中考数学压轴题之相似(中考题型整理,突破提升)含详细答案
中考数学——相似的综合压轴题专题复习附答案

中考数学——相似的综合压轴题专题复习附答案一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
中考数学复习《二次函数相似三角形综合压轴题》专项提升训练(附答案)

中考数学复习《二次函数相似三角形综合压轴题》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________ 1.已知:二次函数y=x2−(m+2)x+m−1.(1)求证:该抛物线与x轴一定有两个交点;(2)设抛物线与x轴的两个交点是A、B(A在原点左边,B在原点右边),且AB=3,求此时抛物线的解析式;(3)在(2)的前提下,若抛物线与y轴交于点C,问在y轴的正半轴上是否存在点D,使△DOB 和△AOC相似?2.如图,抛物线:y=x2+bx+c的图像与x轴交于A和B(−3,0)两点,与y轴交于C(0,−3),直线y=x+m经过点B,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和E点坐标;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△BOD相似,若存在,直接写出点P的坐标:若不存在,试说明理由.3.如图,在平面直角坐标系中,抛物线y=ax2+bx−3与x轴交于A(1,0)和B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)绕点A旋转的直线l:y=kx+b1与y轴相交于点D,与抛物线相交于点E,且满足AD=2AE时,求直线l的解析式;(3)点P为抛物线上的一点,点Q为抛物线对称轴上的一点,是否存在以点B,C,P,Q为顶点的平行四边形,若存在,请直接写出点P的坐标;若不存在,请说明理由.4.已知:抛物线y=ax2+bx+4与x轴相交于A(−2,0),B(8,0)两点,与y轴相交于点C,连接BC.(1)求抛物线的表达式并直接写出点C的坐标;(2)如图,点M是抛物线第一象限内的一点,连接MB,MC,求△MBC面积的最大值;(3)点P也是抛物线第一象限内的一点,过点P作PN⊥BC于N,连接PC,当以P、C、N为顶点的三角形与△BOC相似时,直接写出点P的坐标.5.在平面直角坐标系xOy中,已知抛物线y=ax2+3ax+c与x轴交于点A,B(点A 在点B的左边),与y轴负半轴交于点C,且OC=4,直线y=−x+b经过点A,C,点D为y轴左侧抛物线上一点,连接CD,AD.(1)求抛物线的函数表达式;(2)当点D在直线AC下方时,连接DB交AC于点E,求S△ADC−S△BDC的最大值及此时点D 的坐标;(3)是否存在点D,使∠CBA=45°+∠DCA?若存在,求点D的坐标;若不存在,请说明理由.6.如图,二次函数y=mx2+(m2+3)x−(6m+9)的图象与x轴交于点A、B,与y 轴交于点C.连接AC、BC,已知B(3,0).(1)求直线BC的函数表达式;(2)Q为抛物线上一点,若以B、C、Q为顶点的三角形和△OAC相似,求点Q的坐标;(3)P为抛物线上一点(异于A点),若S△PBC=S△ABC,请直接写出P点的坐标.7.如图,抛物线y1=ax2−6ax+c(a≠0)与x轴交于A、B两点,与y轴交于点C,连接BC、AC,设AC关系式为y2=kx+b.若OB=2,tan∠OBC=2,D是y轴右侧抛物线上一点,设其横坐标为m,DE⊥AC于点E.(1)求抛物线的函数关系式;(2)当点D位于直线AC下方时,求DE长度的最大值;(3)当△CDE与△AOC相似时,求m的值.8.如图,抛物线y=ax2+bx+c经过A(−6,0),B(2,0),C(0,6)三点.(1)求拋物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为15,求点P的坐标;2(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴分别相交于A(−2,0),B(8,0)两点(1)求a,b的值;(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.①求DE+BF的最大值;②G是AC的中点,若以点C,D,E为顶点的三角形与△AOG相似,求点D的坐标.x2+bx+c与y轴交于点C(0,−4),与x轴交于点A,B,且B 10.如图,抛物线y=12点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.11.如图,抛物线y=−x2+bx+c的顶点D坐标为(1,4),且与x轴相交于A,B两点,点A在点B的左侧,与y轴相交于点C,点E在x轴上方且在对称轴左侧的抛物线上运动,点F在抛物线上并且和点E关于抛物线的对称轴对称,作矩形EFGH,其中点G,H都在x 轴上.(1)求抛物线解析式;(2)设点F横坐标为m①用含有m的代数式表示点E的横坐标为______(直接填空);②当矩形EFGH为正方形时,求点G的坐标;③连接AD,当EG与AD垂直时,求点G的坐标;(3)过顶点D作DM⊥x轴于点M,过点F作FP⊥AD于点P,直接写出△DFP与△DAM相似时,点F的坐标.12.如图,直线y=x−3与x轴,y轴分别交于点B(3,0),C(0,−3)过B,C两点的抛物线y=−x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上存在点E,使△CBE的面积有最大值,求点E坐标(3)连接AC,点N在x轴上,是否存在以B,P,N为顶点的三角形与△ABC相似?若存在,求出点N的坐标;若不存在,说明理由.13.如图1,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=−1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B,经过B、C两点作直线BC,点D为第二象限内抛物线上一动点.(1)求抛物线的函数表达式;(2)求△DBC面积最大值及此时点D坐标;(3)如图2,点M也是第二象限抛物线上一个动点,直线OM交BC于点N,是否存在这样的点M,使以B、O、N为顶点的三角形与△ACB相似?若存在,求出点M坐标,若不存在,请说明理由.x2+bx+c与x轴相交于点A,B,与y轴14.已知在平面直角坐标系中,抛物线y=−12相交于点C,直线y=x+4经过A,C两点(1)求抛物线的表达式;(2)如果点P,Q在抛物线上,并与对称轴对称,(P点在对称轴左边),且PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上且△ABC与△COM相似求点M的坐标.15.如图抛物线y=ax2+bx+2与x轴交于A B两点点A(2,0)且OA=2OB与y轴交于点C连接BC D为第一象限内抛物线上一动点过点D作DE⊥OA于点E 与AC交于点F设点D的横坐标为m.(1)求抛物线的表达式;(2)求△ACD面积的最大值及此时D点的坐标;(3)抛物线上是否存在点D使得以点O D E为顶点的三角形与△BOC相似?若存在求出m的值;若不存在请说明理由.16.已知抛物线y=x2+2x−3的图像经过点A(−3,0)点B(n,0)且与y轴交于点C.(1)求出点B的坐标;(2)若点P为x轴上方的抛物线上任意一点.①如图1 若点Q为线段BC上一点连接PQ PQ交x轴于点M连接CM当∠MCQ=45°时求点M的坐标;②如图2 连接BC、BP若满足∠ABP=2∠BCO求此时点P的坐标.17.已知直线l:y=kx+b(k>0)与抛物线C:y=ax2(a>0)有唯一公共点P直线l分别交x轴y轴于A,B两点.(1)如图1 当a=1k=1时求b的值;时过点A作直线l的垂线交y轴于点T求T坐标;(2)如图2 当a=12(3)如图3 当k=1时平移直线l使之与抛物线C交于M,N两点点P关于y轴的对称点为Q求证:∠MQP=∠NQP.18.在平面直角坐标系xOy中已知抛物线y=ax2−3ax+c与x轴分别交于A(−1,0) B两点与y轴交于点C(0,−2).(1)求抛物线的函数表达式;的最大值;(2)如图1 点D为第四象限抛物线上一点连接AD,BC交于点E求DEAE(3)如图2 连接AC,BC过点O作直线l∥BC点P Q分别为直线l和抛物线上的点试探究:在第一象限是否存在这样的点P Q使△PQB∽△CAB.若存在请求出所有符合条件的点P的坐标;若不存在请说明理由.19.如图1 已知二次函数y=x2+bx+c经过A(−2,0)C(0,−6)并交x轴于另一点B 点E是线段BC上的动点过A E两点的直线与抛物线在第四象限相交于点D.(1)求二次函数的解析式;取最大值时求点D的坐标;(2)当EDEA(3)如图2 连接AC在抛物线上存在点F使△OEF∽△COA求出所有点F的坐标;(4)如图3 过点E作EH⊥x轴于点H以EH为对角线作正方形EGHI当顶点G恰好落在抛物线上时请直接写出点G的坐标.20.已知在平面直角坐标系中抛物线y=ax2+bx+4与x轴交于点A(−2,0)点B(4,0)交y轴于点C.(1)求抛物线的解析式:(2)如图1 点P在抛物线第一象限上过点P作PD⊥x轴于点D交BC于点E设点P的横坐标为t PE的长为d求d与t的函数关系式:(不要求写出t的取值范围)(3)如图2 在(2)的条件下点Q在抛物线第四象限上连接AQ AP AP与BC交于点F∠CFA−∠BAQ=2∠PAB若FE=√2GO求点Q的坐标.参考答案1.(1)证明:∵Δ=(m+2)2−4(m−1)=m2+8>0故抛物线与x轴一定有两个交点;(2)解:令y=x2−(m+2)x+m−1=0解得:x=m+2±√m2+82则AB=|x1−x2|=√m2+8=3解得:m=1(舍去)或−1故抛物线的解析式为:y=x2−x−2;(3)解:存在理由:由抛物线的解析式知点C(0,−2)令y=0即x2−x−2=0解得x1=−1∵抛物线与x轴的两个交点是A B(A在原点左边B在原点右边)∵A(−1,0)∵OA=1∵C(0,−2)∵CO=2当△DOB∽△AOC时∵OD AO =OBOC即OD1=22解得OD=1∵D(0,1);当△DOB∽△COA时∵OD CO =OBOA即OD2=21解得:OD=4∵D(0,4).综上所述点D的坐标为:(0,1)或(0,4).2.解:(1)∵B(−3,0)C(0,−3)两点均在抛物线上∴{c=−39−3b+c=0解得{b =2c =−3∴抛物线的解析式为y =x 2+2x −3 ∵直线y =x +m 经过点B∴0=−3+m ∴m=3∴直线BE 的解析式为y =x +3 联立方程组{y =x +3y =x 2+2x −3解得{x 1=−3y 1=0∴点E 的坐标为(2,5);(2)存在点P 坐标为(0,5)或(0,7).理由:若存在这样的点P 使得以D E P 为顶点的三角形与△BOD 相似 如图所示 由于△BOD 是等腰直角三角形 则存在两种情况 即∠DP 1E =90° 或∠DEP 2=90°当∠DP 1E =90°时∵OD =3 ∴OP 1=5∴点P 1的坐标为(0,5); 当∠DEP 2=90°时∵EP 1⊥DP 2 ∴P 1P 2=DP 1=EP 1=2∴OP 2=7∴点P 2的坐标为(0,7);所以满足题意的点P 的坐标为(0,5)或(0,7).3.解:(1)∵抛物线y =ax 2+bx −3经过点A (1,0)和点B (3,0)∵{a +b −3=09a +3b −3=0解得{a =−1b =4∵抛物线的解析式为:y =−x 2+4x −3;(2)①当点D E 在点A 的异侧时 过点E 作EF ⊥x 轴于点F如图:∵∠AOD =∠AFE =90°∵∠OAD =∠FAE∵△AOD∽△AFE∵AFAO =AEAD∵AD =2AE∵AF AO =AE AD =12∵AF =12AO =12×1=12∵OF =32∵点F 与点E 的横坐标为32∵点E 的纵坐标为y =−x 2+4x −3=−(32)2+4×32−3=34∵点E 的坐标为(32,34)∵直线l :y =kx +b 1过点A (1,0)和点E(32,34)∵{k +b1=032k +b 1=34解得:{k=32b 1=−32 ∵直线l 的解析式为y =32x −32;②当点D E 在点A 的同侧时 过点E 作EF ⊥x 轴于点F 如图:∵∠AOD =∠AFE =90°∵∠OAD =∠FAE∵△AOD∽△AFE∵AFAO =AEAD∵AD =2AE∵AFAO =AEAD=12 ∵AF =12AO =12×1=12∵OF =12 ∵点F 与点E 的横坐标为12 ∵点E 的纵坐标为y =−(12)2+4×12−3=−54∵点E 的坐标为(12,−54) ∵直线l :y =kx +b 1过点A (1,0)和点E(12,−54) ∵{k +b 1=012k +b 1=−54 解得{k =52b =−52∵直线l 的解析式为y =52x −52综上所述:直线l 的解析式为y =32x −32或y =52x −52;(3)存在以点B C P Q 为顶点的平行四边形 理由如下:抛物线y =−x 2+4x −3对称轴为直线x =2设Q (2,t ),P (m,−m 2+4m −3)又B (3,0)①以PQ 、BC 为对角线 则PQ 、BC 的中点重合∵{2+m =3+0t −m 2+4m −3=−3 解得m =1∵P(1,0)②以BQ 、PC 为对角线∵{2+3=m +0t +0=−m 2+4m −3−3解得m =5∵P (5,−8);③以CQ 、BP 为对角线∵{2=m +3t −3=−m 2+4m −3解得m =﹣1∵P (−1,−8)综上所述 P 的坐标为(1,0)或(5,−8)或(−1,−8).4.解:(1)∵抛物线y =ax 2+bx +4与x 轴交于A(−2,0),B(8,0)两点代入 得{4a −2b +4=064a +8b +4=0 解得:{a =−14b =32∵抛物线的表达式为:y =−14x 2+32x +4当x =0时∵C(0,4);(2)过M 作ME ∥y 轴交BC 于点E设BC 的解析式为y =kx +b将B(8,0)和C(0,4)代入得解得{k=−12 b=4∵y=−12x+4设M(m,−14m2+32m+4)则E(m,−12m+4)∵ME=−14m2+32m+4−(−12m+4)=−14m2+2m∵S△MCB=12×8ME=−m2+8m=−(m−4)2+16当m=4时S取最大值16即△MBC面积的最大值为16;(3)①∵∠PNC=∠BOC=90°当∠PCN=∠OCB时作BD⊥CP交CP的延长线于点D作DF⊥y于点F作BE⊥FD交FD的延长线于点E则四边形OBEF是矩形∵OB=EF,BE=OF.∵∠PCN=∠OCB∵BD=BO∵△BOD≌△BDC(AAS)∵BD=CD.∵∠CDF+∠BDE=90°,∠DBE+∠BDE=90°∵∠CDF=∠DBE∵∠CFD=∠E=90°∵△CDF≌△BDE(AAS)∵CF=DE,DF=BE∵DF+DE=OB=8∵4+2CF=8∵CF=2∵DF=OF=4+2=6∵D(6,6).设直线CD的解析式为y=kx+4∵6=6k+4∵k=13∵y=13x+4解{y=13x+4y=−14x2+32x+4得{x1=143y1=509{x2=0y2=4(舍去)∵P(143,509);②∵∠PNC=∠BOC=90°当∠PCN=∠OBC时∵CP∥OB∵点P与点C的纵坐标相同当y=4时解得x1=6x2=0(舍去)∵P(6,4).综上可知点P的坐标为(143,509)或(6,4).5.(1)解:∵CO=4则点C(0,−4)将点C的坐标代入一次函数表达式得:−4=b 则一次函数表达式为:y=−x−4令y=−x−4=0得x=−4∵点A(−4,0)把A C两点坐标代入二次函数解析式中得:{c=−416a−12a+c=0解得:{a=1c=−4则抛物线的表达式为:y=x2+3x−4;(2)解:由y=x2+3x−4=0得x1=1,x2=−4∵点B(1,0)设直线BD交y轴于点N设点D(m,m2+3m−4)设直线BD的表达式为:y=kx+d则{k+d=0mk+d=m2+3m−4解得:{k=m+4d=−m−4直线BD的表达式为:y=(m+4)x−m−4令x=0,得y=−m−4∵点N(0,−m−4)过点D作DH∥y轴交AC于点H则点H(m,−m−4)则S△ADC−S△BDC=12×DH×OA−12×CN×(x B−x D)=12×(−m−4−m2−3m+4)×4−12×(−m)×(1−m)=−52m2−152m=−52(m+32)2+458∵−52<0则S△ADC−S△BDC有最大值当m=−32时S△ADC−S△BDC的最大值为458此时点D(−32,−254);(3)解:存在理由:当点D在AC下方时由点A C的坐标知∵∠CBA=45°+∠DCA∵∠CBA=∠DCO∵∠CBA+∠OCB=∠DCO+∠OCB即∠DCB=90°∵DC⊥CB;设点D(m,m2+3m−4)则DE=−m,CE=m2+3m−4−(−4)=m2+3m;过点D作DE⊥y轴于E如图∵∠DCB=∠BOC=∠DEC=90°∵∠BCO+∠DCE=∠DCE+∠CDE∵∠BCO=∠CDE∵△BCO∽△CDE∵CE DE =OBOC=14即4CE=DE∵4(m2+3m)=−m 解得:m=0(舍去)则点D(−134,−5116);当点D在AC的上方时如图设CD交x轴于点F ∵∠BFC=∠OAC+∠DCA=45°+∠DCA∵∠BFC=∠DCA∵CF=CB;∵CO⊥BF∵OF=OB=1∵F(−1,0);设直线CD 解析式为y =k 1x −4 把点F 坐标代入得:k 1=−4∵直线CD 的表达式为:y =−4x −4联立直线CD 的表达式与抛物线表达式得:x 2+3x −4=−4x −4 解得:x =−7 x =0(舍去)即点D (−7,24);综上 点D 的坐标为:(−134,−5116)或(−7,24). 6.(1)解:将B (3,0)代入y =mx 2+(m 2+3)x −(6m +9) 化简得m 2+m =0 则m =0(舍)或m =−1 ∵m =−1∵y=−x 2+4x −3当x =0时 y=−3 当y =0时 −x 2+4x −3=0 解得:x 1=3,x 2=1 ∵C (0,−3) A (1,0).设直线BC 对应的函数表达式为y =kx +b将B (3,0) C (0,−3)代入可得{0=3k +b −3=b 解得{k =1b =−3则直线BC 对应的函数表达式为y =x −3.(2)∵△OAC 为直角三角形∵OA =1,OC =3,tan∠OCA =OA OC =13当以B C Q 为顶点的三角形和△OAC 相似时 则:△BCQ 是直角三角形;设Q (t,−t 2+4t −3)①当∠CBQ=90°时如图:∵B(3,0)∵OB=OC=3∵∠OBC=∠OCB=45°∵∠OBQ=∠OBC=45°过点Q作QE⊥OB则:BE=QE∵3−t=−t2+4t−3解得:t=2或t=3(舍去);∵Q(2,1)当Q(2,1)时∵BC=3√2∵tan∠BCQ=13=tan∠OCA满足题意;②当∠CQB=90°时:如图:过点Q作EF∥OB过点B作BF⊥EF 则:∠CEQ=∠BFQ=90°∵∠CQE=∠QBF=90°−∠FQB∵△CEQ∽△QFB∵CE QF =EQBF即:−t2+4t3−t=t−t2+4t−3解得:t =3(舍去)或t =0(舍去)或t =5+√52或t =5−√52∵Q (5+√52,−1+√52)或Q (5−√52,√5−12)此时BQCQ =BF EQ =√5+15+√5=√55≠13不满足题意 舍去;③当∠QCB =90°时 如图:过点Q 作QF ⊥y 轴 则:∠BOC =∠QFC =90° ∵∠BCO =∠FQC =90°−∠FCQ∵∠FQC =45°∵CF =QF =t∵OF =3+t =−(−t 2+4t −3)解得:t =5或t =0(舍去);∵Q (5,−8)∵tan∠CQB =BC CQ =3√25√2=35≠13 不符合题意;∵Q (5,−8)不满足题意;综上:Q (2,1).(3)∵S △PBC =S △ABC∵点P 与点A 到BC 的距离相等如图 过点A 作AP 1∥BC 设直线AP 1与y 轴的交点为G将直线BC 向下平移GC 个单位 得到直线P 3P 2设直线AG 的解析式为:y =x +n 则:0=1+n 解得:n =−1 ∵直线AG 的表达式为y =x −1 联立{y =x −1y =−x 2+4x −3 解得:{x =1y =0 (舍) 或{x =2y =1∵P 1(2,1)∵直线AG 的表达式为y =x −1 ∵当x =0时 ∵G (−1,0) ∵GC =2∵直线P 3P 2的表达式为y =x −5 联立{y =x −5y =−x 2+4x −3解得:{x 1=3+√172y 1=−7+√17∵P 3(3+√172,−7+√172) ∵P (2,1)或P (3+√172,−7+√172)或P (3−√172,−7−√172).7.(1)解:∵tan∠OBC =2∴OCOB=2 ∵OB =2∴OC=4∴B(−2,0)把B(−2,0)C(0,−4)代入y1=ax2−6ax+c得{4a+12a+c=0c=−4解得{a=14 c=−4∴y1=14x2−32x−4;(2)解:作DF⊥x轴于点F交AC于点G∴∠BAC+∠AGF=90°∵DE⊥AC于点E∴∠EDF+∠EGD=90°∵∠AGF=∠EGD∴∠EDF=∠BAC∴tan∠EDF=tan∠BAC=OC OA=12∴cos∠EDF=cos∠BAC=2√5 5∴DE=2√55DG令14x2−32x−4=0解得x1=−2∴点A的坐标为(8,0)把A(8,0)和C(0,−4)代入y2=kx+b得{8k+b=0b=−4解得∴y 2=12x −4由题意 点D 坐标为(m,14m 2−32m −4) 点G 坐标为(m,12m −4)∴DG =(12m −4)−(14m 2−32m −4)=−14m 2+2m =−14(m −4)2+4∴DE =−√510(m −4)2+8√55 ∵−√510<0 ∴DE 有最大值为8√55; (3)解:由题意 ∠DCE =∠OCA 或∠DCE =∠OAC 时 △CDE 与△AOC 相似 ①当∠DCE =∠OCA 时∴∠OCA =∠DGC ∴∠DCE =∠DGC ∴DC =DG∵DE ⊥AC 于E∴EG =EC =12CG∵tan∠EDG =tan∠OAC =12∴sin∠EDG =√55∴EG =√55DG =√55(−14m 2+2m) ∵cos∠BAC =2√55AG =√52(8−m ) 在Rt △AOC 中 由勾股定理得∴CG =4√5−√52(8−m )=√52m ∴√55(−14m 2+2m)=12×√52m 解得m =3②当∠DCE =∠OAC 且D 位于x 轴下方时CD//OA ∴y D=−4令14x2−32x−4=−4解得x=0(舍去)或x=6即m=6;③当∠DCE=∠OAC且D位于x轴上方时如图设CE交x轴于M则MC=MA设OM=n则CM=AM=8−n在Rt△OCM中由勾股定理得n2+42=(8−n)2解得n=3∴M(3,0)同理直线CM函数关系式为y=43x−4令14x2−32x−4=43x−4解得x=0(舍去)或x=343即m=343综上m=3或6或343.8.(1)解:把A(−6,0),B(2,0),C(0,6)代入抛物线解析式y=ax2+bx+c得{36a −6b +c =04a +2b +c =0c =6解得{a =−12b =−2c =3∵抛物线的函数表达式为y =−12x 2−2x +6.(2)解:如解(2)图1 过P 点作PQ 平行y 轴 交AC 于Q 点设直线AC 的解析式为y =kx +6 把A (−6,0)代入得:0=−6k +6 解得:k =1∵直线AC 解析式为y =x +6设P 点坐标为(x,−12x 2−2x +6) 则Q 点坐标为(x,x +6)∵PQ =−12x 2−2x +6−(x +6)=−12x 2−3x∵S △PAC =12PQ ⋅OA∵12(−12x 2−3x)⋅6=152解得:x 1=−1 x 2=−5. 当x =−1时 P 点坐标为(−1,152) 当x =−5时 P 点坐标为(−5,72)综上所述:若△PAC 面积为152 点P 的坐标为(−1,152)或(−5,72);(3)解:如解(3)图1 过D 点作DF 垂直x 轴于F 点 过A 点作AE ⊥BC 于E 点∵D 为抛物线y =−12x 2−2x +6的顶点 ∵D 点坐标为(−2,8)设直线AD 的解析式为:y =mx +n把A (−6,0) D (−2,8)代入得:{−6m +n =0−2m +n =8解得:{m =2n =12∵直线AD 为y =2x +12 ∵B(2,0)∵同理可得:直线BC 的解析式为y =−3x +6 ∵AF =−2−(−6)=4 ∵tan∠DAB =DFAF =2 ∵B(2,0) C (0,6)∵tan∠ABC =OCOB =3 BC =√22+62=2√10 sin∠ABC =62√10=3√1010∵AB =2−(−6)=8 ∵AE =AB ⋅sin∠ABC =8×3√1010=12√105∵BE =√AB 2−AE 2=4√105∵CE =BC −BE =2√10−4√105=6√105∵tan∠ACB =AE CE=2∵tan∠ACB =tan∠DAB =2 ∵∠ACB =∠DAB ∵OA =OC=6∵∠ACO =∠CAO =45°;∵使得以M A O 为顶点的三角形与△ABC 相似 则有两种情况 如解(3)图2当∠AOM =∠CAB =45°时 即M 点在直线y =−x 上 联立{y =−xy =2x +12 解得{x =−4y =4即M 点为(−4,4).当∠AOM =∠CBA 即OM∥BC 时 ∵直线BC 解析式为y =−3x +6 ∵直线OM 为y =−3x 联立{y =−3x y =2x +12解得{x =−125y =365即M 点为(−125,365)综上所述:存在使得以M A O 为顶点的三角形与△ABC 相似的点M 其坐标为(−4,4)或(−125,365).9.解:(1)将A(−2,0) B(8,0)代入解析式得:{4a −2b +4=064a +8b +4=0解得:{a =−14b =32 ∴ a =−14 b =32;(2)①∵的值为−14b 的值为32抛物线的解析式为:y =−14x 2+32x +4;∴C(0,4)设直线BC 解析式为y =kx +c 将B(8,0) C(0,4)代入可得:{8k +c =0c =4解得{k =−12c =4∴直线BC 解析式为y =−12x +4设第一象限D(m,−14m 2+32m +4) 则E(m,−12m +4)∴DE =(−14m 2+32m +4)−(−12m +4)=−14m 2+2m∴DE +BF =(−14m 2+2m)+(8−m)=−14(m −2)2+9∴当m =2时 DE +BF 的最大值是9; ②∴A(−2,0)∴OA =2∴AC 2=OA 2+OC 2=20 ∴AC 2+BC 2=100而AB 2=102=100∴AC 2+BC 2=AB 2 ∴∠ACB =90° ∴∠CAB +∠CBA =90°∵DF ⊥x 轴于F∴∠FEB +∠CBA =90° ∴∠CAB =∠FEB =∠DEC以点C D E 为顶点的三角形与△AOG 相似 只需OADE =AGCE 或OACE =AGDE 而G 为AC 中点∴G(−1,2)由①知:DE=−14m2+2m∴CE=√m2+[4−(−12m+4)]2=√52m当OADE =AGCE时解得m=4或m=0(此时D与C重合舍去)∴D(4,6)当OACE =AGDE时解得m=3或m=0(舍去)∴D(3,25 4 )综上所述以点C D E为顶点的三角形与△AOG相似则D的坐标为(4,6)或(3,254).10.(1)解:把点C(0,−4)B(2,0)分别代入y=12x2+bx+c中得{c=−412×22+2b+c=0解得{b=1c=−4∵该抛物线的解析式为y=12x2+x−4.(2)解:令y=0即12x2+x−4=0解得x1=−4,x2=2∵A(−4,0)∵C(0,−4)∵AB=2−(−4)=6,OC=4∵S△ABC=12AB⋅OC=12.设P点坐标为(x,0)则PB=2−x∵PE∥AC∵∠BPE=∠BAC,∠BEP=∠BCA ∵△PBE∽△ABC∵S△PBE S△ABC =(PBAB)2即S△PBE12=(2−x6)2化简得:S△PBE=13(2−x)2∵S△PCE=S△PCB−S△PBE=12PB⋅OC−S△PBE=12×(2−x)×4−13(2−x)2 =−13x2−23x+83=−13(x+1)2+3∵当x=−1时S△PCE的最大值为3.(3)解:△OMD为等腰三角形可能有三种情形:①当DM=DO时如图①所示.则DO=DM=DA=2∵AO=CO=4,∠AOC=90°∵∠OAC=∠AMD=45°∵∠ADM=90°∵M点的坐标为(−2,−2);②当MD=MO时如图②所示.过点M作MN⊥OD于点N则点N为OD的中点∵DN=ON=1,AN=AD+DN=3又△AMN为等腰直角三角形∵MN=AN=3∵M点的坐标为(−1,−3);③当OD=OM时∵△OAC为等腰直角三角形×4=2√2即AC上的点与点O之间的最小距离为2√2.∵点O到AC的距离为√22∵2√2>2∵OD=OM的情况不存在.综上所述点M的坐标为(−2,−2)或(−1,−3).11.(1)解:∵抛物线y=−x2+bx+c的顶点D坐标为(1,4)∴y=−(x−1)2+4=−x2+2x−1+4=−x2+2x+3∴抛物线解析式为y=−x2+2x+3;(2)解:①当y=0时−x2+2x+3=0解得x1=−1则A(−1,0)∴1<m<3设E点的横坐标为t∵m−1=1−t∴t=2−m∴点E的横坐标为2−m;故答案为:2−m;②设F(m,−m2+2m+3)(1<m<3)则E(2−m,−m2+2m+3)∵矩形EFGH为正方形∴FG=FE即−m2+2m+3=m−(2−m)整理得:m2=5解得m1=−√5(舍去)∴G点坐标为(√5,0);③过点D作DM⊥x轴于M∵EG⊥AD而DM⊥x轴∴∠1=∠4∴Rt△GEH∽Rt△DAM∴EHAM =GHDM即EH2=GH4∴GH=2EH即2m−2=2(−m2+2m+3)整理得m2−m−4=0解得m1=1−√172(舍去)∴G点坐标为(1+√172,0);(3)解:设AD交EF于Q如图∵FP⊥AD∴∠DPF =90°∵△DFP 与△DAM 相似∴∠1=∠3∵∠1=∠2∴∠2=∠3而FP ⊥DQ∴△FDQ 为等腰三角形∴FD =FQ设直线AD 的解析式为y =px +q把A (−1,0) D (1,4)代入得{−p +q =0p +q =4解得{p =2q =2∴直线AD 的解析式为y =2x +2当y =−m 2+2m +3时 2x +2=−m 2+2m +3 解得x =−12m 2+m +12 则Q (−12m 2+m +12,−m 2+2m +3)∴FQ =m −(−12m 2+m +12)=12m 2−12=12(m +1)(m −1) 而DF 2=(m −1)2+(−m 2+2m +3−4)2=(m −1)2+(m −1)4∴(m −1)2+(m −1)4=(12(m +1)(m −1))2 而m ≠1∴1+(m −1)2=14(m +1)2 整理得3m 2−10m +7=0 解得m 1=1(舍去)∴F 点坐标为(73,209).12.(1)解:将点B(3,0),C(0,−3)代入y =−x 2+bx +c 得:{c =−3−9+3b +c =0 解得:{c =−3b =4∵y =−x 2+4x −3∵y =−x 2+4x −3=−(x −2)2+1.(2)解:如图1:在抛物线上取点E 连接CE 过E 作x 轴的垂线交直线BC 于点F设点F(x,x−3)则点E的坐标为(x,−x2+4x−3)∵EF=−x2+3x∵S△CBE=S△CEF+S△BEF=12EF·OB=−32x2+92x=−32(x−32)2+278∵当x=32时△CBE的面积有最大值此时点E的坐标为(32,34 ).(3)解:存在以B P N为顶点的三角形与△ABC相似如图2:连接BP设N(n,0)当y=0时−x2+4x−3=0解得x2=1,x2=3∵A(1,0)∵y=−x2+4x−3=−(x−2)2+1∵P(2,1)∵B(3,0),C(0,−3),P(2,1)∵∠CBA=∠ABP=45°①当BNBP =BCBA时∵3−n √2=3√22解得n=0所以点N的坐标为N1(0,0);②当BN BP =BA BC 时 ∵3−n√2=23√2 解得n =73 所以点N 的坐标为N 2(73,0).综上所述 点N 的坐标为N 1(0,0)或N 2(73,0).13.解:(1)∵抛物线y =ax 2+bx +c 经过A (1,0),C(0,3)两点 且对称轴为直线x =−1 ∵B(−3,0)设y =a (x +3)(x −1) 把C(0,3)代入得解得:a =−1∵抛物线解析式为y =−x 2−2x +3;(2)如图1 作DE ∥y 轴 交直线BC 于点E设直线BC 的函数解析式为y =px +q 可得:{−3p +q =0q =3 解得:{p =1q =3可得直线BC 的解析式为y =x +3设P (m,−m 2−2m +3)∵E (m,m +3)∵DE =−m 2−2m +3−(m +3)=−m 2−3m∵△DBC 的面积=12DE ×3=−32m 2−92m ∵a =−32<0 ∵m =−32时△DBC 的面积最大=278 此时点D 坐标为(−32,154); (3)存在 理由如下:∵A (1,0)∴AB =3−(−1)=4∵OB =OC =3∴BC =3√2设直线AC 解析式为y =mx +n∵A (1,0)∴{m +n =0n =3解得:{m =−3n =3∴直线AC 解析式为y =−3x +3①当OM ∥AC 时∴直线OM 的解析式为y =−3x结合抛物线的解析式为y =−x 2−2x +3 得:−3x =−x 2−2x +3 解得:x 1=1+√132(舍去) ∴M 坐标(1−√32,−3+3√132); ②当△BON ∽△BCA 时∴BN BA =BO BC∴BN =BA ⋅BO BC =4×33√2=2√2 如图 过点N 作NG ⊥x 轴于点G∵∠OBC =45°∴BG =NG =2∴OG =1∴N (−1,2)设直线OM 解析式为y =m 1x 将N (−1,2)代入得:m 1=−2∴直线OM 解析式为y =−2x结合抛物线的解析式为y =−x 2−2x +3 得:−2x =−x 2−2x +3 解得:x 1=√3舍去,x 2=−√3∴M 坐标 (−√3,2√3)综上 点M 的坐标为(1−√132,−3+3√132)或(−√3,2√3) 14.(1)解:当y =0=x +4时∵A (−4,0)当x =0时∵C (0,4)将点A C 的坐标代入y =−12x 2+bx +c 得{0=−12×16−4b +c 4=c 解得b =−1,c =4∵抛物线的表达式为y =−12x 2−x +4; (2)∵A (−4,0)∵OA =4∵PQ =2OA =8∵点P Q 关于对称轴直线x =−1对称∵PQ∥OA∵点P 的横坐标为−1−82=−5 点C 的横坐标为3 当x =−5时∵P (−5,−72),Q (3,−72); (3)∵A (−4,0)∵OA =4=OC∵对称轴直线x =−1对称∵B (2,0)∵AB =6∵∠AOC =90°∵∠OAC =∠OCA =45°①当△MCO ∽△CAB 时∵46=CM4√2∵CM =8√23 如图 过点M 作MG ⊥y 轴于点G∵MG =CG =√22CM =83当x =−83时∵M (−83,43);当△OCM ∽△CAB 时∵44√2=CM6∵CM =3√2如图 过点M 作MG ⊥y 轴于点G∵MG =CG =√22CM =3当x =−3时∵M (−3,1);综上 M 点的坐标为(−83,43)或(−3,1).15.(1)解:因为y =ax 2+bx +2过点A (2,0)且OA =2OB 则B (−1,0)则{4a +2b +2=0a −b +2=0解得:{a =−1b =1故抛物线的表达式为:y=−x2+x+2;(2)对于y=−x2+x+2令x=0则y=2故点C(0,2)设直线AC的解析式为y=kx+b由直线过点A C的坐标得{2k+b=0b=2解得{k=−1 b=2直线AC的表达式为:y=−x+2设点D的横坐标为m则点D(m,−m2+m+2)则点F(m,−m+2)则DF=−m2+m+2−(−m+2)=−m2+2m=−(m−1)2+1∵−1<0故DF有最大值则△ACD面积最大值为12×AO×DF=12×2×1=1此时m=1点D(1,2);(3)存在理由:点D(m,−m2+m+2)(m>0) 则OE=m 以点O D E为顶点的三角形与△BOC相似①当DEOE =OBOC时两三角形相似即DEOE=OBOC=12则−m 2+m+2m=12解得:m=1+√334或m=1−√334(舍去)经检验m=1+√334是原分式方程的解②当DEOE =OCOB时两三角形相似即DEOE=OCOB=2则−m 2+m+2m=2解得:m=1或m=−2(舍去)经检验m=1是分式方程的解故m=1+√334或m=1.16.(1)解:由y=x2+2x−3当y=0时即x2+2x−3=0解得:x1=−3,x2=1∵B(1,0).(2)解:①∵A(−3,0),C(0,−3),B(1,0)∵OA=OC=3,OB=1,则AB=OA+OB=4,BC=√OC2+OB2=√10∵∠OCA=∠OAC=45°∵∠MCQ=45°,∵∠MCQ=∠MAB=45°∵∠CBM =∠ABC∵△CBM∽△ABC∵CB :AB =BM :BC 即:BM =BC 2AB =104=52 ∵OM =BM −OB =32 ∵M 在x 轴负半轴∵M (−32,0);②如图:过点P 作PH ⊥x 轴 设P(m ,m 2+2m −3) (m <0)在线段OC 上取点D 使得DC =DB 则∠ODB =2∠BOC∵∠ABP =2∠BCO =∠ODB 且∠PHO =∠BOD =90°∵△PHB∽△BOD∵PH:BO =HB:OD设OD =a 则DC =CB =3−a在Rt △OBD 中 由勾股定理得 a 2+12=(3﹣a )2 解得a =43 即OD =43 ∵m 2+2m−31=1−m43 解得m =−154或m =1(舍去) 当m =−154时 ∵P (−154,5716). 17.(1)解:当a =1 k =1时 直线l:y =x +b 抛物线C:y =x 2联立{y =x +b y =x2 得:x 2−x −b =0 ∵直线l:y =x +b 与抛物线C:y =x 2有唯一公共点P∴(−1)2−4×1×(−b )=0解得:b =−14;(2)解:当a =12时 抛物线C:y =12x 2联立{y =12x 2y =kx +b得:12x 2−kx −b =0 ∵直线l:y =kx +b (k >0)与抛物线C:y =12x 2有唯一公共点P∴(−k )2−4×12×(−b )=0∴b =−12k 2∴y =kx −12k 2当x =0时 y =−12k 2 当y =0时 kx −12k 2=0 解得:x =k2∴A (k2,0)∴OA =k2∵过点A 作直线l 的垂线交y 轴于点T∴∠BAT =90° ∴∠ATB +∠ABT =90° ∵∠OBA +∠OAB =90° ∴∠OTA =∠OAB ∵∠AOB =∠TOA =90° ∴△AOB ∽△TOA∴OTOA =OABO 即OTk 2=k 2k 22∴OT =12∵ T 在y 轴的正半轴 ∴T (0,12);(3)证明:如图 令OM QP QN 与y 轴交点分别为D设M(m ,am 2) N(n ,an 2) MN 的解析式为:y =x +c 联立{y =x +b y =ax 2 得:ax 2−x −b =0 解得:x P =12a∴P (12a ,14a)∵点P 关于y 轴的对称点为Q∴Q (−12a ,14a) 联立{y =x +c y =ax 2 得:ax 2−x −c =0 ∵平移直线l 使之与抛物线C 交于M ,N 两点∴m +n =1a令QM 为y =k 1x +b 1 代入M(m ,am 2) Q (−12a ,14a )得:{14a =−k12a +b 1am 2=k 1m +b 1解得:{k 1=am −12b 1=m2∴QM :y =(am −12)x +m2 令x =0 则y =m 2∴D (0,m 2) 同理可得:QN :y =(an −12)x +n2∴DE =m 2−14a∴DE −EF =m +n 2−12a =12a −12a =0 ∴DE =EF∵QP ⊥DF∴∠MQP =∠NQP .18.(1)解:∵抛物线y =ax 2−3ax +c 与x 轴分别交于A(−1,0) B 两点 与y 轴交于点C(0,−2). ∴ a +3a +c =0 ∴ a =12∴设抛物线的解析式为y =12x 2−32x −2(2)解:过点D 作DG ⊥x 轴于点G 交BC 于点F 过点A 作AK ⊥x 轴交BC 的延长线于点K∴ AK∥DG△AKE ∽△DFE ∴DF AK =DEAE设直线BC 的解析式为y =kx +b 1∴{4k +b 1=0b 1=−2解得{k =12b 1=−2∴直线BC 的解析式为y =12x −2 ∵ A(−1,0)∴y =−12−2=−52∴AK =52设D (m,12m 2−32m −2) 则F (m,12m −2)∴DF=12m−2−12m2+32m+2=−12m2+2m∴DEAE =−12m2+2m52=−15m2+45m=−15(m−2)2+45∴当m=2时DEAE 有最大值最大值为45(3)解:符合条件的点P的坐标为(689,349)(6+2√415,3+√415)理由如下:∵l∥BC∴直线l的解析式为y=12x设P(a1,a12)当点P在直线BQ右侧时如图过点P作PN⊥x轴于点N过点Q作QM⊥PN 于点M∵A(−1,0)∴AC=√5∵AC2+BC2=AB2∴∠ACB=90°∵△PQB∽△CAB∴PQPB=ACBC=12∵∠QMP=∠BNP=90°∴∠MQP+∠MPQ=90°∴∠MQP=∠BPN∴△QPM∽△PBN∴QMPN=PMBN=PQPB=12∴QM =a 14∴MN =a 1−2BN −QM =a −BN −QM =a 1−4−a 4=34a 1−4 ∴Q (34a 1,a 1−2)将点Q 的坐标代入抛物线的解析式得12×(34a 1)2−32×34a 1−2=a 1−2 解得a 1=0(舍去)∴P (689,349) 当点P 在直线BQ 左侧时 由①的方法同理可得点Q 的坐标为(54a 1,2) 此时点P 的坐标为(6+2√415,3+√415) ∴综合所述 存在这样的点P 且坐标为为(689,349)或 (6+2√415,3+√415) 19.解:(1)∵抛物线经过A(−2,0) ∴ {4−2b +c =0c =−6 解得:{b =−1c =−6∴抛物线的表达式为:y =x 2−x −6; (2)y =x 2−x −6=(x +2)(x −3)∴A(−2,0)设直线BC 的解析式为y =px +q 由题意得{3p +q =0q =−6 解得:{p =2q =−6所以直线BC 的解析式为y =2x −6如图 分别过点A 和点D 作y 轴的平行线 交直线BC 于点M 和点N∴△NED ∽△MEA则EDEA =DNAM∵A(−2,0)∴点M 横坐标为−2将x =−2代入BC 的解析式y =2x −6 得y =−10∴M(−2,−10)∴AM =10为定值. ∴当DN 取最大值时ED EA取得最大值设D(t,t 2−t −6) 则N(t,2t −6)则DN =(2t −6)−(t 2−t −6)=−t 2+3t =−(t −32)2+94 ∴当t =32时 DN 取最大值 即EDEA取得最大值 此时D(32,−214);(3)∵△OEF ∽△COA∠OEF =∠COA =90°①如右图 当点F 在OE 左侧时 过点E 作EP ⊥x 轴于点P 过点F 作FQ ⊥PE 于点Q 则∠OPE =∠EQF =90°∵∠OEF =90°∴∠OEP +∠FEQ =90° ∵∠OEP +∠EOP =90° ∴∠FEQ =∠EOP ∴△OEP ∽△EFQ .OP EQ =PE QF =OE EF =31设E(m,2m −6) 则P(m,0)∵点E在第四象限∴OP=m∵EQ=13m,QF=2−23m∵F(53m−2,53m−6)将F(53m−2,53m−6)代入抛物线得:53m−6=(53m−2)2−(53m−2)−6解得:m1=9+3√35∴点F的坐标(1+√3,−3+√3)或(1−√3,−3−√3);②如右图当点F在OE右侧时过点E作EH⊥x轴于点H过点F作FG⊥EH于点G则∠OHE=∠EGF=90°则△OHE∽△EGFOH EG =HEGF=OEEF=31设OH=n则H(n,0)∵点E在线段BC上且在第四象限∴E(n,2n−6)GF=2−2 3 nA G(n,73n−6)F(13n+2,73n−6)将F(13n+2,73n−6)代入抛物线得:73n−6=(13n+2)2−(13n+2)−6解得:n1=6−3√2n1=6+3√2(舍去)∴点F的坐标(4−√2,8−7√2)综上所述:点F的坐标为(1+√3,−3+√3)或(1−√3,−3−√3)或(4−√2,8−7√2);(4)设点E(m,2m−6)则EH=6−2m则12EH=3−m则x G=m−(3−m)=2m−3即点G(2m−3,m−3)将点G的坐标代入抛物线表达式得:m−3=(2m−3)2−(2m−3)−6解得:m=3(舍去)或34则点G(−32−94).20.(1)解:将点A(−2,0)点B(4,0)代入y=ax2+bx+4{0=a(−2)2+b⋅(−2)+40=a⋅42+b⋅4+4解得:{a=−12b=1故答案为:抛物线的解析式:y=−12x2+x+4(2)解:由(1)结论可知点C坐标为(0,4)设直线BC解析式为:y=kx+4将点B(4,0)代入解得:k=−1∴直线BC解析式为:y=−x+4∵点P的横坐标为t则点P的纵坐标为−12t2+t+4∴点E的横坐标为t点E的纵坐标为−t+4∵点P在抛物线第一象限上∴PE=PD−ED即:d=−12t2+t+4−(−t+4)=−12t2+2t故答案为:d与t的函数关系式:d=−12t2+2t(3)解:∵GO⊥AB∴△GAO∽△PAD∴GOAO =PDAD即:GO2=−12t2+t+4t+2整理得:GO=4−t∴CG=CO−GO=4−(4−t)=t∵CO∥PD∴CEOD =CBOB=√2即:CEt=√2整理得:CE=√2t∵∠GCF=∠FEP∴△GCF∽△PEF∴CGPE =CFEF即:CGPE=EC−EFEF即:t−12t2+2t=√2t−(4√2−√2t)4√2−√2t解得:t=3或t=4(舍)∴GO=4−t=4−3=1∵∠CFA−∠BAQ=2∠PAB∴∠PAB+45°−∠BAQ=2∠PAB即:∠PAB+∠BAQ=45°作点H(1,−1)作HI⊥x轴垂足为I连接GH则:GI=OA=2∴△AGO≌△GHI(SAS)∴∠GAO=∠HGI∴∠AGH=90°∴∠GAH=45°∴∠PAB+∠BAH=45°=∠PAB+∠BAQ∴∠ABH=∠BAQ∴直线AH与抛物线交点即为点Q设直线AH解析式为:y=kx+b点A(−2,0)点Q(1,−1)在直线上∴{0=k⋅(−2)+b−1=k⋅1+b解得:{k=−13b=−23直线AH解析式为:y=−13x−23∴{y=−13x−23y=−12x2+x+4解得:{x1=−2y1=0∴(−2,0)为点A(143,−209)为点Q故答案为:Q(143,−209).。
人教中考数学压轴题专题复习—相似的综合含答案解析

一、相似真题与模拟题分类汇编(难题易错题)1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答2.如图①,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2,l1于点D,E(点A,E位于点B的两侧,满足BP=BE,连接AP,CE.(1)求证:△ABP≌△CBE.(2)连接AD、BD,BD与AP相交于点F,如图②.①当时,求证:AP⊥BD;②当 (n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.【答案】(1)证明:BC⊥直线l1,∴∠ABP=∠CBE.在△ABP和△CBE中,(2)①证明:如图,延长AP交CE于点H.∵△ABP≌△CBE,∴∠PAB=∠ECB,∴∠PAB+∠AEH=∠ECB+∠AEH=90°,∴∠AHE=90°,∴AP⊥CE.∵,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴,∴DP=EP.∴四边形BDCE是平行四边形,∴CE∥BD.∵AP⊥CE,∴AP⊥BD.②解:∵,∴BC=nBP,∴CP=(n-1)BP.∵CD∥BE,∴△CPD∽△BPE,∴.令S△BPE=S,则S2=(n-1)S,S△PAB=S△BCE=nS,S△PAE=(n+1)S.∵,∴S1=(n+1)(n-1)S,∴.【解析】【分析】(1)由已知条件用边角边即可证得△ABP≌△CBE;(2)①、延长AP交CE于点H,由(1)知△ABP≌△CBE,所以可得∠PAB=∠ECB,而∠∠ECB+∠BEC=,所以可得∠PAB+∠BEC=,即∠AHE=,所以AP⊥CE;已知=2,则点P为BC的中点,所以易证得BE=CD,由有一组对边平行且相等的四边形是平行四边形可得四边形BDCE是平行四边形,由平行四边形的性质可得CE∥BD,再根据平行线的性质即可求得AP⊥BD;②方法与①类似,由已知条件易证得△CPD∽△BPE,则可得对应线段的比相等,然后可将△PAD的面积和△PCE的面积用三角形BPE的面积表示出来,则这两个三角形的比值即可求解。
中考数学压轴题专题复习—相似的综合附答案

中考数学压轴题专题复习—相似的综合附答案一、相似1.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.【答案】(1)解:∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a)(2)解:∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,∴S△ACB= AB•OC=6,∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3(3)解:设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴ = ,即,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴ = ,即 = ,解得m=4,∴Q的坐标为(4,0);∠GCF=90°不存在,综上所述,点Q的坐标为(4,0)或(9,0).【解析】【分析】(1)根据抛物线是轴对称图形和已知条件可求得抛物线与x轴的另一个交点B的坐标,再用交点式可求得抛物线的解析式,然后根据抛物线与y轴交于点C可得x=0,把x=0代入解析式即可求得点C的坐标;(2)由(1)的结论可求得AB=4,OC=3a,根据三角形ABC的面积=AB•OC=6可求得a的值,则解析式可求解;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,根据中心对称的性质可得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3。
中考数学压轴题专题相似的经典综合题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
人教中考数学压轴题专题复习——相似的综合及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E,QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF•AD;(2)若AP:PC=1:3,求tan∠CBQ.【答案】(1)证明:①∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;②∵四边形ABCD是正方形,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,(本题也可以连接PD,证△APF∽△ADP)(2)证明:由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°,∴∠PCQ=45°+45°=90°∴tan∠CPQ= ,由①得AP=CQ,又AP:PC=1:3,∴tan∠CPQ= ,由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ= .【解析】【分析】(1)①利用正方形的性质和等腰直角三角形的性质易证△ABP≌△CBQ,可得AP=CQ;②利用正方形的性质可证得∠CBQ=∠CPQ,再由△ABP≌△CBQ可证得∠APF=∠ABP,从而证出△APF∽△ABP,由相似三角形的性质得证;(2)由△ABP≌△CBQ可得∠BCQ=∠BAC=45°,可得∠PCQ=45°+45°=90°,再由三角函数可得tan∠CPQ=,由AP:PC=1:3,AP=CQ,可得tan∠CPQ=,再由∠CBQ=∠CPQ可求出答2.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。
中考数学—相似的综合压轴题专题复习附答案解析
中考数学—相似的综合压轴题专题复习附答案解析一、相似1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。
中考数学——相似的综合压轴题专题复习含详细答案
中考数学——相似的综合压轴题专题复习含详细答案一、相似1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
中考数学压轴题专题复习——相似的综合附答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.综合题(1)【探索发现】如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为多少.(2)【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为多少.(用含a,h的代数式表示)(3)【灵活应用】如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.(4)【实际应用】如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= ,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.【答案】(1)解:∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF= BC,ED= AB,又∠B=90°,∴四边形FEDB是矩形,则;(2)解:∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a- PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a- x)=- x2+ax=- (x- )2+ ,∴当PQ= 时,S矩形PQMN最大值为 .(3)解:如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI= =24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG• BF= ×(40+20)× (32+16)=720,答:该矩形的面积为720;(4)解:如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC= ,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH= BC=54cm,∵tanB= = ,∴EH= BH= ×54=72cm,在Rt△BHE中,BE= =90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2,答:该矩形的面积为1944cm2.【解析】【分析】(1)由三角形的中位线定理可得ED∥AB,EF∥BC,EF= BC,ED= AB,根据两组对边分别平行的四边形是平行四边形可得四边形FEDB是平行四边形,而∠B=90°,根据一个角是直角的平行四边形是矩形可得四边形FEDB是矩形,所以;(2)因为PN∥BC,由相似三角形的判定可得△APN∽△ABC,则可得比例式,即,解得,设PQ=x,则S矩形PQMN=PQ•PN=x(),因为0,所以函数有最大值,即当PQ=时,S矩形PQMN有最大值为;(3)延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由矩形的判定可得四边形ABCH是矩形,根据矩形的性质和已知条件易得AE=EH、CD=DH,于是用角边角可得△AEF≌△HED,所以AF=DH=16,同理可得△CDG≌△HDE,则CG=HE=20,所以=24,BI=24<32,所以中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由(1)得矩形的最大面积为×BG• BF=×(40+20)×(32+16)=720;(4)延长BA、CD交于点E,过点E作EH⊥BC于点H,因为tanB=tanC,所以∠B=∠C,则EB=EC,由等腰三角形的三线合一可得BH=CH=BC=54cm;由tanB可求得EH=BH=×54=72cm,在Rt△BHE中,由勾股定理可得BE=90cm,所以AE=BE-AB=40cm,所以BE的中点Q在线段AB上,易得CE的中点P在线段CD上,由(2)得矩形PQMN的最大面积为BC•EH=1944cm2。
人教中考数学压轴题专题复习—相似的综合及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.【答案】(1)证明:∵直径AB经过弦CD的中点E,, = ,即是的切线(2)解:猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴ = , = ,∴∵∴∴∵∴∵∵∴∴∴MN∥AB.【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即可。
由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易得∠BOD=∠CDF,则结论可得证;(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式,于是由已知条件可转化为,∠ODB是公共角,所以可得△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。
2.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B(A,B两点到路灯正下方的距离相等),他的影长y随他与点A之间的距离x的变化而变化.(1)求y与x之间的函数关系式;(2)作出函数的大致图象.【答案】(1)解:如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C'.小亮从点A到达点O的过程中,影长越来越小,直到影长为0;从点O到达点B的过程中,影长越来越大,到点B达到最大值.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,∵MA'⊥AB,CO⊥AB,∴△MC'A'∽△CC'O,∴,即 = ,∴y= x- (0≤x≤m),(此时m,l,h为常数),②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)解:如图②所示:【解析】【分析】(1)如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C';根据中心投影的特点可知影长随x的变化情况.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,根据相似三角形的判定和性质可得y与x的函数解析式.②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)根据(1)的函数解析式可画出图像.3.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN MC的值.【答案】(1)证明:∵OA=OC,∴∠A=∠ACO,又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC,∴(3)解:连接MA,MB,∵点M是弧AB的中点,∴弧AM=弧BM,∴∠ACM=∠BCM,∵∠ACM=∠ABM,∴∠BCM=∠ABM,∵∠BMN=∠BMC,∴△MBN∽△MCB,∴,∴ BM2=MN⋅MC ,又∵AB是⊙O的直径,弧AM=弧BM,∴∠AMB=90°,AM=BM,∵AB=4,∴,∴ MN⋅MC=BM2=8 .【解析】【分析】(1)根据等边对等角得出∠A=∠ACO,运用外角的性质和已知条件得出∠A=∠ACO=∠PCB,再根据直径所对的圆周角是直角得出∠PCB+∠OCB=90°,进而求解.(2)根据等边对等角得出∠A=∠P,再根据第一问中的结论求解即可,(3)连接MA,MB,根据同弧或等弧所对的圆周角相等得出∠ACM=∠ABM,∴∠BCM=∠ABM,证出△MBN∽△MCB,得出比例式进而求解即可.4.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'= AD,那么请直接写出点D'到直线BC的距离.【答案】(1)证明:∵将△APD沿直线AB翻折,得到△AP'D,∴∠ADP'=∠ADP,∵AE∥PD,∴∠EAD=∠ADP,∴∠EAD=∠ADP',∴AE=DE(2)解:①∵DP∥BC,∴△APD∽△ACB,∴,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴ = ,∵BC=7,∴PD=,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F= D'D,∠ADF=∠AD'F,∵cos∠ADF== = ,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=,∵CM=AM﹣AC=﹣3,∴CM=,∴点D'到直线BC的距离为若点D'在直线BC的上方,如图,过点D'作D'M⊥AC,交CA的延长线于点M,同理可证:△AMD'≌△DPA,∴AM=PD=,∵CM=AC+AM,∴CM=3+ =,∴点D'到直线BC的距离为综上所述:点D'到直线BC的距离为或;【解析】【分析】(1)由折叠的性质和平行线的性质可得∠EAD=∠ADP=∠ADP',即可得AE=DE;(2)①由题意可证△APD∽△ACB,可得,由旋转的性质可得AP=AP',AD=AD',∠PAD=∠P'AD',即∠P'AC=∠D'AB,,则△AP'C∽△AD'B;②分点D'在直线BC的下方和点D'在直线BC的上方两种情况讨论,根据平行线分线段成比例,可求PD=,通过证明△AMD'≌△DPA,可得AM=PD=,即可求点D'到直线BC 的距离.5.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:① 为何值时为等腰三角形;② 为何值时线段PN的长度最小,最小长度是多少.【答案】(1)解:设平移后抛物线的解析式,将点A(8,,0)代入,得 = ,所以顶点B(4,3),所以S阴影=OC•CB=12(2)解:设直线AB解析式为y=mx+n,将A(8,0)、B(4,3)分别代入得,解得:,所以直线AB的解析式为,作NQ垂直于x轴于点Q,①当MN=AN时, N点的横坐标为,纵坐标为,由三角形NQM和三角形MOP相似可知 ,得,解得(舍去).当AM=AN时,AN= ,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);当MN=MA时,故是钝角,显然不成立,故;②由MN所在直线方程为y= ,与直线AB的解析式y=﹣x+6联立,得点N的横坐标为X N= ,即t2﹣x N t+36﹣x N=0,由判别式△=x2N﹣4(36﹣)≥0,得x N≥6或x N≤﹣14,又因为0<x N<8,所以x N的最小值为6,此时t=3,当t=3时,N的坐标为(6,""),此时PN取最小值为【解析】【分析】(1)平移前后的两个二次函数的a的值相等,平移后的图像经过点原点,因此设函数解析式为:,将点A的坐标代入就可求出b的值,再求出顶点B的坐标,利用割补法可得出阴影部分的面积=以OC,BC为边的矩形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)
1.如图,在平面直角坐标系中,直线y=﹣ x+ 与x轴、y轴分别交于点B、A,与直线
y= 相交于点C.动点P从O出发在x轴上以每秒5个单位长度的速度向B匀速运动,点
Q从C出发在OC上以每秒4个单位长度的速度,向O匀速运动,运动时间为t秒(0<t<
2).
(1)直接写出点C坐标及OC、BC长;
(2)连接PQ,若△OPQ与△OBC相似,求t的值;
(3)连接CP、BQ,若CP⊥BQ,直接写出点P坐标.
【答案】(1)解:对于直线y=﹣ x+ ,令x=0,得到y= ,
∴A(0, ),
令y=0,则x=10,
∴B(10,0),
由 ,解得 ,
∴C( , ).
∴OC= =8,
BC= =10
(2)解:①当 时,△OPQ∽△OCB,
∴ ,
∴t= .
②当 时,△OPQ∽△OBC,
∴ ,
∴t=1,
综上所述,t的值为 或1s时,△OPQ与△OBC相似
(3)解:如图作PH⊥OC于H.
∵OC=8,BC=6,OB=10,
∴OC
2+BC2=OB2
,
∴∠OCB=90°,
∴当∠PCH=∠CBQ时,PC⊥BQ.
∵∠PHO=∠BCO=90°,
∴PH∥BC,
∴ ,
∴ ,
∴PH=3t,OH=4t,
∴tan∠PCH=tan∠CBQ,
∴ ,
∴t= 或0(舍弃),
∴t= s时,PC⊥BQ.
【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B点的坐标,解联立直线
AB,与直线OC的解析式组成的方程组,求出C点的坐标,根据两点间的距离公式即可直接
算出OC,OB的长;
(2)根据速度乘以时间表示出OP=5t,CQ=4t,OQ=8-4t,①当OP∶OC=OQ∶OB时,
△OPQ∽△OCB,根据比例式列出方程,求解得出t的值;②当OP∶OB=OQ∶OC时,
△OPQ∽△OBC,根据比例式列出方程,求解得出t的值,综上所述即可得出t的值;
(3)如图作PH⊥OC于H.根据勾股定理的逆定理判断出∠OCB=90°,从而得出当
∠PCH=∠CBQ时,PC⊥BQ.根据同位角相等二直线平行得出PH∥BC,根据平行线分线段
成比例定理得出OP∶OB=PH∶BC=OH∶OC,根据比例式得出PH=3t,OH=4t,根据等角的同
名三角函数值相等及正切函数的定义,由tan∠PCH=tan∠CBQ,列出方程,求解得出t的
值,经检验即可得出答案。
2.如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于
点G,交过D的直线于F,且∠BDF=∠CDB,BD与CG交于点N.
(1)求证:DF是⊙O的切线;
(2)连结MN,猜想MN与AB的位置有关系,并给出证明.
【答案】(1)证明:∵直径AB经过弦CD的中点E,
, = ,
即
是 的切线
(2)解:猜想:MN∥AB.
证明:连结CB.
∵直径AB经过弦CD的中点E,
∴ = , = ,
∴
∵
∴
∴
∵
∴
∵
∵
∴
∴
∴MN∥AB.
【解析】【分析】(1)要证DF是⊙O的切线,由切线的判定知,只须证∠ODF=即
可。由垂径定理可得AB⊥CD,则∠BOD+∠ODE=,而∠ODF=∠CDF+∠ODE,由已知易
得∠BOD=∠CDF,则结论可得证;
(2)猜想:MN∥AB.理由:连结CB,由已知易证△CBN∽△AOM,可得比例式
,于是由已知条件可转化为,∠ODB是公共角,所以可得
△MDN∽△ODB,则∠DMN=∠DOB,根据平行线的判定可得MN∥AB。
3.如图,抛物线 过点 , . 为线段
OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线
分别交于点P、N.
(1)求直线AB的解析式和抛物线的解析式;
(2)如果点P是MN的中点,那么求此时点N的坐标;
(3)如果以B,P,N为顶点的三角形与 相似,求点M的坐标.
【答案】(1)解:设直线 的解析式为 ( )
∵ ,
∴ 解得
∴直线 的解析式为
∵抛物线 经过点 ,
∴ 解得
∴
(2)解:∵ 轴, 则 ,
∴ ,
∵ 点是 的中点
∴
∴
解得 , (不合题意,舍去)
∴
(3)解:∵ , ,
∴ ,
∴
∵
∴当 与 相似时,存在以下两种情况:
∴ 解得
∴
∴ ,解得
∴
【解析】【分析】(1)运用待定系数法解答即可。
(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m
表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。
(3)在 △BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用
含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。
4.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交
AF于点G.
(1)猜想BG与EG的数量关系.并说明理由;
(2)延长DE,BA交于点H,其他条件不变,
①如图2,若∠ADC=60°,求 的值;
②如图3,若∠ADC=α(0°<α<90°),直接写出 的值.(用含α的三角函数表示)
【答案】(1)解: ,
理由如下:
∵四边形 是平行四边形,
∴ ∥ , .
∵四边形 是菱形,
∴ ∥ , .
∴ ∥ , .
∴ .
又∵ ,
∴ ≌ .
∴
(2)解:方法1:过点 作 ∥ ,交 于点 ,
∴ .
∵ ,
∴ ∽ .
∴ .
由(1)结论知 .
∴ .
∴ .
∵四边形 为菱形,
∴ .
∵四边形 是平行四边形,
∴ ∥ .
∴ .
∵ ∥ ,
∴ .
∴ ,
即 .
∴ 是等边三角形。
∴ .
∴ .
方法2:延长 , 交于点 ,
∵四边形 为菱形,
∴ .
∵四边形 为平形四边形,
∴ , ∥ .
∴ .
,
即 .
∴ 为等边三角形.
∴ .
∵ ∥ ,
∴ , .
∴ ∽ ,
∴ .
由(1)结论知
∴ .
∴ .
∵ ,
∴ .
如图3,连接EC交DF于O,
∵四边形CFED是菱形,
∴EC⊥AD,FD=2FO,
设FG=a,AB=b,则FG=a,EF=ED=CD=b,
Rt△EFO中,cosα= ,
∴OF=bcosα,
∴DG=a+2bcosα,
过H作HM⊥AD于M,
∵∠ADC=∠HAD=∠ADH=α,
∴AH=HD,
∴AM= AD= (2a+2bcosα)=a+bcosα,
Rt△AHM中,cosα= ,
∴AH= ,
∴ = =cosα
【解析】【分析】(1)利用菱形和平行四边形的性质可得出AB∥CD∥EF,AB=CD=EF,再
利用平行线的性质可证得∠ABG=∠FEG,然后利用AAS可证得△ABG≌△FEG,由全等三角
形的性质可证得结论。
(2)①过点 G 作 GM ∥ BH ,交 DH 于点 M ,易证△GME∽△BHE。得出对应边成比例,
求出MG与BH的比值,再利用菱形的性质及平行四边形的性质证明DG=MG,即可解答;
②连接EC交DF于O,利用菱形的性质可得出EC⊥AD,FD=2FO,设FG=a,AB=b,可表示
出FG,EF=ED=CD=b,Rt△EFO中,利用锐角三角函数的定义可得出OF、DG,过H作
HM⊥AD于M,易证AH=HD,AM=a+bcosα,再在Rt△AHM中,利用锐角三角函数的定义
求出AH的长,继而可得出DG与BH的比值,可解答。
5.如果三角形的两个内角 与 满足 =90°,那么我们称这样的三角形为“准
互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=________°;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,
不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得
△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC
是“准互余三角形”.求对角线AC的长.
【答案】(1)15°
(2)解:存在,
如图①,连结AE,
在Rt△ABC中,
∴∠B+∠BAC=90°,
∵AD是∠BAC的平分线,
∴∠BAC=2∠BAD,
∴∠B+2∠BAD=90°,