⎪⎧3ax 2+2bx +c =0,ax 3+bx 2+cx =x 的两个相异实数根. 由ax 3+bx 2+cx =x 得x =0,ax 2+bx +c -1=0.(11分) ① 当x =0是函数g(x)一个“F 点”时,c =0且x =-2b 3a ,所以a(-2b 3a )2+b(-2b3a )-1=0,即9a =-2b 2.又|g(x 1)-g(x 2)|=|x 1-x 2|=⎪⎪⎪⎪-2b3a -0≥1, 所以4b 2≥9a 2,所以9a 2≤2(-9a). 又a ≠0,所以-2≤a <0.(13分)② 当x =0不是函数g(x)一个“F 点”时,则x 1,x 2是关于x 的方程⎩⎪⎨⎪⎧3ax 2+2bx +c =0,ax 2+bx +c -1=0的两个相异实数根.又a ≠0,所以⎩⎨⎧2b3=b ,c 3=c -1,解得⎩⎪⎨⎪⎧b =0,c =32.所以ax 2=-12,得x 1,2=±-12a. 所以|g(x 1)-g(x 2)|=|x 1-x 2|=2-12a≥1,得-2≤a <0. 综上,实数a 的取值范围是[-2,0).(16分) 20. (1) 解:设等比数列{a n }的公比为q , 因为a 1=1,a 4=18,所以q 3=18,解得q =12.所以数列{a n }的通项公式为a n =(12)n -1.(3分)(2) 证明:由(1)得,当n ≥2,n ∈N *时,(12)n -1+b n =-12S n -1 ①,所以(12)n +b n +1=-12S n ②,②-①,得b n +1-12b n =(12)n ,(5分)所以b n +1(12)n -b n(12)n -1=1,即b n +1a n +1-b n a n =1,n ≥2,n ∈N *.因为b 1=-1,由①得b 2=0,所以b 2a 2-b 1a 1=0-(-1)=1,所以b n +1a n +1-b n a n=1,n ∈N *.所以数列⎩⎨⎧⎭⎬⎫b n a n 是以-1为首项,1为公差为等差数列.(8分)(3) 解:由(2)得b n a n =n -2,所以b n =n -22n -1,S n =-2(a n +1+b n +1)=-2(12n +n -12n )=-n2n -1.假设存在等差数列{c n },其通项c n =dn +c ,使得对任意n ∈N *,都有S n ≤c n ≤a n , 即对任意n ∈N *,都有-n 2n -1≤dn +c ≤12n -1 ③.(10分)首先证明满足③的d =0.若不然,d ≠0,则d >0,或d <0.(ⅰ) 若d >0,则当n >1-c d ,n ∈N *时,c n =dn +c >1≥12n -1=a n ,这与c n ≤a n 矛盾.(ⅱ) 若d <0,则当n >-1+cd ,n ∈N *时,c n =dn +c <-1.而S n +1-S n =-n +12n +n2n -1=n -12n ≥0,S 1=S 2<S 3<…,所以S n ≥S 1=-1. 故c n =dn +c <-1≤S n ,这与S n ≤c n 矛盾. 所以d =0.(12分)其次证明:当x ≥7时,f(x)=(x -1)ln 2-2ln x >0.因为f′(x)=ln 2-1x >ln 2-17>0,所以f(x)在[7,+∞)上单调递增,所以当x ≥7时,f(x)≥f(7)=6ln 2-2ln 7=ln 6449>0. 所以当n ≥7,n ∈N *时,2n -1>n 2.(14分) 再次证明c =0.(ⅲ) 若c <0时,则当n ≥7,n >-1c ,n ∈N *,S n =-n 2n -1>-1n >c ,这与③矛盾.(ⅳ) 若c>0时,同(ⅰ)可得矛盾.所以c=0.当c n=0时,因为S n=1-n2n-1≤0,a n=(12)n-1>0,所以对任意n∈N*,都有S n≤c n≤a n.所以c n=0,n∈N*.综上,存在唯一的等差数列{c n},其通项公式为c n=0,n∈N*满足题设.(16分)2020届高三模拟考试试卷(七市联考) 数学附加题参考答案及评分标准21. A. 解:因为AA -1=E ,所以⎣⎢⎡⎦⎥⎤01a 0⎣⎢⎡⎦⎥⎤02b 0=⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤b 002a =⎣⎢⎡⎦⎥⎤1001. 所以⎩⎪⎨⎪⎧b =1,2a =1,解得⎩⎪⎨⎪⎧a =12,b =1.所以A =⎣⎢⎢⎡⎦⎥⎥⎤01120.(4分)设P(x′,y ′)为曲线C 1上任一点,则x′24+y′2=1.又设P(x′,y ′)在矩阵A 变换作用下得到点Q(x ,y),则⎣⎢⎢⎡⎦⎥⎥⎤01120⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎢⎡⎦⎥⎥⎤y′x′2=⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧y′=x ,x ′2=y ,即⎩⎪⎨⎪⎧x′=2y ,y ′=x , 代入x′24+y′2=1,得y 2+x 2=1,所以曲线C 2的方程为x 2+y 2=1.(10分)B. 解:以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系xOy , 于是曲线C :ρ=r(r >0)的直角坐标方程为x 2+y 2=r 2, 表示以原点为圆心,半径为r 的圆.(3分)由直线l 的方程ρcos (θ+π4)=2,化简得ρcos θcos π4-ρsin θsin π4=2,所以直线l 的直角坐标方程为x -y -2=0.(6分) 记圆心到直线l 的距离为d ,则d =|2|2= 2. 又r 2=d 2+(AB2)2,即r 2=2+7=9,所以r =3.(10分)C. 证明:因为x 21+x 2+y 21+y 2+z 21+z 2=2,所以11+x 2+11+y 2+11+z 2=1-x 21+x 2+1-y 21+y 2+1-z 21+z 2=1.(5分)由柯西不等式得(x 21+x 2+y 21+y 2+z 21+z 2)(11+x 2+11+y 2+11+z 2)≥(x 1+x 2+y 1+y 2+z 1+z 2)2,所以(x 1+x 2+y 1+y 2+z 1+z 2)2≤2. 所以x 1+x 2+y 1+y 2+z 1+z 2≤ 2.(10分)22. 解:(1) 记2家小店分别为A ,B ,A 店有i 人休假记为事件A i (i =0,1,2),B 店有i 人休假记为事件B i (i =0,1,2),发生调剂现象的概率为P ,则P(A 0)=P(B 0)=C 02(12)2=14, P(A 1)=P(B 1)=C 12(12)2=12, P(A 2)=P(B 2)=C 22(12)2=14. 所以P =P(A 0B 2)+P(A 2B 0)=14×14+14×14=18.答:发生调剂现象的概率为18.(4分)(2) 依题意,X 的所有可能取值为0,1,2,则 P(X =0)=P(A 2B 2)=14×14=116,P(X =1)=P(A 1B 2)+P(A 2B 1)=14×12+12×14=14.P(X =2)=1-P(X =0)-P(X =1)=1-116-14=1116.(8分)所以X 的分布列为所以E(X)=2×1116+1×14+0×116=138.(10分)23. 解:(1) 范数为奇数的二元有序实数对有(-1,0),(0,-1),(0,1),(1,0), 它们的范数依次为1,1,1,1,故A 2=4,B 2=4.(3分)(2) 当n 为偶数时,在向量a =(x 1,x 2,x 3…,x n )的n 个坐标中,要使得范数为奇数,则0的个数一定是奇数,所以可按照含0个数为1,3,…,n -1进行讨论:a 的n 个坐标中含1个0,其余坐标为1或-1,共有C 1n ·2n-1个,每个a 的范数为n -1; a 的n 个坐标中含3个0,其余坐标为1或-1,共有C 3n ·2n -3个,每个a 的范数为n -3;…a 的n 个坐标中含n -1个0,其余坐标为1或-1,共有C n -1n ·2个,每个a 的范数为1;所以A n =C 1n ·2n -1+C 3n ·2n -3+…+C n -1n·2, B n =(n -1)·C 1n ·2n -1+(n -3)·C 3n ·2n -3+…+C n -1n ·2.(6分) 因为(2+1)n =C 0n ·2n +C 1n ·2n -1+C 2n ·2n -2+…+C n n ①, (2-1)n =C 0n ·2n -C 1n ·2n -1+C 2n ·2n -2-…+(-1)n C n n ②, ①-②2得C 1n ·2n -1+C 3n ·2n -3+…=3n -12, 所以A n =3n -12.(8分)(解法1)因为(n -k)C k n =(n -k)·n !k !(n -k )!=n·(n -1)!k !(n -1-k )!=nC k n -1, 所以B n =(n -1)·C 1n ·2n -1+(n -3)·C 3n ·2n -3+…+C n -1n ·2 =n(C 1n -1·2n -1+C 3n -1·2n -3+…+C n -1n -1·2) =2n(C 1n -1·2n -2+C 3n -1·2n -4+…+C n -1n -1) =2n·(3n -1-12)=n·(3n -1-1).(10分)(解法2)①+②2得C 0n ·2n +C 2n ·2n-2+…=3n +12.因为kC k n =k·n !k !(n -k )!=n·(n -1)!(k -1)!(n -k )!=nC k -1n -1, 所以B n =(n -1)·C 1n ·2n -1+(n -3)·C 3n ·2n -3+…+C n -1n·2 =n(C 1n ·2n -1+C 3n ·2n -3+…+C n -1n ·2)-[C 1n ·2n -1+3·C 3n ·2n -3+…+(n -1)·C n -1n ·2] =nA n -n(C 0n -1·2n -1+C 2n -1·2n -3+…+C n -2n -1·2) =n·(3n -12-3n -1+12)=n·(3n -1-1).(10分)。
江苏省苏州市2020届高三二模模拟数学试卷含答案解析
高三数学 第1页 共4页 苏州市2020届高三年级二模模拟试卷 数学Ⅰ 2020年5月 参考公式:
锥体的体积公式:13VSh,其中S为锥体的底面积,h为锥体的高. 一.填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上......... 。
1. 已知集合A={0,1, 2,3}, A∪B={x|0<x≤2}, 则A∩B= ▲ .
2. i是虚数单位, 则|i1+i|的值为 ▲ . 3. 已知焦点在x轴上的双曲线的渐近线方程为 3x±4y = 0, 则双曲线的离心率为 ▲ . 4. 阅读如图所示的流程图,若输入的n是100, 则输出的变量S的值是 ▲ . 5. 某高校数学学院A,B,C三个不同专业分别 有800,600,400名学生, 为了解学生的课后 学习时间, 用分层抽样的方法从数学系这三个 专业中抽取36名学生进行调查, 则应从A专 业抽取的学生人数为 ▲ . 6. 在某学校图书馆的书架上随意放着編号为1,2,3,4,5的五本书, 若某同学从中任意选出2本书, 则选出的2本书编号相连的概率为 ▲ . 7. 已知函数f(x)=cos(2x+φ)( |φ|≤π2)的一个对称中心是(π3,0), 则φ的值为 ▲ . 8. 如图, 在直三棱柱ABC-A1B1C1中, AB=1, BC=2, BB1=3, ∪ABC=90°, 点D为侧棱BB1上的动点, 当AD+DC1最 小时, 三棱锥D-ABC1的体积为 ▲ .
9. 设周期函数f(x)是定义在R上的奇函数, 若f(x)的最小正周期为3, 且满足f(1)>-2, f(2)=m-3m , 则m的取值范围是 ▲ .
输出S 否 n = n-1
n<2?
结束 (第4题图)
S ← 0 S←S+ n 是
开始 输入n
(第8题图) A B C
D
C1 A1 B1 高三数学 第2页 共4页
10. 如图,在由5个边长为m,一个顶角为60°的菱形组成的图形中,AB→ ・CD→ = ▲ . 11. 等差数列{an}的公差为d, 关于x的不等式d2x2+(a1-d2)x+c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
江苏省2019—2020学年度苏锡常镇四市高三教学情况调研(二)
数学试题
第I卷(必做题,共160分)
一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置
上.)
1.已知集合A={1,2},B={﹣1,a},若AB={﹣1,a,2},则a=_______.
【答案】1
【解析】
【分析】
根据集合AB中的元素,判断出a的值.
【详解】∵集合A={1,2},B={﹣1,a},且AB={﹣1,a,2},
∴a=1.
故答案为:1
【点睛】本小题主要考查根据并集的结果求参数,属于基础题.
2.若复数z满足(1﹣i)z=1+i,其中i是虚数单位,则z的实部为_______.
【答案】0
【解析】
【分析】
利用复数的除法运算求得z,由此求得z的实部.
【详解】2221(1)121(1)(1)1iiiiziiiii,∴z的实部为0.
故答案为:0
【点睛】本小题主要考查复数的除法运算,考查复数实部的概念,属于基础题.
3.某校100名学生参加知识竞赛成绩均在[50,100]内,将学生成绩分成[50,60),[60,
70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图,则成绩在[80,
90)内的学生人数是_______.
- 1 -
【答案】30
【解析】
【分析】
用1减去成绩在80,90以外的学生的频率,将所得结果乘以100,求得成绩在80,90以内
的学生人数.
【
详解】[1(0.0050.0220.025)10]10030.
故答案为:30
点睛】本小题主要考查根据频率分布直方图进行计算,属于基础题.
4.一个算法的伪代码如图所示,执行此算法,最后输出的y的值为_______.
【答案】﹣1
【解析】
【分析】
运行循环结构代码,由此计算出输出的y的值.
【详解】运行程序,
第一步:y=2,x=2;
第二步:y=﹣1,x=﹣1;
退出循环,
输出的y的值为﹣1.
- 1 -
故答案为:1
【点睛】本小题主要考查根据循环结构程序代码计算输出结果,属于基础题.
5.某班推选一名学生管理班级防疫用品,已知每个学生当选是等可能的,若“选到女生”的
概率是“选到男生”的概率的12,则这个班级的男生人数与女生人数的比值为_______.
【答案】2
【解析】
【分析】
根据“选到女生”的概率是“选到男生”的概率的12,求得男生和女生人数的比值.
【详解】∵“选到女生”的概率是“选到男生”的概率的12,
∴男生人数与女生人数的比值为2.
故答案为:2
【点睛】本小题主要考查概率的概念,属于基础题.
6.函数2lnyxx的定义域为_______.
【答案】0,2
【解析】
【分析】
由函数2lnyxx有意义,得到200xx,即可求解,得到答案.
【详解】由题意,函数2lnyxx有意义,则满足200xx,解得02x,
所以函数2lnyxx的定义域为0,2.
故答案为0,2.
【点睛】本题主要考查了函数的定义域的求解,其中解答中根据函数的解析式,得出函数解
析式有意义的不等式组是解答的关键,着重考查了推理与运算能力,属于基础题.
7.在平面直角坐标系xOy中,抛物线y2=4x的焦点是双曲线22214xyaa的顶点,则a=______.
【答案】1
- 1 -
【解析】
【分析】
先求得抛物线24yx的焦点坐标,根据抛物线的焦点是双曲线的顶点,求得a的值.
【详解】∵抛物线y2=4x的焦点是(1,0),
∴双曲线22214xyaa的顶点为(1,0),故a=1.
故答案为:1
【点睛】本小题主要考查抛物线的焦点、双曲线的顶点,属于基础题.
8.已知等比数列na的前n项和为nS,425SS,22a,则4a=_______.
【答案】2或8
【解析】
【分析】
根据已知条件进行化简,对12aa是否为零分成两种情况进行分类讨论,由此求得4a的值.
【详解】∵na为等比数列,425SS,∴1234125()aaaaaa,
∴34124()aaaa,
当120aa时,1q,此时2422aaq;
当120aa时,24q,此时242248aaq,
综上所述,4a=2或8.
故答案为:2或8
【点睛】本小题主要考查等比数列通项公式和前n项和公式的基本量计算,属于基础题.
9.已知正方体ABCD—A1B1C1D1的棱长为6,点M是对角线A1C上靠近点A1的三等分点,则三棱
锥C—MBD的体积为_______.