2019年中考数学压轴题精选例题及答案解析
2019年全国各地中考真题压轴题精选:四边形综合(带答案解析)

四边形综合题一.选择题(共1小题)1.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是( )A .18m 2B .18√3m 2C .24√3m 2D .45√32m 2 二.填空题(共2小题)2.(2019•日照)规定:在平面直角坐标系xOy 中,如果点P 的坐标为(a ,b ),那么向量OP→可以表示为:OP →=(a ,b ),如果OA →与OB →互相垂直,OA →=(x 1,y 1),OB →=(x 2,y 2),那么x 1x 2+y 1y 2=0.若OM →与ON →互相垂直,OM →=(sin α,1),ON →=(2,−√3),则锐角∠α= .3.(2019•上海)如图,在正六边形ABCDEF 中,设BA →=a →,BC →=b →,那么向量BF →用向量a →、b →表示为 .三.解答题(共38小题)4.(2019•抚顺)如图,点E ,F 分别在正方形ABCD 的边CD ,BC 上,且DE =CF ,点P在射线BC 上(点P 不与点F 重合).将线段EP 绕点E 顺时针旋转90°得到线段EG ,过点E 作GD 的垂线QH ,垂足为点H ,交射线BC 于点Q .(1)如图1,若点E 是CD 的中点,点P 在线段BF 上,线段BP ,QC ,EC 的数量关系为 .(2)如图2,若点E 不是CD 的中点,点P 在线段BF 上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.5.(2019•盘锦)如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.6.(2019•朝阳)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4√2,请直接写出点O经过的路径长.7.(2019•鄂尔多斯)(1)【探究发现】如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF 绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E 和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是.(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)【拓展延伸】如图3,∠BOD=120°,OD=34,OB=4,OA平分∠BOD,AB=√13,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.8.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5√3,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.9.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.10.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)11.(2019•贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D 作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.12.(2019•通辽)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.13.(2019•吉林)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE =AB,连接AE.动点P、Q从点A同时出发,点P以√2cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=cm,∠EAD=°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=54cm时,直接写出x的值.14.(2019•长春)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作▱PQMN.设▱PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为;②PN的长用含t的代数式表示为.(2)当▱PQMN为矩形时,求t的值;(3)当▱PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,直接写出t的值.15.(2019•吉林)性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4√3,则它的面积为;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).16.(2019•常州)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=;当n=5,m=时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.17.(2019•鸡西)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.18.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC 内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.19.(2019•海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A 、D 不重合),射线PE 与BC 的延长线交于点Q .(1)求证:△PDE ≌△QCE ;(2)过点E 作EF ∥BC 交PB 于点F ,连结AF ,当PB =PQ 时,①求证:四边形AFEP 是平行四边形;②请判断四边形AFEP 是否为菱形,并说明理由.20.(2019•益阳)如图,在平面直角坐标系xOy 中,矩形ABCD 的边AB =4,BC =6.若不改变矩形ABCD 的形状和大小,当矩形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半轴上随之上下移动.(1)当∠OAD =30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形OMCD 的面积为212时,求OA 的长;(3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.21.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,AB =AD ,CB =CD ,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD 的对角线AC 、BD 交于点O ,AC ⊥BD .试证明:AB 2+CD 2=AD 2+BC 2;(3)解决问题:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知AC =4,AB =5,求GE 的长.22.(2019•无锡)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2√3.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.23.(2019•岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF 上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)24.(2019•盐城)如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.25.(2019•苏州)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=2√5cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.(1)直接写出动点M的运动速度为cm/s,BC的长度为cm;(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N 的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)①求动点N运动速度v(cm/s)的取值范围;②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由.26.(2019•资阳)在矩形ABCD中,连结AC,点E从点B出发,以每秒1个单位的速度沿着B→A→C的路径运动,运动时间为t(秒).过点E作EF⊥BC于点F,在矩形ABCD 的内部作正方形EFGH.(1)如图,当AB=BC=8时,①若点H在△ABC的内部,连结AH、CH,求证:AH=CH;②当0<t≤8时,设正方形EFGH与△ABC的重叠部分面积为S,求S与t的函数关系式;(2)当AB=6,BC=8时,若直线AH将矩形ABCD的面积分成1:3两部分,求t的值.27.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.28.(2019•衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.29.(2019•绵阳)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.30.(2019•扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ ∥AB.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a 的取值范围.31.(2019•泰州)如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.32.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=34时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.33.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()34.(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当√3≤S≤5√3时,求t的取值范围(直接写出结果即可).35.(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.36.(2019•白银)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM =MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.37.(2019•济宁)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.38.(2019•连云港)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正方形ABCD的边长为4,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.39.(2019•威海)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE=EF;(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;(3)求△BEF面积的最大值.40.(2019•达州)箭头四角形模型规律如图1,延长CO交AB于点D,则∠BOC=∠1+∠B=∠A+∠C+∠B.因为凹四边形ABOC形似箭头,其四角具有“∠BOC=∠A+∠B+∠C”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=.②如图3,∠ABE、∠ACE的2等分线(即角平分线)BF、CF交于点F,已知∠BEC=120°,∠BAC=50°,则∠BFC=.③如图4,BO i、CO i分别为∠ABO、∠ACO的2019等分线(i=1,2,3, (2017)2018).它们的交点从上到下依次为O1、O2、O3、…、O2018.已知∠BOC=m°,∠BAC =n°,则∠BO1000C=度.(2)拓展应用:如图5,在四边形ABCD中,BC=CD,∠BCD=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:四边形OBCD是菱形.41.(2019•自贡)(1)如图1,E是正方形ABCD边AB上的一点,连接BD、DE,将∠BDE 绕点D逆时针旋转90°,旋转后角的两边分别与射线BC交于点F和点G.①线段DB和DG的数量关系是;②写出线段BE,BF和DB之间的数量关系.(2)当四边形ABCD为菱形,∠ADC=60°,点E是菱形ABCD边AB所在直线上的一点,连接BD、DE,将∠BDE绕点D逆时针旋转120°,旋转后角的两边分别与射线BC 交于点F和点G.①如图2,点E在线段AB上时,请探究线段BE、BF和BD之间的数量关系,写出结论并给出证明;②如图3,点E在线段AB的延长线上时,DE交射线BC于点M,若BE=1,AB=2,直接写出线段GM的长度.四边形综合题参考答案与试题解析一.选择题(共1小题)1.【解答】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE=12BC=6−12x,∴AD=CE=√3BE=6√3−√32x,AB=AE+BE=x+6−12x=12x+6,∴梯形ABCD面积S=12(CD+AB)•CE=12(x+12x+6)•(6√3−√32x)=−3√38x2+3√3x+18√3=−3√38(x﹣4)2+24√3,∴当x=4时,S最大=24√3.即CD长为4m时,使梯形储料场ABCD的面积最大为24√3m2;故选:C.二.填空题(共2小题)2.【解答】解:依题意,得2sinα+1×(−√3)=0,解得sinα=√3 2.∵α是锐角,∴α=60°.故答案是:60°.3.【解答】解:连接CF.∵多边形ABCDEF 是正六边形,AB ∥CF ,CF =2BA ,∴CF →=2a →,∵BF →=BC →+CF →,∴BF →=2a →+b →,故答案为2a →+b →.三.解答题(共38小题)4.【解答】解:(1)BP +QC =EC ;理由如下:∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,由旋转的性质得:∠PEG =90°,EG =EP ,∴∠PEQ +∠GEH =90°,∵QH ⊥GD ,∴∠H =90°,∠G +∠GEH =90°,∴∠PEQ =∠G ,又∵∠EPQ +∠PEC =90°,∠PEC +∠GED =90°,∴∠EPQ =∠GED , 在△PEQ 和△EGD 中,{∠EPQ =∠GEDEP =EG ∠PEQ =∠G,∴△PEQ ≌△EGD (ASA ),∴PQ =ED ,∴BP +QC =BC ﹣PQ =CD ﹣ED =EC ,即BP +QC =EC ;故答案为:BP +QC =EC ;(2)(1)中的结论仍然成立,理由如下:由题意得:∠PEG =90°,EG =EP ,∴∠PEQ +∠GEH =90°,∵QH ⊥GD ,∴∠H =90°,∠G +∠GEH =90°,∴∠PEQ =∠G ,∵四边形ABCD 是正方形,∴∠DCB =90°,BC =DC ,∴∠EPQ +∠PEC =90°,∵∠PEC +∠GED =90°,∴∠GED =∠EPQ ,在△PEQ 和△EGD 中,{∠EPQ =∠GEDEP =EG ∠PEQ =∠G,∴△PEQ ≌△EGD (ASA ),∴PQ =ED ,∴BP +QC =BC ﹣PQ =CD ﹣ED =EC ,即BP +QC =EC ;(3)分两种情况:①当点P 在线段BC 上时,点Q 在线段BC 上,由(2)可知:BP =EC ﹣QC ,∵AB =3DE =6,∴DE =2,EC =4,∴BP =4﹣1=3;②当点P 在线段BC 上时,点Q 在线段BC 的延长线上,如图3所示:同(2)可得:△PEQ ≌△EGD (AAS ),∴PQ =DE =2,∵QC =1,∴PC =PQ ﹣QC =1,∴BP =BC ﹣PC =6﹣1=5;综上所述,线段BP 的长为3或5.5.【解答】(1)①解:△AEG 是等边三角形;理由如下:∵四边形ABCD 是菱形,∠BAD =120°,∴AD ∥BC ,AB =BC =CD =AD ,AB ∥CD ,∠CAD =12∠BAD =60°,∴∠BAD +∠ADC =180°,∴∠ADC =60°,∵GH ∥DC ,∴∠AGE =∠ADC =60°,∴∠AGE =∠EAG =∠AEG =60°,∴△AEG 是等边三角形;②证明:∵△AEG 是等边三角形,∴AG =AE ,∵CF =AG ,∴AE =CF ,∵四边形ABCD 是菱形,∴∠BCD =∠BAD =120°,∴∠DCF =60°=∠CAD ,在△AED 和△CFD 中,{AD =CD∠EAD =∠FCD AE =CF,∴△AED ≌△CFD (SAS )∴DE =DF ,∠ADE =∠CDF ,∵∠ADC =∠ADE +∠CDE =60°,∴∠CDF +∠CDE =60°,即∠EDF =60°,∴△DEF 是等边三角形;(2)解:△DEF 是等边三角形;理由如下:同(1)①得:△AEG 是等边三角形,∴AG =AE ,∵CF =AG ,∴AE =CF ,∵四边形ABCD 是菱形,∴∠BCD =∠BAD =120°,∠CAD =12∠BAD =60°,∴∠FCD =60°=∠CAD ,在△AED 和△CFD 中,{AD =CD∠EAD =∠FCD AE =CF,∴△AED ≌△CFD (SAS ),∴DE =DF ,∠ADE =∠CDF ,∵∠ADC =∠ADE ﹣∠CDE =60°,∴∠CDF ﹣∠CDE =60°,即∠EDF =60°,∴△DEF 是等边三角形.6.【解答】解:(1)OE =OD ,OE ⊥OD ;理由如下:由旋转的性质得:AF =AC ,∠AFE =∠ACB ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD =∠F AC =45°,∴∠ACF =∠AFC =12(180°﹣45°)=67.5°,∴∠DCF ═∠EFC =22.5°,∵∠FEC =90°,O 为CF 的中点,∴OE =12CF =OC =OF ,同理:OD =12CF ,∴OE =OD =OC =OF ,∴∠EOC =2∠EFO =45°,∠DOF =2∠DCO =45°,∴∠DOE =180°﹣45°﹣45°=90°,∴OE ⊥OD ;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO 到点M ,使OM =EO ,连接DM 、CM 、DE ,如图2所示:∵O 为CF 的中点,∴OC =OF ,在△COM 和△FOE 中,{OM =EO∠COM =∠FOE OC =OF,∴△COM ≌△FOE (SAS ),∴∠MCF =∠EFC ,CM =EF ,∵四边形ABCD 是正方形,∴AB =BC =CD ,∠BAC =∠BCA =45°,∵△ABC 绕点A 逆时针旋转α得△AEF ,∴AB =AE =EF =CD ,AC =AF ,∴CD =CM ,∠ACF =∠AFC ,∵∠ACF =∠ACD +∠FCD ,∠AFC =∠AFE +∠CFE ,∠ACD =∠AFE =45°, ∴∠FCD =∠CFE =∠MCF ,∵∠EAC +∠DAE =45°,∠F AD +∠DAE =45°,∴∠EAC =∠F AD ,在△ACF 中,∵∠ACF +∠AFC +∠CAF =180°,∴∠DAE +2∠F AD +∠DCM +90°=180°,∵∠F AD +∠DAE =45°,∴∠F AD +∠DCM =45°,∴∠DAE =∠DCM ,在△ADE 和△CDM 中,{AE =CM∠DAE =∠DCM AD =CD,∴△ADE ≌△CDM (SAS ),∴DE =DM ,∵OE =OM ,∴OE ⊥OD ,在△COM 和△COD 中,{CM =CD∠MCF =∠FCD OC =OC,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=√2AB=√2×4√2=8,∴点O经过的路径长为:πd=8π.7.【解答】解:(1)如图1中,结论:CE+CF=BC.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∠OBE=∠OCF=45°,∵∠EOF=∠BOC=90°,∴∠BOE=∠OCF,∴△BOE≌△COF(ASA),∴BE=CF,∴CE+CF=CE+BE=BC.故答案为CE+CF=BC.(2)如图2中,结论不成立.CE+CF=12BC.理由:连接EF,在CO上截取CJ=CF,连接FJ.∵四边形ABCD是菱形,∠BCD=120°,∴∠BCO=∠OCF=60°,∵∠EOF+∠ECF=180°,∴O,E,C,F四点共圆,∴∠OFE=∠OCE=60°,∵∠EOF=60°,∴△EOF是等边三角形,∴OF=FE,∠OFE=60°,∵CF=CJ,∠FCJ=60°,∴△CFJ是等边三角形,∴FC=FJ,∠EFC=∠OFE=60°,∴∠OFJ=∠CFE,∴△OFJ≌△EFC(SAS),∴OJ=CE,∴CF+CE=CJ+OJ=OC=12BC,(3)如图3中,由OB>2OA可知△BAO是钝角三角形,∠BAO>90°,作AH⊥OB于H,设OH=x.在Rt△ABH中,BH=√13−3x2,∵OB=4,∴√13−3x2+x=4,解得x=32或12,∴OH=12或32,∴OA=2OH=1或3(舍弃),∵∠COD+∠ACD=180°,∴A,C,O,D四点共圆,∵OA平分∠COD,∴∠AOC=∠AOD=60°,∴∠ADC=∠AOC=60°,∵∠CAD=60°,∴△ACD是等边三角形,由(2)可知:OC+OD=OA,∴OC=1−34=14.8.【解答】解:(1)如图一(1)中,∵四边形ABCD是矩形,∴∠ADC=90°,∵tan∠DAC=DCAD=553=√33,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴∠CMB=∠CBM,∴CM=CB=5√3,综上所述,满足条件的CM的值为5或5√3.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴AB=BM=AM,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=5 2,∴NM=FMcos30°=5√33,∵∠NFM=90°,NH=HM,∴FH=12MN=5√36.9.【解答】证明:(1)∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,{AE=CG ∠A=∠C AH=CF,∴△AEH≌△CGF(SAS);(2)∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(3)四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G 关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′≥EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.10.【解答】解:(1)如图记为点D所在的位置.(2)如图,∵AB=4,BC=10,∴取BC的中点O,则OB>AB.∴以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点,。
2019年湖南省中考数学真题精选分类汇编:压轴题(含答案解析)

2019年湖南省各市中考数学真题精选汇编压轴题:1-16页2019年湖南省各市中考数学真题精选压轴题剖析:17-79页一.选择题(共10小题)1.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10 2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1B.2C.3D.4 3.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.4.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2B.﹣1C.0D.1 5.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=6.(2019•株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4 7.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c 的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1 8.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.9.(2019•常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.8 10.(2019•郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF 的边长是()A.B.2C.D.4二.填空题(共10小题)11.(2019•长沙)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)12.(2019•永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…+a15x15.依上述规律,解决下列问题:(1)若s=1,则a2=;(2)若s=2,则a0+a1+a2+…+a15=.13.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为.14.(2019•娄底)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.15.(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.16.(2019•株洲)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.17.(2019•岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.18.(2019•邵阳)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是.19.(2019•常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)20.(2019•郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.三.解答题(共19小题)21.(2019•长沙)已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好≤≤,求m,n的值.22.(2019•长沙)如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B 三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.23.(2019•永州)某种机器使用若干年后即被淘汰,该机器有一易损零件,为调查该易损零件的使用情况,随机抽取了100台已被淘汰的这种机器,经统计:每台机器在使用期内更换的该易损零件数均只有8,9,10,11这四种情况,并整理了这100台机器在使用期内更换的该易损零件数,绘制成如图所示不完整的条形统计图.(1)请补全该条形统计图;(2)某公司计划购买一台这种机器以及若干个该易损零件,用上述100台机器更换的该易损零件数的频率代替一台机器更换的该易损零件数发生的概率.①求这台机器在使用期内共更换了9个该易损零件的概率;②若在购买机器的同时购买该易损零件,则每个200元;若在使用过程中,因备用该易损零件不足,再购买,则每个500元.请你帮该公司用花在该易损零件上的费用的加权平均数进行决策:购买机器的同时应购买几个该易损零件,可使公司的花费最少?24.(2019•永州)(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.25.(2019•衡阳)如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.26.(2019•衡阳)如图,在等边△ABC中,AB=6cm,动点P从点A出发以1cm/s的速度沿AB匀速运动.动点Q同时从点C出发以同样的速度沿BC的延长线方向匀速运动,当点P到达点B时,点P、Q同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB'的值最小?并求出最小值.27.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.28.(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.29.(2019•湘潭)如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≥y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN周长的最小值.30.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.31.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.32.(2019•株洲)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.33.(2019•岳阳)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF 上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.(1)如图1,求证:BE=BF;(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;(3)类比探究:若DE=a,CF=b.①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)34.(2019•邵阳)如图1,已知⊙O外一点P向⊙O作切线P A,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.35.(2019•邵阳)如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P 向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.36.(2019•常德)如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(﹣1,0).(1)求二次函数的解析式;(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使△PNC的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.37.(2019•常德)在等腰三角形△ABC中,AB=AC,作CM⊥AB交AB于点M,BN⊥AC 交AC于点N.(1)在图1中,求证:△BMC≌△CNB;(2)在图2中的线段CB上取一动点P,过P作PE∥AB交CM于点E,作PF∥AC交BN于点F,求证:PE+PF=BM;(3)在图3中动点P在线段CB的延长线上,类似(2)过P作PE∥AB交CM的延长线于点E,作PF∥AC交NB的延长线于点F,求证:AM•PF+OM•BN=AM•PE.38.(2019•郴州)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.39.(2019•郴州)已知抛物线y=ax2+bx+3与x轴分别交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=,当k为何值时,CF=AD?②如图2,以A,F,O为顶点的三角形是否与△ABC相似?若相似,求出点F的坐标;若不相似,请说明理由.2019年湖南省中考数学真题精选分类汇编:压轴题(含答案解析)参考答案与试题解析一.选择题(共10小题)1.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE 上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【解答】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.方法二:作CM⊥AB于M,交BE于点D,则点D满足题意.通过三角形相似或三角函数证得BD=DM,从而得到CD+BD=CM=4.故选:B.【点评】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1B.2C.3D.4【分析】先分别求出每一个不等式的解集,再根据不等式组有解,求出m<4,然后分别取m=2,0,﹣1,得出整数解的个数,即可求解.【解答】解:解不等式2x﹣6+m<0,得:x<,解不等式4x﹣m>0,得:x>,∵不等式组有解,∴<,解得m<4,如果m=2,则不等式组的解集为<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=﹣1,则不等式组的解集为﹣<x<,整数解为x=0,1,2,3,有4个.故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.4.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2B.﹣1C.0D.1【分析】先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是﹣1.【解答】解:点运动一个用时为÷π=2秒.如图,作CD⊥AB于D,与交于点E.在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,∴∠CAD=30°,∴CD=AC=×2=1,∴DE=CE﹣CD=2﹣1=1,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为﹣1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;…,∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,∵2019÷4=504…3,∴第2019秒时点P的纵坐标为是﹣1.故选:B.【点评】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环.也考查了垂径定理.5.(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=【分析】根据题意,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.6.(2019•株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4【分析】找出a i+b i的值,结合对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,即可得出S的最大值.【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.【点评】本题考查了规律型:数字的变化类,找出a i+b i共有几个不同的值是解题的关键.7.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c 的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1【分析】由函数的不动点概念得出x1、x2是方程x2+2x+c=x的两个实数根,由x1<1<x2知△>0且x=1时y<0,据此得,解之可得.【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c =x的两个不相等实数根,且x1<1<x2,整理,得:x2+x+c=0,由x2+x+c=0有两个不相等的实数根,且x1<1<x2,知△>0,令y=x2+x+c,画出该二次函数的草图如下:则,解得c<﹣2,故选:B.【点评】本题主要考查二次函数图象与系数的关系,解题的关键是理解并掌握不动点的概念,并据此得出关于c的不等式.8.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.9.(2019•常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.8【分析】首先得出尾数变化规律,进而得出70+71+72+…+72019的结果的个位数字.【解答】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.故选:A.【点评】此题主要考查了尾数特征,正确得出尾数变化规律是解题关键.10.(2019•郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF 的边长是()A.B.2C.D.4【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,解方程即可.【解答】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,解得:x=2,或x=﹣12(舍去),∴x=2,即正方形ADOF的边长是2;故选:B.【点评】本题考查了正方形的性质、全等三角形的性质、一元二次方程的解法、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二.填空题(共10小题)11.(2019•长沙)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是①③④.(只填序号)【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.【点评】本题考查反比例函数与一次函数的交点问题,三角形的面积,平行线分线段成比例定理等知识,解题的关键是学会利用参数解决问题,学会构造平行线,利用平行线分线段成比例定理解决问题,属于中考填空题中的压轴题.12.(2019•永州)我们知道,很多数学知识相互之间都是有联系的.如图,图一是“杨辉三角”数阵,其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和;图二是二项和的乘方(a+b)n的展开式(按b的升幂排列).经观察:图二中某个二项和的乘方的展开式中,各项的系数与图一中某行的数一一对应,且这种关系可一直对应下去.将(s+x)15的展开式按x的升幂排列得:(s+x)15=a0+a1x+a2x2+…依上述规律,解决下列问题:(1)若s=1,则a2=105;(2)若s=2,则a0+a1+a2+…+a15=315.【分析】(1)根据图形中的规律即可求出(1+x)15的展开式中第三项的系数为前14个数的和;(2)根据x的特殊值代入要解答,即把x=1代入时,得到结论.【解答】解:(1)由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴s=1,则a2=1+2+3+…+14=105.故答案为:105;(2)∵(s+x)15=a0+a1x+a2x2+…+a15x15.当x=1时,a0+a1+a2+…+a15=(2+1)15=315,故答案为:315.【点评】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b 的指数是从低到高.13.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,。
2019年中考数学压轴题 (1)

2019中考数学压轴题38.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n ,n ),∵点C 的坐标为(m ,n ),∴点B 的横坐标是m ,纵坐标是:2m ,∴点B 的坐标为(m ,2m ),又∵22n m mn =,∴22mn m n =⋅,∴224m n =,又∵m <0,n >0,∴2mn =-,∴2n m =-,故选B .考点:反比例函数图象上点的坐标特征.39.(2015乌鲁木齐)如图,在直角坐标系xOy 中,点A ,B 分别在x 轴和y 轴,34OA OB =.∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数ky x =的图象过点C .当以CD 为边的正方形的面积为27时,k 的值是( )A.2 B.3 C.5 D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.40.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数3yx=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.22.42【答案】D.【解析】试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3yx=的图象上且纵坐标分别为3,1,∴A ,B 横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S 菱形ABCD=底×高=22×2=42,故选D .考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 41.(2015临沂)在平面直角坐标系中,直线2y x =-+与反比例函数1y x =的图象有唯一公共点,若直线y x b =-+与反比例函数1y x =的图象有2个公共点,则b 的取值范围是( )A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2 【答案】C .考点:反比例函数与一次函数的交点问题. 42.(2015滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA 的两边分别与函数1y x =-、2y x =的图象交于B 、A 两点,则∠OAB 的大小的变化趋势为( )A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题.二、填空题43.(2017云南省,第6题,3分)已知点A(a,b)在双曲线5yx=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.【答案】y=﹣5x+5或y=﹣15x+1.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解析】∵点A(a,b)在双曲线5yx=上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得:5m nn+=⎧⎨=⎩,解得:55mn=-⎧⎨=⎩,∴y=﹣5x+5;②当a=5,b=1时,由题意,得:501m nn+=⎧⎨=⎩,解得:151mn⎧=-⎪⎨⎪=⎩,∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1.故答案为:y=﹣5x+5或y=﹣15x+1.点睛:本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b 的值是解题的关键.考点:反比例函数图象上点的坐标特征;分类讨论.44.(2017内蒙古通辽市,第17题,3分)如图,直线333--=xy与x,y轴分别交于点A,B,与反比例函数xky=的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为.【答案】(﹣3,3.【分析】过C作CE⊥x轴于E,求得A(﹣3,0),B(0,﹣3),解直角三角形得到∠OAB=30°,求得∠CAE=30°,设D(﹣3,3k-),得到AD=3k-,AC=3k-,于是得到C(33k-,6k-),列方程即可得到结论.【解析】过C作CE⊥x轴于E,∵直线333--=xy与x,y轴分别交于点A,B,∴A(﹣3,0),B (03,∴tan∠OAB=OBOA=3,∴∠OAB=30°,∴∠CAE=30°,设D(﹣3,3k-),∵AD⊥x轴,∴AD=3k-,∵AD=AC,∴AC=3k-,∴CE=6k-,AE=3k,∴C(33k,6k-),∵C在反比例函数x k y =的图象上,∴(336k -+)•(6k-)=k ,∴k=63-,∴D (﹣3,23),故答案为:(﹣3,23).点睛:本题考查了反比例函数与一次函数的交点问题,解直角三角形,反比例函数图象上点的坐标特征,正确的点A 、B 、C 的坐标解题的关键. 考点:反比例函数与一次函数的交点问题. 45.(2017四川省成都市,第24题,4分)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P (1x ,1y ),称为点P 的“倒影点”,直线1y x =-+ 上有两点A 、B ,它们的倒影点A ′,B ′均在反比例函数ky x =的图象上,若AB=22,则k= .【答案】43-.【分析】设点A (a ,﹣a+1),B (b ,﹣b+1)(a <b ),则A′(1a ,11a -),B′(1b ,11b -),由AB=22可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.【解析】设点A (a ,﹣a+1),B (b ,﹣b+1)(a <b ),则A′(1a ,11a -),B′(1b ,11b -),∵AB=22,∴b ﹣a=2,即b=a+2.∵点A′,B′均在反比例函数k y x =的图象上,∴211(1)(1)b a k a a b b =+⎧⎪⎨==⎪--⎩,解得:k=43-.故答案为:43-.点睛:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键. 考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.46.(2017山东省日照市,第16题,4分)如图,在平面直角坐标系中,经过点A 的双曲线ky x =(x>0)同时经过点B ,且点A 在点B 的左侧,点A 2,∠AOB=∠OBA =45°,则k 的值为 ..【答案】15【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=2,OM=AN=2,求出B(2+2,2﹣2),得出方程(2+2)•(2﹣2)=k,解方程即可.点睛:本题考查了坐标与图形性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识;本题综合性强,有一定难度.考点:反比例函数图象上点的坐标特征;综合题.47.(2017江苏省南通市,第18题,3分)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数kyx=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.【答案】(8,15 2).【分析】先根据点A(5,12),求得反比例函数的解析式为60yx=,可设D(m,60m),BC的解析式为y=125x+b,把D(m,60m)代入,可得b=60m﹣125m,进而得到BC的解析式为y=125x+60m﹣125m,据此可得OC=m﹣25m=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13﹣65m,最后根据AB=BD,得到方程m﹣25m=13﹣65m,进而求得D的坐标.【解析】∵反比例函数kyx=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为60yx=,设D(m,60m),由题可得OA的解析式为y=125x,AO∥BC,∴可设BC的解析式为y=125x+b,把D(m,60m)代入,可得125m+b=60m,∴b=60m﹣125m,∴BC的解析式为y=125x+60m﹣125m,令y=0,则x=m﹣25m,即OC=m﹣25m,∴平行四边形ABCO中,AB=m﹣25m,如图所示,过D作DE⊥AB于E,过A作AF⊥OC于F,则△DEB∽△AFO,∴DB AODE AF=,而AF=12,DE=12﹣60m,22512+ =13,∴DB=13﹣65m,∵AB=DB,∴m﹣25m=13﹣65m,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,152).故答案为:(8,152).点睛:本题主要考查了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,依据平行四边形的对边相等以及相似三角形的对应边成比例进行计算,解题时注意方程思想的运用.考点:反比例函数图象上点的坐标特征;平行四边形的性质;方程思想;综合题. 48.(2017江苏省宿迁市,第16题,3分)如图,矩形ABOC 的顶点O 在坐标原点,顶点B ,C 分别在x ,y 轴的正半轴上,顶点A 在反比例函数ky x =(k 为常数,k >0,x >0)的图象上,将矩形ABOC 绕点A 按逆时针方向旋转90°得到矩形AB′O′C′,若点O 的对应点O′恰好落在此反比例函数图象上,则C OBO 的值是 .【答案】51-.【分析】设A (m ,n ),则OB=m ,OC=n ,根据旋转的性质得到O′C′=n,B′O′=m,于是得到O′(m+n ,n ﹣m ),于是得到方程(m+n )(n ﹣m )=mn ,求得512m n =,(负值舍去),即可得到结论.【解析】设A (m ,n ),则OB=m ,OC=n ,∵矩形ABOC 绕点A 按逆时针反向旋转90°得到矩形AB′O′C′,∴O′C′=n,B′O′=m,∴O′(m+n ,n ﹣m ),∵A ,O′在此反比例函数图象上,∴(m+n )(n ﹣m )=mn ,∴m2+mn ﹣n2=0,∴m=152-n ,∴512m n =,(负值舍去),∴C OBO 的值是512,故答案为:512.点睛:本题考查了坐标与图形变化﹣旋转,反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;矩形的性质. 49.(2017江苏省常州市,第18题,2分)如图,已知点A 是一次函数12y x=(x ≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是.【答案】3.【分析】作辅助线,构建直角三角形,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,12x),则B(x,kx),C(x+a,kx a+),因为B、C都在反比例函数的图象上,列方程组可得结论.【解析】如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A(x,12x),则B B(x,kx),C(x+a,kx a+),∴11262212212OABS AB DE a xka xxka xa x∆⎧=⋅=⨯⨯=⎪⎪⎪=+⎨⎪⎪=+⎪+⎩①②③,由①得:ax=6,由②得:2k=4ax+x2,由③得:2k=2a(a+x)+x (a+x),2a2+2ax+ax+x2=4ax+x2,2a2=ax=6,a2=3,∵S△ABC=12AB•CE=12•2a•a=a2=3.故答案为:3.点睛:本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等腰直角三角形;反比例函数综合题.50.(2017江苏省盐城市,第16题,3分)如图,曲线l是由函数6yx=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(42-,42),B(22,22)的直线与曲线l相交于点M、N,则△OMN的面积为.【答案】8.【分析】由题意A(42-,42),B(22,22),可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出M、N的坐标,根据S△OMN=S△OBM﹣S△OBN计算即可.【解析】∵A(42-,42),B(22,22),∴OA⊥OB,建立如图新的坐标系(OB为x′轴,OA 为y′轴.在新的坐标系中,A(0,8),B(4,0),∴直线AB解析式为y′=﹣2x′+8,由'2'86''y xyx=-+⎧⎪⎨=⎪⎩,解得'1'6xy=⎧⎨=⎩或'3'2xy=⎧⎨=⎩,∴M(1.6),N(3,2),∴S△OMN=S△OBM﹣S△OBN=12×46﹣12×42=8,故答案为:8.点睛:本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义.51.(2017江苏省连云港市,第15题,3分)设函数3yx=与y=﹣2x﹣6的图象的交点坐标为(a,b),则12a b+的值是.【答案】﹣2.【分析】由两函数的交点坐标为(a,b),将x=a,y=b代入反比例解析式,求出ab的值,代入一次函数解析式,得出2a+b的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab及2a+b 的值代入即可求出值.点睛:此题考查了反比例函数与一次函数的交点问题,其中将x=a,y=b代入两函数解析式得出关于a 与b的关系式是解本题的关键.考点:反比例函数与一次函数的交点问题.52.(2017江苏省连云港市,第16题,3分)如图,已知等边三角形OAB与反比例函数kyx=(k>0,x>0)的图象交于A、B两点,将△OAB沿直线OB翻折,得到△OCB,点A的对应点为点C,线段CB交x轴于点D,则BDDC的值为.(已知sin15°=62-)【答案】31 2.【分析】作辅助线,构建直角三角形,根据反比例函数的对称性可知:直线y=x,求出∠BOF=15°,根据15°的正弦列式可以表示BF的长,证明△BDF∽△CDN,可得结论.【解析】如图,过O作OM⊥x轴于M,∵△AOB是等边三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B关于直线OM对称,∵A、B两点在反比例函数kyx=(k>0,x>0)的图象上,且反比例函数关于直线y=x对称,∴直线OM的解析式为:y=x,∴∠BOD=45°﹣30°=15°,过B作BF⊥x轴于F,过C作CN⊥x轴于N,sin∠BOD=sin15°=BFOB=62-,∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,设CN=x,则OC=2x,∴OB=2x,∴2x =62-,∴BF=(31)2x-,∵BF⊥x轴,CN⊥x轴,∴BF∥CN,∴△BDF∽△CDN,∴BD BFCD CN==(31)2xx-=312-,故答案为:312-.点睛:本题考查了反比例函数与一次函数的交点问题、等边三角形的性质、等腰直角三角形的性质和判定、三角函数、三角形相似的性质和判定、翻折的性质,明确反比例函数关于直线y=x对称是关键,在数学题中常设等腰直角三角形的直角边为未知数x,2倍表示斜边的长,从而解决问题.考点:反比例函数与一次函数的交点问题;等边三角形的性质;翻折变换(折叠问题);解直角三角形.53.(2017浙江省宁波市,第17题,4分)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数3 yx =的图象上,则m的值为.【答案】4或1 2.【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),然后分两种情况进行讨论:一是AB边的中点在反比例函数3yx=的图象上,二是AC边的中点在反比例函数3yx=的图象上,进而算出m的值.【解析】∵△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),∴AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),∵将△ABC向右平移m(m>0)个单位后,∴AB边的中点平移后的坐标为(﹣1+m,1),AC边的中点平移后的坐标为(﹣2+m,﹣2).∵△ABC某一边的中点恰好落在反比例函数3yx=的图象上,∴﹣1+m=3或﹣2×(﹣2+m)=3,∴m=4或m=12.故答案为:4或12.点睛:此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.考点:反比例函数图象上点的坐标特征;坐标与图形变化﹣平移;分类讨论.54.(2017浙江省温州市,第15题,5分)如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B 在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数kyx=(k≠0)的图象恰好经过点A′,B,则k的值为.【答案】43.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(12m,32m),列方程即可得到结论.【解析】∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD 关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=3m,∴A′(12m,3m),∵反比例函数kyx=(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.故答案为:43.点睛:本题考查了反比例函数图象上点的坐标特征,矩形的性质,轴对称的性质,解直角三角形,正确的作出辅助线是解题的关键.考点:反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质;综合题.55.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作 BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.【答案】k=377或155.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,②AC=BC,即可解题.点睛:本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k表示点A、B、C坐标是解题的关键.考点:反比例函数与一次函数的交点问题;等腰三角形的性质;分类讨论;综合题.56.(2017金华,第15题,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数ky x =的图象上,做射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .【答案】(﹣1,﹣6).【分析】先过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据直线AB 的解析式为122y x =+,可得PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,构造△ADP ≌△ADH ,再设DE=x ,则DH=DP=x+32,FD=1+2﹣x=3﹣x ,在Rt △PDF 中,根据PF2+DF2=PD2,可得方程22233()(3)()22x x +-=+,进而得到D (1,0),即可得出直线AD 的解析式为y=3x ﹣3,最后解方程组即可得到D 点坐标.【解析】如图所示,过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据点A (2,3)和点B (0,2),可得直线AB 的解析式为122y x =+,由A (2,3),可得OF=1,当x=﹣1时,y=﹣12+2=32,即P (﹣1,32),∴PF=32,将△AGP 绕点A 逆时针旋转90°得△AEH ,则△ADP ≌△ADH ,∴PD=HD ,PG=EH=32,设DE=x ,则DH=DP=x+32,FD=1+2﹣x=3﹣x ,Rt △PDF 中,PF2+DF2=PD2,即22233()(3)()22x x +-=+,解得x=1,∴OD=2﹣1=1,即D (1,0),根据点A (2,3)和点D (1,0),可得直线AD 的解析式为y=3x ﹣3,解方程组:336y x y x =-⎧⎪⎨=⎪⎩,可得:23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩,∴C (﹣1,﹣6),故答案为:(﹣1,﹣6).点睛:本题主要考查了反比例函数与一次函数图象交点问题,以及反比例函数图象上点的坐标特征的运用,解决问题的关键是作辅助线构造正方形以及全等三角形,依据勾股定理列方程进行求解.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;综合题.57.(2017湖北省孝感市,第16题,3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数kyx=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【答案】512-.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE 和△BAG中,∵∠AOE=∠GAB,∠AOE=∠AGB,AO=AB,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=152-±(负值舍去),∴n=512-,∴k=512-;故答案为:512-.点睛:本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.考点:反比例函数图象上点的坐标特征;全等三角形的判定与性质.58.(2017湖北省荆州市,第18题,3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数kyx=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=12,则BN的长为.【答案】3.【分析】利用矩形的面积公式得到AB•BC=32,再根据旋转的性质得AB=DE,OD=OA,接着利用正切的定义得到an∠DOE=DEOD=12,所以DE•2DE=32,解得DE=4,于是得到AB=4,OA=8,同样在Rt△OCM中利用正切定义得到MC=2,则M(﹣2,4),易得反比例函数解析式为8yx=-,然后确定N点坐标,最后计算BN的长.【解析】∵S矩形OABC=32,∴AB•BC=32,∵矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,∴AB=DE,OD=OA,在Rt△ODE中,tan∠DOE=DEOD=12,即OD=2DE,∴DE•2DE=32,解得DE=4,∴AB=4,OA=8,在Rt△OCM中,∵tan∠COM=MCOC=12,而OC=AB=4,∴MC=2,∴M(﹣2,4),把M(﹣2,4)代入kyx=得k=﹣2×4=﹣8,∴反比例函数解析式为8yx=-,当x=﹣8时,88y=--=1,则N(﹣8,1),∴BN=4﹣1=3.故答案为:3.点睛:本题考查了旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了反比例函数图象上点的坐标特征和解直角三角形.考点:坐标与图形变化﹣旋转;反比例函数系数k的几何意义;解直角三角形;综合题.59.(2017湖北省鄂州市,第15题,3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=3D为AC与反比例函数kyx=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.【答案】﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=23,可求得△ABC的面积,再根据点D将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k 的值.点睛:本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12 |k|,且保持不变.解题时注意分类思想的运用.考点:反比例函数与一次函数的交点问题;数形结合;分类讨论.60.(2017湖南省株洲市,第17题,3分)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数11kyx=(x>0)的图象上,顶点B在函数22kyx=(x>0)的图象上,∠ABO=30°,则12kk= .【答案】13-.【分析】设AC=a ,则OA=2a ,OC=3a ,根据直角三角形30°角的性质和勾股定理分别计算点A 和B 的坐标,写出A 和B 两点的坐标,代入解析式求出k1和k2的值,相比即可.【解析】如图,Rt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°,设AC=a ,则OA=2a ,OC=3a ,∴A (3a ,a ),∵A 在函数11k y x =(x >0)的图象上,∴k1=3a•a=23a ,Rt △BOC 中,OB=2OC=23a ,∴BC=22OB OC -=3a ,∴B (3a ,﹣3a ),∵B在函数22k y x =(x >0)的图象上,∴k2=﹣3a 3a=233a -,∴12k k =13-;故答案为:13-.点睛:本题考查了反比例函数图象上点的特征、直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A 、B 两点的坐标是关键. 考点:反比例函数图象上点的坐标特征;综合题.61.(2017贵州省遵义市,第18题,4分)如图,点E ,F 在函数2y x =的图象上,直线EF 分别与x轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是 .【答案】8 3.【分析】证明△BPE∽△BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,2t),则F点的坐标为(3t,23t),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.【解析】作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴13PE BEHF BF==,即HF=3PE,设E点坐标为(t,2t),则F点的坐标为(3t,23t),∵S△OEF+S△OFD=S△OEC+S梯形ECDF,而S△OFD=S△OEC=12×2=1,∴S△OEF=S梯形ECDF=12(23t+2t)(3t﹣t)=83;故答案为:83.点睛:本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.考点:反比例函数系数k的几何意义.62.(2017辽宁省盘锦市,第16题,3分)在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数kyx=(k≠0)经过点B,则k= .【答案】﹣8或﹣32.【分析】设AB交y轴于点C,利用垂径定理可求得PC的长,则可求得B点坐标,代入反比例函数解析式可求得k的值.【解析】设线段AB 交y 轴于点C ,当点C 在点P 的上方时,连接PB ,如图,∵⊙P 与x 轴相切,且P (0,﹣5),∴PB=PO=5,∵AB=8,∴BC=4,在Rt △PBC 中,由勾股定理可得PC=22PB BC - =3,∴OC=OP ﹣PC=5﹣3=2,∴B 点坐标为(4,﹣2),∵反比例函数ky x =(k ≠0)经过点B ,∴k=4×(﹣2)=﹣8;当点C 在点P 下方时,同理可求得PC=3,则OC=OP+PC=8,∴B (4,﹣8),∴k=4×(﹣8)=﹣32; 综上可知k 的值为﹣8或﹣32,故答案为:﹣8或﹣32.点睛:本题主要考查切线的性质及反比例函数图象上点的坐标特征,利用垂径定理和切线的性质求得PC 的长是解题的关键,注意分两种情况.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论. 63.(2017黑龙江省齐齐哈尔市,第18题,3分)如图,菱形OABC 的一边OA 在x 轴的负半轴上,O是坐标原点,tan ∠AOC=43,反比例函数ky x =的图象经过点C ,与AB 交于点D ,若△COD 的面积为20,则k 的值等于 .【答案】﹣24.【分析】易证S 菱形ABCO=2S △CDO ,再根据tan ∠AOC 的值即可求得菱形的边长,即可求得点C 的坐标,代入反比例函数即可解题.【解析】作DE ∥AO ,CF ⊥AO ,设CF=4x ,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DE ∥AO ,∴S △ADO=S △DEO ,同理S △BCD=S △CDE ,∵S 菱形ABCO=S △ADO+S △DEO+S △BCD+S △CDE ,∴S 菱形ABCO=2(S △DEO+S △CDE )=2S △CDO=40,∵tan ∠AOC=43,∴OF=3x ,∴22OF CF +,∴OA=OC=5x ,∵S 菱形ABCO=AO•CF=20x2,解得:2,∴OF=32CF=42C 坐标为(﹣3242),∵反比例函数ky x =的图象经过点C ,∴代入点C 得:k=﹣24,故答案为:﹣24.点睛:本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO=2S△CDO是解题的关键.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质;解直角三角形;综合题.64.(2017山东省济南市,第20题,3分)如图,过点O的直线AB与反比例函数kyx=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数3kyx-=(x<0)的图象交于点C,连接AC,则△ABC的面积为.【答案】8.【分析】由A(2,1)求得两个反比例函数分别为2yx=,6yx-=,与AB的解析式y=12x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三角形的面积公式即可求得结论.点睛:本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.考点:反比例函数与一次函数的交点问题;反比例函数及其应用.65.(2017山东省莱芜市,第15题,4分)直线y=kx+b与双曲线6 yx =-交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= .【答案】16.【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的左边,再利用分割法求出三角形的面积即可.【解析】由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴326k bk b-+=⎧⎨+=-⎩,解得:24kb=-⎧⎨=-⎩,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由624yxy x⎧=-⎪⎨⎪=-+⎩,解得:32xy=⎧⎨=-⎩和16xy=-⎧⎨=⎩,不妨设D(3,﹣2),E(﹣1,6),∴S△ADE=6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为:16.点睛:本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.66.(2016云南省昆明市)如图,反比例函数kyx=(k≠0)的图象经过A,B两点,过点A作AC⊥x 轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE 的面积为2,则k的值为.【答案】163-.【分析】先设点B坐标为(a,b),根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解析】设点B坐标为(a,b),则DO=﹣a,BD=b.∵AC⊥x轴,BD⊥x轴,∴BD∥AC.∵OC=CD,∴CE=12BD=12b,CD=12DO=12-a.∵四边形BDCE的面积为2,∴12(BD+CE)×CD=2,即12(b+12b)×(12-a)=2,∴ab=163-.将B(a,b)代入反比例函数kyx=(k≠0),得:k=ab=163-.故答案为:163-.考点:反比例函数系数k 的几何意义;平行线分线段成比例. 67.(2016内蒙古包头市)如图,在平面直角坐标系中,点A 在第二象限内,点B 在x 轴上,∠AOB=30°,AB=BO ,反比例函数ky x =(x <0)的图象经过点A ,若S △ABO=3,则k 的值为 .【答案】33-.【分析】过点A 作AD ⊥x 轴于点D ,由∠AOB=30°可得出3AD OD=,由此可是点A 的坐标为(﹣3a ,3 a ),根据S △ABO=3结合三角形的面积公式可用a 表示出线段OB 的长,再由勾股定理可用含a的代数式表示出线段BD 的长,由此即可得出关于a 的无理方程,解方程即可得出结论.【解析】过点A 作AD ⊥x 轴于点D ,如图所示.∵∠AOB=30°,AD ⊥OD ,∴ADOD =tan ∠AOB=3,∴设点A 的坐标为(﹣3a 3).∵S △ABO=123OB=2a .在Rt △ADB 中,∠ADB=90°,AD=3a ,AB=OB=2a ,∴222BD AB AD =-=2243a a -,BD=2243a a -.∵OD=OB+BD=3a ,即222433a a a a =+-,解得:a=1或a=﹣1(舍去),∴点A 的坐标为(﹣3,3),∴k=﹣3×3=33-.故答案为:33-. 考点:反比例函数系数k 的几何意义. 68.(2016内蒙古呼和浩特市)已知函数1y x =-,当自变量的取值为﹣1<x <0或x≥2,函数值y 的取值 .【答案】y >1或12-≤y<0.【分析】画出图形,先计算当x=﹣1和x=2时的对应点的坐标,并描出这两点,根据图象写出y 的取值.【解析】当x=﹣1时,y=11--=1,当x=2时,y=12-,由图象得:当﹣1<x <0时,y >1,当x≥2时,12-≤y<0,故答案为:y >1或12-≤y<0.考点:反比例函数的性质.69.(2016四川省内江市)如图,点A 在双曲线5y x =上,点B 在双曲线8y x =上,且AB ∥x 轴,则△OAB 的面积等于 .【答案】32.【分析】延长AB交y轴于点C,根据反比例函数系数的几何意义求出△BOC的面积与△AOC的面积,然后相减即可得解.【解析】延长AB交y轴于点C.S△OAC=12×5=52,S△OCB=12×8=4,则S△OAB=S△OCB﹣S△OAC=4﹣52=32.故答案为:32.考点:反比例函数系数k的几何意义.70.(2016四川省眉山市)如图,已知点A是双曲线6yx=在第三象限分支上的一个动点,连结AO 并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线kyx=上运动,则k的值是.【答案】36-【分析】根据反比例函数的性质得出OA=OB,连接OC,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,根据等边三角形的性质和解直角三角形求出3,求出△OFC∽△AEO,相似比OCOA3ΔOFCΔAEOSS=3,求出△OFC的面积,即可得出答案.。
2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.13.(2019安徽省六安市模拟)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN ∽△AMP时,点P是AB的中点,其中一定正确的结论有.(填上所有正确的序号).14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.25.(2019重庆市长寿区模拟)在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H=.处,过点H作HN⊥HG交AB于N点,交AE于M点,则S△MNF26.(2019北京市海淀区模拟)一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.27.(2019福建省龙岩市模拟)如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.28.(2019深圳市光明新区模拟)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.29.(2019江苏省徐州市模拟)我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.30.(2019山东省济南市模拟)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.【解答】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×﹣2=2.故答案是:2.【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.根据二次根式恒等时,有理数部分与有理数部分和无理数部分与无理数部分对应相等的关系,列出恒等式即可解答【解答】解:(a+)(a+)==(b+)(c+)=(bc+2)+(b+c)根据题意得=(bc+2)+(b+c)∵a,b,c都为有理数,∴bc=a2,b+c=2a∴b(2a﹣b)=a2,∵b2﹣2ab+a2=0,∴(a﹣b)2=0,∴a=b=c又∵(a+)2=(a+﹣1)(b,∴(a+)含有因式(),而a又是有理数,故a=2,当a=b=c=2时,A=B=C,【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.得到等式找出abc之间的数量关系.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【分析】(1)根据勾股定理可得CD,AD,BD的长度,当O,D,C共线时,OC的长度最大,即△AOB是等腰直角三角形时,OC的长度最大,可求t.(2)分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行【点评】本题考查的是勾股定理,等腰三角形的性质,相似三角形的性质和判定,关键是利用分类思想解决问题.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB===10,∵点D是AB的中点,∴CD=AD=AB=5,∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴AM=CD=5,∴AM=CN=AC﹣CM=3,∴MN=2.故答案为:2.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)【解答】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC=+×2×2=+2.故答案为:+2.6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵F A=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,F A为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE=∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.【分析】设PD=t.则PA=10﹣t.首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题.【解答】解:如图,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵AB2+AP2=PB2,∴62+(10﹣t)2=102,∴t=2或18(舍去),∴PD=2,∴t=2s时,B、E、P共线.故答案为:2.【点评】本题考查了矩形的性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.【分析】如图,连接AC、BD交于点O,连接OM.首先说明点E从点A运动到点D时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点O,连接OM,∵BF⊥CE∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙M上,当点E从点A运动到点D时,点F的运动路径长为,∵四边形ABCD是菱形∴AB=BC=5,∠ABD=∠DBC=∠ABC=30°∵BM=MO∴∠MBO=∠BOM=30°,∴∠OMC=60°∴的长==π故答案为:π【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.【分析】作辅助线,构建直角三角形,设OF=x,则DF=x,OD=x,证明△DFC∽△OGD,则,得DC=,根据勾股定理列方程可得,计算x2=50﹣25,根据两条对角线乘积的一半可得菱形的面积.【解答】解:连接OE,CD交于点G,过D作DF⊥OB于F,∵∠AOB=45°,∴△ODF是等腰直角三角形,设OF=x,则DF=x,OD=x,∵四边形OCED是菱形,∴OE⊥CD,OG=EG=OE=5,∵OC=OD,∴∠ODG=∠DCF,∵∠DFC=∠OGD=90°,∴△DFC∽△OGD,∴,∴,DC =,在Rt △OCG 中,,解得x 2=50+25(舍)或50﹣25,∴菱形OCED 的面积=CD •OE =•10==50﹣50,故答案为:50﹣50.【点评】本题考查了菱形的性质、半径的性质、相似三角形的判定和性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.13.(2019安徽省六安市模拟)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③△POF ∽△BNF ;④当△PMN ∽△AMP 时,点P 是AB 的中点,其中一定正确的结论有 .(填上所有正确的序号).【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 【解答】解:∵四边形ABCD 是正方形, ∴∠BAC =∠DAC =45°. 在△APE 和△AME 中,,∴△APE ≌△AME (ASA ),故①正确; ∴PE =EM =PM ,同理,FP=FN=NP.∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故③错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故④正确.故答案为:①②④.14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.【分析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,所以所作的第2018个菱形的边长是()2017,故答案为()2017.【点评】此题主要考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是掌握探究规律的方法,属于中考常考题型.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点评】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy 中,已知A (2,0),B (0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是 .【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所示:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所示:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.【点评】此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)【分析】根据已知条件得到当x=﹣1时,y>0,即a﹣b+c>0,故①正确;根据抛物线的对称轴为直线x=1,即﹣=1,得到3a+b≠0,故②错误;根据已知条件得到方程ax2+bx+c=n有两个相等的实数根,得到b2=4a(c﹣n),故③正确;根据抛物线的开口向下,得到y=n,于是得到直最大线y=n﹣1与抛物线由两个交点,即可得到一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确.【解答】解:∵抛物线顶点坐标为(1,n),∴抛物线的对称轴为直线x=1,∵与x轴的一个交点在点(3,0)和(4,0)之间,∴当x=﹣1时,y>0,即a﹣b+c>0,故①正确;∵抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确;∵抛物线的开口向下,=n,∴y最大∴直线y=n﹣1与抛物线由两个交点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故答案为:①③④.【点评】本题考查的是二次函数图象与系数的关系,图象开口方向判断出a,由对称轴得出b,抛物线与y轴的交点判断c,抛物线与x轴交点的个数确定b2﹣4ac.22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.【分析】设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,通过角的关系得到PE∥BF,由平行得到△PEA∽△BFP;由相似得到x与y的关系,在Rt△FEP中,FE2=FP2+EP2,得到FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,结合x的取值范围,确定EF的范围.【解答】解:设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,∵∠AEP=∠EPF=∠PFB=90°,∴PE∥BF,∴△PEA∽△BFP,∴=,∴4y=3x,在Rt△FEP中,FE2=FP2+EP2,∴FE2=y2+(8﹣x)2,∴FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,∵0<x<8,∴当x=时,FE有最小值,当x=0时,EF有最大值8,∴≤EF<8.故答案为≤EF<8.【点评】本题考查二次函数最值,三角形相似,勾股定理,平行线的判定,是综合性很强的一道题;能够通过平行得到三角形相似,能够通过相似得到边的关系,利用勾股定理得到二次函数的解析式,再由二次函数的值的范围求解,因此熟练掌握相似、平行、二次函数最值的求法是解题的关键.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.【分析】分两种情况:直线BC在OA的下方和上方,画图计算边界时点c的值,可得c的取值.【解答】解:如图所示1,直线BC在OA的下方时当c=﹣1时,区域S内的整点有(1,0),(2,0),(3,0),有3个;当直线BC:y=+c过(1,﹣1)时,c=﹣,且经过(5,0)∴区域S内恰有4个整点,c的取值范围是﹣≤c<﹣1.如图2,直线BC在OA的上方时,∵点(2,2)在函数y=(x>0)的图象上,当直线BC:y=过(1,2)时,c=,。
2019全国中考数学真题精选分类汇编:压轴题(含答案解析)

2019年全国中考数学真题精选汇编压轴题: 1-39页2019年全国中考数学真题精选压轴题剖析(分析、详解、点睛):40-229页1.(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴; (2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.2.(2020·四川初三期末)综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值;(3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.3.(2019·内蒙古中考真题)(问题)如图1,在Rt ABC 中,90,ACB AC BC ∠=︒=,过点C 作直线l 平行于AB .90EDF ∠=︒,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.(探究发现)(1)如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,通过推理就可以得到DP DB =,请写出证明过程;(数学思考)(2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,这个小组过点D 作DG CD ⊥交BC 于点G ,就可以证明DP DB =,请完成证明过程;(拓展引申)(3)如图4,在(1)的条件下,M 是AB 边上任意一点(不含端点A B 、),N 是射线BD 上一点,且AM BN =,连接MN 与BC 交于点Q ,这个数学兴趣小组经过多次取M 点反复进行实验,发现点M 在某一位置时BQ 的值最大.若4AC BC ==,请你直接写出BQ 的最大值.4.(2019·内蒙古中考真题)已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.5.(2019·辽宁中考真题)如图,在平面直角坐标系中,Rt ABC ∆的边BC 在x 轴上,90ABC ∠=,以A 为顶点的抛物线2y x bx c =-++经过点(3,0)C ,交y 轴于点(0,3)E ,动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A B →方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD AB ⊥交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接,AQ CQ ,当t 为何值时,ACQ ∆的面积最大?最大值是多少? (3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点,,,P M E C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.6.(2019·辽宁中考真题)抛物线229y x bx c =-++与x 轴交于1,05,0A B (-),()两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与,C D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F .()1求抛物线的解析式;()2当PCF 的面积为5时,求点P 的坐标;()3当△PCF 为等腰三角形时,请直接写出点P 的坐标.7.(2019·广东中考真题)如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴; (2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.8.(2019·重庆中考真题)如图,在平面在角坐标系中,抛物线y=x 2-2x-3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+13PC 的最小值;(2)在(1)中,当MN 取得最大值HF+FP+1/3PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ ,其中边AQ 交坐标轴于点C 在旋转过程中,是否存在一点G 使得''Q Q OG ∠=∠?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.9.(2019·安徽初三月考)如图,已知抛物线213y x bx c =++经过点(1,0)A -、(5,0)B .(1)求抛物线的解析式,并写出顶点M 的坐标;(2)若点C 在抛物线上,且点C 的横坐标为8,求四边形AMBC 的面积(3)定点(0,)D m 在y 轴上,若将抛物线的图象向左平移2各单位,再向上平移3个单位得到一条新的抛物线,点P 在新的抛物线上运动,求定点D 与动点P 之间距离的最小值d (用含m 的代数式表示)10.(2019·湖北中考真题)如图1,在平面直角坐标系xOy 中,已知抛物线228y ax ax a =--与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点(0,4)C-.(1)点A的坐标为__________,点B的坐标为__________,线段AC的长为__________,抛物线的解析式为__________.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE CA交线段BC于点E,过点P作直线x t=交BC于点F,交x轴于点G,记P E f=,求f关于t的函数解析式;当t取m和14(02) 2m m-<<时,试比较f的对应函数值1f和2f的大小.11.(2019·湖北中考真题)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:()1如图1,点A B C,,在O上,ABC∠的平分线交O于点D,连接AD CD,.求证:四边形ABCD是等补四边形;探究:()2如图2,在等补四边形ABCD中AB AD,=,连接AC AC,是否平分?BCD∠请说明理由.运用:()3如图3,在等补四边形ABCD 中,AB AD =,其外角EAD ∠的平分线交CD 的延长线于点105F CD AF ,=,=,求DF 的长.12.(2019·湖北中考真题)如图①,在平面直角坐标系xOy 中,已知()2,2A -,()()()2,0,0,2,2,0B C D -四点,动点M B C D →→运动(M 不与点B 、点D 重合),设运动时间为t (秒).(1)求经过A 、C 、D 三点的抛物线的解析式;(2)点P 在(1)中的抛物线上,当223x 27y -M 为BC 的中点时,若PAM PBM ∆≅∆,求点P 的坐标;(3)当M 在CD 上运动时,如图②.过点M 作MF x ⊥轴,垂足为F ,ME AB ⊥,垂足为E .设矩形MEBF 与BCD ∆重叠部分的面积为S ,求S 与t 的函数关系式,并求出S 的最大值;(4)点Q 为x 轴上一点,直线AQ 与直线BC 交于点H ,与y 轴交于点K .是否存在点Q ,使得HOK ∆为等腰三角形?若存在,直接写出符合条件的所有Q 点的坐标;若不存在,请说明理由.13.(2019·湖北中考真题)如图,在直角坐标系中,直线132y x =-+与x 轴,y 轴分别交于点B ,点C ,对称轴为1x =的抛物线过,B C 两点,且交x 轴于另一点A ,连接AC .(1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P 的坐标;(3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与ABC ∆相似?若存在,求出点Q 的坐标;若不存在,请说明理由.14.(2019·湖北中考真题)已知抛物线()22y a x c =-+经过点()2,0A 和 90,4C ⎛⎫ ⎪⎝⎭,与x 轴交于另一点B ,顶点为D .(1)求抛物线的解析式,并写出D 点的坐标;(2)如图,点,E F 分别在线段,AB BD 上(E 点不与,A B 重合),且DEF A ∠=∠,则DEF ∆能否为等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)若点P 在抛物线上,且PBD CBDS m S ∆∆=,试确定满足条件的点P 的个数.15.(2019·河南初三期中)如图,抛物线()21y x k =-+与x 轴相交于,A B 两点(点A 在点B 的左侧),与y 轴相交于点()0,3C-.P 为抛物线上一点,横坐标为m ,且0m >.⑴求此抛物线的解析式;⑵当点P 位于x 轴下方时,求ABP ∆面积的最大值;⑶设此抛物线在点C 与点P 之间部分(含点C 和点P )最高点与最低点的纵坐标之差为h .①求h 关于m 的函数解析式,并写出自变量m 的取值范围;②当9h =时,直接写出BCP ∆的面积.16.(2019·吉林初三开学考试)教材呈现:如图是华师版九年级上册数学教材第78页的部分内容.例2 如图,在ABC ∆中,,D E 分别是边,BC AB 的中点,,AD CE 相交于点G ,求证:13GEGDCE AD ==,证明:连结ED .请根据教材提示,结合图①,写出完整的证明过程.结论应用:在ABCD 中,对角线AC BD 、交于点O ,E 为边BC 的中点,AE 、BD 交于点F .(1)如图②,若ABCD 为正方形,且6AB =,则OF 的长为 . (2)如图③,连结DE 交AC 于点G ,若四边形OFEG 的面积为12,则ABCD的面积为 .17.(2019·广东初三期中)如图,在平面直角坐标系中,矩形ABCD 的边AB 在x 轴上,AB 、BC 的长分别是一元二次方程27120x x -+=的两个根()BC AB >,2OA OB =,边CD 交y 轴于点E ,动点P 以每秒1个单位长度的速度,从点E 出发沿折线段ED DA -向点A 运动,运动的时间为(06)t t ≤≤秒,设BOP ∆与矩形AOED 重叠部分的面积为S .(1)求点D 的坐标;(2)求S 关于t 的函数关系式,并写出自变量的取值范围;(3)在点P 的运动过程中,是否存在P ,使BEP ∆为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.18.(2019·黑龙江中考真题)如图,抛物线2y x bx c =++的对称轴为直线x =2,抛物线与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(-1,0).(1)求抛物线的函数表达式;(2)将抛物线2y x bx c =++图象x 轴下方部分沿x 轴向上翻折,保留抛物线在x 轴上的点和x 轴上方图象,得到的新图象与直线y =t 恒有四个交点,从左到右四个交点依次记为D ,E ,F ,G .当以EF 为直径的圆过点Q (2,1)时,求t 的值;(3)在抛物线2y x bx c =++上,当m ≤x ≤n 时,y 的取值范围是m ≤y ≤7,请直接写出x的取值范围.19.(2019·黑龙江中考真题).已知:在矩形ABCD 中,BD 是对角线,AE BD ⊥于点E ,CF BD ⊥于点F ;(1)如图1,求证:AE CF =;(2)如图2,当30ADB ∠=︒时,连接AF .CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.20.(2019·黑龙江中考真题)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?21.(2020·上海初三专题练习)如图1,AD 、BD 分别是△ABC 的内角∠BAC 、∠ABC 的平分线,过点A 作AE 上AD ,交BD 的延长线于点E.(1)求证:∠E =12∠C ;(2)如图2,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出ADE ABC S S 的值.22.(2019·江苏中考真题)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6.(1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.23.(2020·江苏初三专题练习)如图1,在矩形ABCD 中,BC=3,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称'PAB ∆,设点P 的运动时间为()t s(1)若AB =①如图2,当点B’落在AC 上时,显然△PCB’是直角三角形,求此时t 的值②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由(2)当P 点不与C 点重合时,若直线PB’与直线CD 相交于点M ,且当t <3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t >3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.24.(2019·江苏中考真题)如图,抛物线2y x bx c =++交x 轴于A 、B 两点,其中点A 坐标为()1,0,与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)如图①,连接AC ,点P 在抛物线上,且满足2PAB ACO ∠=∠.求点P 的坐标; (3)如图②,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM DN +是否为定值?如果是,请求出这个定值;如果不是,请说明理由.25.(2019·浙江初二期中)如图,已知等边△ABC 的边长为8,点P 是AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l //AC ,则BB’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值.26.(2020·江苏初三专题练习)问题情境:如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .判断线段DN 、MB 、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P 恰好为AE 的中点,连接BD ,交MN 于点Q ,连接EQ ,并延长交边AD 于点F .求∠AEF 的度数;(2)如图3,当垂足P 在正方形ABCD 的对角线BD 上时,连接AN ,将△APN 沿着AN 翻折,点P 落在点P'处.若正方形ABCD 的边长为4 ,AD 的中点为S ,求P'S 的最小值.问题拓展:如图4,在边长为4的正方形ABCD 中,点M 、N 分别为边AB 、CD 上的点,将正方形ABCD 沿着MN 翻折,使得BC 的对应边B'C '恰好经过点A ,C'N 交AD 于点F .分别过点A 、F 作AG ⊥MN ,FH ⊥MN ,垂足分别为G 、H .若AG =52,请直接写出FH 的长.27.(2019·江苏中考真题)如图所示・二次函数()212y k x =-+的图像与一次函数2y kx k =-+的图像交于A 、B 两点,点B 在点A 的右侧,直线AB 分别与x 、y 轴交于C 、D 两点,其中k 0<.(1)求A 、B 两点的横坐标;(2)若OAB 是以OA 为腰的等腰三角形,求k 的值;(3)二次函数图像的对称轴与x 轴交于点E ,是否存在实数k ,使得2ODC BEC ∠=∠,若存在,求出k 的值;若不存在,说明理由.28.(2019·浙江中考真题)如图,矩形ABCD 中,AB a =,BC b =,点,M N 分别在边AB ,CD 上,点,E F 分别在BC ,AD 上,MN ,EF 交于点P ,记:k M N E F =.(1)若:a b 的值是1,当MN EF ⊥时,求k 的值.(2)若:a b 的值是12,求k 的最大值和最小值.(3)若k 的值是3,当点N 是矩形的顶点,60MPE ∠=︒,3MP EF PE ==时,求:a b 的值.29.(2019·浙江中考真题)如图,已知锐角ABC △内接于⊙O , OD BC ^于点D ,连结AO.⑴若60BAC ∠=︒.①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值;⑵点E 在线段OA 上,OE OD =,连接DE ,设A B C m O E D ??,ACB n OED ??(m 、n 是正数),若ABC ACB ??,求证:20m n -+=30.(2019·浙江中考真题)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是矩形点,A C 分别在x 轴和y 轴的正半轴上,连结AC ,3OA =,an t OAC =∠,D 是BC 的中点.(1)求OC 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM OC =,点P 是线段OM 上的一个动点,经过,,P D B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将DBF ∆沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标;②以线段DF 为边,在DF 所在直线的右上方作等边DFG ∆,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.31.(2020·浙江初三专题练习)如图,在平面直角坐标系中,直线142y x =-+分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长;(2)设点Q 2为(m ,n),当17nm =tan ∠EOF 时,求点Q 2的坐标;(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合. ①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.32.(2019·浙江中考真题)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EFDF 的值.(3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?33.(2019·浙江中考真题)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP FD =.(1)求AFAP 的值;(2)如图1,连接EC ,在线段EC 上取一点M ,使EM EB =,连接MF ,求证:MF PF =;(3)如图2,过点E 作EN CD ⊥于点N ,在线段EN 上取一点Q ,使AQ AP =,连接BQ ,BN .将A Q B ∆绕点A 旋转,使点Q 旋转后的对应点'Q 落在边AD 上.请判断点B 旋转后的对应点'B 是否落在线段BN 上,并说明理由.34.(2019·浙江中考真题)如图1,O 经过等边ABC ∆的顶点A ,C (圆心O 在ABC ∆内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =时,求AE 的长。
2019中考数学二次函数压轴题(含答案)

中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M 点的坐标.解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.平行四边形类3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P 是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n 与y=kx+b,得到关于m、n的两个方程组,解方程组即可;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.解答:解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P 点的横坐标是.所以P点的横坐标是或.4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).方法一:设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.方法二:∵A′(﹣1,0),B′(0,2),B(2,0),设抛物线的解析式为:y=a(x+1)(x﹣2)将B′(0,2)代入得出:2=a(0+1)(0﹣2),解得:a=﹣1,故满足条件的抛物线的解析式为y=﹣(x+1)(x﹣2)=﹣x2+x+2;(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.∵A′O=1,B′O=2,∴△A′B′O面积为:×1×2=1,假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一,下面性质中的任意2个均可.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②P A′=B′B;③B′P∥A′B;④B′A′=PB.5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.解:(1)∵顶点A的横坐标为x=﹣=1,且顶点A在y=x﹣5上,∴当x=1时,y=1﹣5=﹣4,∴A(1,﹣4).(2)△ABD是直角三角形.将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,∴y=x2﹣2x﹣3,∴B(0,﹣3)当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3∴C(﹣1,0),D(3,0),BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,BD2+AB2=AD2,∴∠ABD=90°,即△ABD是直角三角形.(3)存在.由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)∴OE=OF=5,又∵OB=OD=3∴△OEF与△OBD都是等腰直角三角形∴BD∥l,即P A∥BD则构成平行四边形只能是P ADB或P ABD,如图,过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.设P(x1,x1﹣5),则G(1,x1﹣5)则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|P A=BD=3由勾股定理得:(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4∴P(﹣2,﹣7)或P(4,﹣1),存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.周长类6.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S 和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.解:(1)∵抛物线y=经过点B(0,4)∴c=4,∵顶点在直线x=上,∴﹣=﹣=,∴b=﹣;∴所求函数关系式为;(2)在Rt△ABO中,OA=3,OB=4,∴AB=,∵四边形ABCD是菱形,∴BC=CD=DA=AB=5,∴C、D两点的坐标分别是(5,4)、(2,0),当x=5时,y=,当x=2时,y=,∴点C和点D都在所求抛物线上;(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,则,解得:,∴,当x=时,y=,∴P(),(4)∵MN∥BD,∴△OMN∽△OBD,∴即得ON=,设对称轴交x于点F,则(PF+OM)•OF=(+t)×,∵,S△PNF=×NF•PF=×(﹣t)×=,S=(﹣),=﹣(0<t<4),a=﹣<0∴抛物线开口向下,S存在最大值.由S△PMN=﹣t2+t=﹣(t﹣)2+,∴当t=时,S取最大值是,此时,点M的坐标为(0,).等腰三角形类7.如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x(3)存在,如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△POD中,∠PDO=90°,sin∠POD==,∴∠POD=60°,∴∠POB=∠POD+∠AOB=60°+120°=180°,即P、O、B三点在同一直线上,∴y=2不符合题意,舍去,∴点P的坐标为(2,﹣2)②若OB=PB,则42+|y+2|2=42,解得y=﹣2,故点P的坐标为(2,﹣2),③若OP=BP,则22+|y|2=42+|y+2|2,解得y=﹣2,故点P的坐标为(2,﹣2),综上所述,符合条件的点P只有一个,其坐标为(2,﹣2),8.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO,(1分)又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,(2分)∴BD=OC=1,CD=OA=2,(3分)∴点B的坐标为(﹣3,1);(4分)(2)抛物线y=ax2+ax﹣2经过点B(﹣3,1),则得到1=9a﹣3a﹣2,(5分)解得a=,所以抛物线的解析式为y=x2+x﹣2;(7分)(3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分)过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC.(10分)∴CM=CD=2,P1M=BD=1,可求得点P1(1,﹣1);(11分)②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分)过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分)∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分)经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上.(16分)9.在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2﹣ax﹣2经过点B.(1)求点B的坐标;(2)求抛物线的解析式;(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.解:(1)过点B作BD⊥x轴,垂足为D,∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°,∴∠BCD=∠CAO,又∵∠BDC=∠COA=90°,CB=AC,∴△BDC≌△COA,∴BD=OC=1,CD=OA=2,∴点B的坐标为(3,1);(2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),∴1=9a﹣3a﹣2,解得:a=,∴抛物线的解析式为y=x2﹣x﹣2;(3)假设存在点P,使得△ACP是等腰直角三角形,①若以AC为直角边,点C为直角顶点,则延长BC至点P1使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图(1),∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,∴P1(﹣1,﹣1),经检验点P1在抛物线y=x2﹣x﹣2上;②若以AC为直角边,点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴,如图(2),同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(﹣2,1),经检验P2(﹣2,1)也在抛物线y=x2﹣x﹣2上;③若以AC为直角边,点A为直角顶点,则过点A作AP3⊥CA,且使得AP3=AC,得到等腰直角三角形ACP3,过点P3作P3H⊥y轴,如图(3),同理可证△AP3H≌△CAO,∴HP3=OA=2,AH=OC=1,∴P3(2,3),经检验P3(2,3)不在抛物线y=x2﹣x﹣2上;故符合条件的点有P1(﹣1,﹣1),P2(﹣2,1)两点.。
2019年山东省各市中考数学真题精选汇编:压轴题(含答案解析)

2019年山东省各市中考数学真题精选汇编:压轴题1-17页2019年山东省各市中考数学真题精选压轴题剖析18-93页一.选择题(共10小题)1.(2019•济南)关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<2.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.4.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5 5.(2019•莱芜区)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN②当AE=AF时,=2﹣③BE+DF=EF④存在点E、F,使得NF>DF其中正确的个数是()A.1B.2C.3D.46.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.D.7.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6 8.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.9.(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π10.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6C.4D.2二.填空题(共10小题)11.(2019•济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.12.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为.(用含n的式子表示)13.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.14.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是.15.(2019•莱芜区)定义:[x]表示不大于x的最大整数,例如:[2.3]=2,[1]=1.有以下结论:①[﹣1.2]=﹣2;②[a﹣1]=[a]﹣1;③[2a]<[2a]+1;④存在唯一非零实数a,使得a2=2[a].其中正确的是.(写出所有正确结论的序号)16.(2019•泰安)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.17.(2019•潍坊)如图所示,在平面直角坐标系xOy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合.若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)18.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为.19.(2019•烟台)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图形是一个曲边三角形,已知⊙O是△ABC的内切圆,则阴影部分面积为.20.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.三.解答题(共20小题)21.(2019•济南)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC 相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是,NB与MC的数量关系是;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.22.(2019•济南)如图1,抛物线C:y=ax2+bx经过点A(﹣4,0)、B(﹣1,3)两点,G是其顶点,将抛物线C绕点O旋转180°,得到新的抛物线C′.(1)求抛物线C的函数解析式及顶点G的坐标;(2)如图2,直线l:y=kx﹣经过点A,D是抛物线C上的一点,设D点的横坐标为m (m<﹣2),连接DO并延长,交抛物线C′于点E,交直线l于点M,若DE=2EM,求m 的值;(3)如图3,在(2)的条件下,连接AG、AB,在直线DE下方的抛物线C上是否存在点P,使得∠DEP=∠GAB?若存在,求出点P的横坐标;若不存在,请说明理由.23.(2019•德州)(1)如图1,菱形AEGH的顶点E、H在菱形ABCD的边上,且∠BAD=60°,请直接写出HD:GC:EB的结果(不必写计算过程)(2)将图1中的菱形AEGH绕点A旋转一定角度,如图2,求HD:GC:EB;(3)把图2中的菱形都换成矩形,如图3,且AD:AB=AH:AE=1:2,此时HD:GC:EB的结果与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程);若无变化,请说明理由.24.(2019•德州)如图,抛物线y=mx2﹣mx﹣4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2﹣x1=.(1)求抛物线的解析式;(2)若P(x1,y1),Q(x2,y2)是抛物线上的两点,当a≤x1≤a+2,x2≥时,均有y1≤y2,求a的取值范围;(3)抛物线上一点D(1,﹣5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC =∠MCE时,求点M的坐标.25.(2019•青岛)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法.……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到个图⑦这样的几何体.26.(2019•青岛)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC =8cm,OD垂直平分A C.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动.过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G.连接OP,EG.设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由.27.(2019•济宁)阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)═(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+x(x<0),f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.28.(2019•济宁)如图1,在矩形ABCD中,AB=8,AD=10,E是CD边上一点,连接AE,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上点F处,延长AE交BC的延长线于点G.(1)求线段CE的长;(2)如图2,M,N分别是线段AG,DG上的动点(与端点不重合),且∠DMN=∠DAM,设AM=x,DN=y.①写出y关于x的函数解析式,并求出y的最小值;②是否存在这样的点M,使△DMN是等腰三角形?若存在,请求出x的值;若不存在,请说明理由.29.(2019•莱芜区)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.30.(2019•莱芜区)如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△P AC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.31.(2019•泰安)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y 轴的距离;若不存在,请说明理由.32.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF=90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.33.(2019•潍坊)如图1,菱形ABCD的顶点A,D在直线上,∠BAD=60°,以点A为旋转中心将菱形ABCD顺时针旋转α(0°<α<30°),得到菱形AB′C′D′,B′C′交对角线AC于点M,C′D′交直线l于点N,连接MN.(1)当MN∥B′D′时,求α的大小.(2)如图2,对角线B′D′交AC于点H,交直线l与点G,延长C′B′交AB于点E,连接EH.当△HEB′的周长为2时,求菱形ABCD的周长.34.(2019•潍坊)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),△ABO的中线AC与y轴交于点C,且⊙M经过O,A,C三点.(1)求圆心M的坐标;(2)若直线AD与⊙M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过点P作PE∥y轴,交直线AD 于点E.若以PE为半径的⊙P与直线AD相交于另一点F.当EF=4时,求点P的坐标.35.(2019•枣庄)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段AM的长;(2)如图2,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF;(3)如图3,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+AN=AM.36.(2019•枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图1,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由;(3)如图2,若点M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求点M的坐标.37.(2019•烟台)【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E 在同一直线上,连接AD,BD.①请探究AD与BD之间的位置关系:;②若AC=BC=,DC=CE=,则线段AD的长为;【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.38.(2019•烟台)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)39.(2019•淄博)如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.40.(2019•淄博)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△P AM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.2019年山东省各市中考数学真题精选汇编:压轴题(含答案解析)参考答案与试题解析一.选择题(共10小题)1.(2019•济南)关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<【分析】二次函数的图象过点(﹣1,0),则a﹣b+=0,而t=2a+b,则a=,b=,二次函数的图象的顶点在第一象限,则﹣>0,﹣>0,即可求解.【解答】解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t为任意实数,故:﹣1<t<,故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用2.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④【分析】①正确.证明△ADF≌△DCE(ASA),即可判断.②正确.利用平行线分线段成比例定理,等腰直角三角形的性质解决问题即可.③正确.作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,通过计算证明MH=CH即可解决问题.④错误.设△ANF的面积为m,由AF∥CD,推出==,△AFN∽△CDN,推出△ADN的面积为3m,△DCN的面积为9m,推出△ADC的面积=△ABC的面积=12m,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.【点评】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会利用参数解决问题,属于中考选择题中的压轴题.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解答】解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a<0时,b<0,直线y=bx+a经过第二、三、四象限,故B错误,C正确.故选:C.【点评】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.4.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案.【解答】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5.(2019•莱芜区)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN②当AE=AF时,=2﹣③BE+DF=EF④存在点E、F,使得NF>DF其中正确的个数是()A.1B.2C.3D.4【分析】①如图1,证明△AMN∽△BME和△AMB∽△NME,可得∠NAE=∠AEN=45°,则△AEN是等腰直角三角形可作判断;②先证明CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,表示AC的长为AO+OC 可作判断;③如图3,将△ADF绕点A顺时针旋转90°得到△ABH,证明△AEF≌△AEH(SAS),则EF=EH=BE+BH=BE+DF,可作判断;④在△ADN中根据比较对角的大小来比较边的大小.【解答】解:①如图1,∵四边形ABCD是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=EF=x,△EAF中,∠EAO=∠F AO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC==AO+OC,∴1+x=,x=2﹣,∴===;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF,故③正确;④△ADN中,∠FND=∠ADN+∠NAD>45°,∠FDN=45°,∴DF>FN,故存在点E、F,使得NF>DF,故④不正确;故选:B.【点评】本题考查正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.6.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.D.【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.【解答】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.7.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6【分析】根据给出的对称轴求出函数解析式为y=x2﹣2x+3,将一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,再由﹣1<x<4的范围确定y的取值范围即可求解;【解答】解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.【点评】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键.8.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC 的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.【分析】由S△ABC=16、S△A′EF=9且AD为BC边的中线知S△A′DE=S△A′EF=,S△ABD =S△ABC=8,根据△DA′E∽△DAB知()2=,据此求解可得.【解答】解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.【点评】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.9.(2019•烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π【分析】根据圆周角定理求得∠ACB=90°,进而证得△ADC∽△CEB,求得∠ABC=30°,根据切线的性质求得∠ACD=30°,解直角三角形求得半径,根据圆周角定理求得∠AOC=60°,根据弧长公式求得即可.【解答】解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°,∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.【点评】本题考查了切线的性质,圆周角定理,直角三角函数,30°角的直角三角形的性质等,求得∠ABC=30°是解题的关键.10.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6C.4D.2【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.【解答】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y4=,……∴y1+y2+…+y10=2+++……=,故选:A.【点评】考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.二.填空题(共10小题)11.(2019•济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N 处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于.【分析】根据折叠可得ABNM是正方形,CD=CF=5,∠D=∠CFE=90°,ED=EF,可求出三角形FNC的三边为3,4,5,在Rt△MEF中,由勾股定理可以求出三边的长,通过作辅助线,可证△FNC∽△PGF,三边占比为3:4:5,设未知数,通过PG=HN,列方程求出待定系数,进而求出PF的长,然后求PE的长.【解答】解:过点P作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC中,FN==4,∴MF=5﹣4=1,在Rt△MEF中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得:x=,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为:.【点评】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.12.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)【分析】先证明△OA1E是等边三角形,求出A1的坐标,作高线A1D1,再证明△A2EF是等边三角形,作高线A2D2,设A2(x,﹣),根据OD2=2+=x,解方程可得等边三角形的边长和A2的纵坐标,同理依次得出结论,并总结规律:发现点A1、A3、A5…在x轴的上方,纵坐标为正数,点A2、A4、A6……在x轴的下方,纵坐标为负数,可以利用(﹣1)n+1来解决这个问题.【解答】解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();【点评】本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形30度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.13.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【解答】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16【点评】本题主要考查了几何体的表面积.14.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.【分析】观察两函数图象的上下位置关系,即可得出结论.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.。
备考2019年中考数学压轴题专项培优训练:四边形(附解析)

备考2019年中考数学压轴题专项培优训练:四边形1.把Rt△ABC和Rt△DEF按如图①摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF =10.如图②,△DEF从图①的位置出发,以每秒1个单位的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以每秒1个单位的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).(1)△DEF在平移的过程中,AP=CE=(用含t的代数式表示);当点D落在Rt△ABC的边AC上时,求t的值.(2)在移动过程中,当0<t≤5时,连接PE,①设四边形APEQ的面积为y,求y与t之间的函数关系式并试探究y的最大值;②是否存在△PQE为直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.2.如图1,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF,交点为G.若正方形的边长为4(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP交BA的延长线于点Q,求AQ的长;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM (如图3),若AM和BF相交于点N,求四边形MNGH的面积.3.如图1,已知三角形纸片△AB C和△DEF重合在一起,AB=AC,DE=DF,△ABC ≌△DEF.数学实验课上,张老师让同学们用这两张纸片进行如下操作:【操作探究1】保持△ABC不动,将△DEF沿射线BC方向平移至图2所示位置,通过度量发现BE:CE=1:2,则S△CGE:S△CAB=;【操作探究2】保持△ABC不动,将△DEF通过一次全等变换(平移、旋转或翻折后和△ABC拼成以BC为一条对角线的菱形,请用语言描述你的全等变换过程.(友情提醒:描述过程要完整)【操作探究3】将两个三角形按图3所示放置:点C与点F重合,AB∥DE.保持△ABC不动,将△DEF沿射线DA方向平移.若AB=13,BC=10,设△DEF 平移的距离为m.①当m=0时,连接AD、BE,判断四边形ABED的形状并说明理由;②在平移的过程中,四边形ABED能否成为正方形?若能,请求出m的值;若不能,请说明理由.4.如图,已知正方形ABCD的边长为4、点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG、顶点G在线段PC 上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①点O与△APE的位置关系是,并说明理由;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,线段AE的大小也在改变,当AP =,AE达到最大值,最大值是.5.问题背景:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1:将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量AB=4cm,AC=8cm,问题解决:(1)将图1中的△ACD以点为A旋转中心,按逆时针方向能转∠α,使∠α=∠BAC,得到如图2所示的△AC'D,过点C作AC'的平行线,与DC'的延长线交于点E,则四边形ACEC'的形状是.(2)缜密小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC'D,连接CC',取CC'的中点F,连接AF并延长到点G,使FG=AF,连接CG、C'G,得到四边形ACGC',发现它是正方形,请你证明这个结论.实践探究:(3)创新小组在缜密小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC'相交于点H,如图4所示,连接CC',试求tan∠C'CH的值.6.在矩形ABCD中,AC、BD交于点O,点P、E分别是直线BD、BC上的动点,且PE=PC,过点E作EF∥AC交直线BD于点F(1)如图1,当∠COD=90°时,△BEF的形状是(2)如图2,当点P在线段BO上时,求证:OP=BF(3)当∠COD=60°、CD=3时,请直接写出当△PEF成为直角三角形时的面积.7.在正方形ABCD中,对角线AC、BD交于点O,点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①):①求证:△BOG≌△POE;②猜想:=;(2)当点P与点C不重合时,如图②,的值会改变吗?试说明理由.8.在矩形ABCD中,E为射线BC上一点,DF⊥AE于F,连接DE.(1)如图1,若E在线段BC上,且CE=EF,求证:AD=AE;(2)若AB=6,AD=10,在点E的运动过程中,连接BF.①当△ABF是以AB为底的等腰三角形时,求BE的长;②当BF∥DE时,若S△ADF=m,S△DCE=n,探究m﹣n的值并简要说明理由.9.如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(8,0).(1)当α=60°时,△CBD的形状是;(2)设AH=m①连接HD,当△CHD的面积等于10时,求m的值;②当0°<α<90°旋转过程中,连接OH,当△OHC为等腰三角形时,请直接写出m的值.10.如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG 以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)①当t为时,以A、F、C、E为顶点的四边形是平行四边形(直接写出结果);②当t为时,S△ACE=2S△FCE.(直接写出结果)11.如图,四边形AOBC中,点C到直线OA,OB的距离相等为m,∠AOB=90°,OC平分∠AOB,OB长为n,且m=++4,四边形AOBC的面积为6.(1)求线段OA的长;(2)P为AB延长线上一点,PQ∥OC,交CB延长线于Q,探究∠OAP、∠ABQ、∠Q的数量关系并说明理由;(3)作AD平行CB交CO延长线于D,BE平分∠CBH,BE反向延长线交CO延长线于F,若设∠ADO=α,∠F=β,试求α+2β的值.12.(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是,位置关系是;(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.13.如图(1),已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.(1)试猜想线段BG和AE的关系(位置关系及数量关系),请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一角度α后(0°<α<90°),如图(2),通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;(3)若BC=DE=2,正方形DEFG绕点D逆时针方向旋转角度α(0°<α<360°)过程中,当BG为最小值时,求AF的值.14.综合与实践:问题情境:(1)如图1,点E是正方形ABCD边CD上的一点,连接BD、BE,将∠DBE绕点B顺针旋转90°,旋转后角的两边分别与射线DA交于点F和点G.①线段BE和BF的数量关系是;②写出线段DE、DF和BD之间的数量关系,并说明理由;操作探究:(2)在菱形ABCD中,∠ADC=60°,点E是菱形ABCD边CD所在直线上的一点,连接BD、BE,将∠DBE绕点B顺时针旋转120°,旋转后角的两边分别与射线DA交于点F和点G.①如图2,点E在线段DC上时,请探究线段DE、DF和BD之间的数量关系,写出结论并给出证明.②如图3,点E在线段CD的延长线上时,BE交射线DA于点M,若DE=DC=2a,直接写出线段FM和AG的长度.15.如图O为坐标原点,四边形ABCD是菱形,A(﹣8,8),B点在第一象限,AB=10,AB与y轴交于点F,对角线AC交y轴于点E(1)直接写出B、C点的坐标;(2)动点P从C点出发以每秒2个单位的速度沿折线段C﹣D﹣A运动,设运动时间为t秒,请用含t的代数式表示△EDP的面积;(3)在(2)的条件下,是否存在一点P,使△APE沿其一边翻折构成的四边形是菱形?若存在,请直接写出当t为多少秒时存在符合条件的点P;若不存在,请说明理由.16.如图,在平面直角坐标系中,长方形ABCD的顶点A(a,0),B(b,0)在坐标轴上,C的纵坐标是2,且a,b满足式子:(1)求出点A、B、C的坐标.(2)连接AC,在y轴上是否存在点M,使△COM的面积等于△ABC的面积,若存在请求出点M的坐标,若不存在请说明理由.(3)若点P是边CD上一动点,点Q是CD与y轴的交点,连接OP,OE平分∠AOP交直线CD于点E,OF⊥OE交直线CD于点F,当点P运动时,探究∠OPD 和∠EOQ之间的数量关系,并证明.参考答案1.解:(1)如图1,△DEF在平移的过程中,AP=CE=t;当D在AC上时,如图2,∵DE=DF,∴EC=CF=EF=5,∴t=5.故答案为:t;(2)①如图3,过点P作PM⊥BC于M,∴∠BMP=∠ACB=90°,∴△ABC∽△PBM,∴,∴,∴PM=8﹣t,又∵∠EDF=90°,∠DEF=45°,∴∠EQC=∠DEF=45°,∴CE=CQ=t,∴y=S△ACB﹣S△ECQ﹣S△PBE=AC•BC﹣EC•CQ﹣BE•PM,=×8×6﹣×t×t﹣(6﹣t)(8﹣t),=﹣t(0<t≤5),∵a=﹣<0,∴当x=﹣=﹣=时,y最大值=﹣×+×=,②存在.i)当∠PQE=90°时,如图4,过点P作PH⊥BE于H,过点P作PW⊥AC于W,∴△ABC∽△APW,∴,即,∴PW=t,AW=t,∴QW=8﹣t﹣t=8﹣t,EH=t﹣t=t,由①可得:CE=CQ=t,PH=8﹣t∴PQ2=PW2+QW2=(t)2+(8﹣t)2=t2﹣t+64,PE2=PH2+EH2=(8﹣t)2+(t)2=t2﹣t+64,EQ2=CE2+CQ2=t2+t2=2t2∵∠PQE=90°,在Rt△PEQ中,PQ2+EQ2=PE2,即:(t2﹣t+64)+(2t2)=t2﹣t+64解得:t1=0(舍去)t2=;当∠PEQ=90°,PE2+EQ2=PQ2即:(t2﹣t+64)+(2t2)=t2﹣t+64解得:t1=0(舍去)t2=20(舍去)∴此时不存在;当∠EPQ=90°时PQ2+PE2=EQ2,即:(t2﹣t+64)+(t2﹣t+64)=2t2,t1=(舍去)t2=4,综合上述:当t=或t=4时,△PQE是直角三角形.2.解:(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∵,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF;(2)如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,∵PF=FC=2,PB=BC=4,在Rt△BPQ中,设QB=x,∴x2=(x﹣2)2+42,∴x=5,∴AQ=BQ﹣AB=5﹣4=1;(3)∵正方形边长为4,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=4,∵∠AHM=90°,∴GN∥HM,…(8分)∴△AGN∽△AHM∴=()2,∴=()2,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=4﹣=,∴四边形GHMN的面积是.3.解:(1)如图2,由题意知DE∥AB,∴△CGE∽△CAB,∴=()2,∵=,∴=,则=()2=,故答案为:4:9;(2)将△DEF沿EF翻折或绕BC中点旋转180°;(3)①∵AB∥DE且AB=BC=DC=DE,∴四边形ABED是平行四边形,∵∠DEC+∠CEB+∠CBE+∠ABC=180°,且∠DEC=∠ABC,∠CEB=∠CBE,∴∠DEC+∠CEB=90°,即∠BED=90°,∴四边形ABED是矩形;②能,如图,过点A作AG⊥BC,过点C作CH⊥BE,CM⊥AB,∴BG=BC=5,∴AG==12,∵S△ABC=AB•CM=BC•AG,∴CM==,则BH=CM=,BE=2BH=,∵四边形ABED是正方形,∴平移后BE=AB,则m=+13=或m=﹣13=.4.解:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC,∴△APE∽△BCP,∴,即,解得:AE=;故答案为:;(2)①点O在△APE的外接圆上,理由是:证明:如图1,取PE的中点Q,连接A Q,OQ,∵∠POE=90°,∴OQ=PE,∵△APE是直角三角形,∴点Q是Rt△APE外接圆的圆心,∴AQ=PE,∴OQ=AQ=EQ=PQ,∴O在以Q为圆心,以OQ为半径的圆上,即点O在△APE的外接圆上;(到圆心的距离等于半径的点必在此圆上),故答案为:点O在△APE的外接圆上;②连接OA、AC,如图2所示,∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==4,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,∴,∴AE=(x﹣2)2+1,∴x=2时,AE的最大值为1,即当AP=2时,AE的最大值为1.故答案为:2,1.5.解:(1)在如图1中,∵AC是矩形ABCD的对角线,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,在如图2中,由旋转知,AC'=AC,∠AC'D=∠ACD,∴∠BAC=∠AC'D,∵∠CAC'=∠BAC,∴∠CAC'=∠AC'D,∴AC∥C'E,∵AC'∥CE,∴四边形ACEC'是平行四边形,∵AC=AC',∴▱ACEC'是菱形,故答案为:菱形;(2)在图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠CAD=∠ACB,∠B=90°,∴∠BAC+∠ACB=90°在图3中,由旋转知,∠DAC'=∠DAC,∴∠ACB=∠DAC',∴∠BAC+∠DAC'=90°,∵点D,A,B在同一条直线上,∴∠CAC'=90°,由旋转知,AC =AC ',∵点F 是CC '的中点,∴AG ⊥CC ',CF =C 'F ,∵AF =FG ,∴四边形ACGC '是平行四边形,∵AG ⊥CC ',∴▱ACGC '是菱形,∵∠CAC '=90°,∴菱形ACGC '是正方形;(3)在Rt △ABC 中,AB =4,AC =8,∴AC '=AC =8,AD =BC =4,sin ∠ACB ==,∴∠ACB =30°,由(2)结合平移知,∠CHC '=90°,在Rt △BCH 中,∠ACB =30°,∴BH =BC •sin30°=2,∴C 'H =BC '﹣BH =8﹣2,在Rt △ABH 中,AH =AB =2,∴CH =AC ﹣AH =8﹣2=6,在Rt △CHC '中,tan ∠C ′CH ==.6.解:(1)△BEF 是等腰直角三角形,理由是:如图1,∵∠COD =90°,∴AC ⊥BD ,∴矩形ABCD 是正方形,∴∠ACB =45°,∵EF ∥AC ,∴∠FEB =∠ACB =45°,∠F =∠BOC =90°,∴△BEF 是等腰直角三角形,故答案为:等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴∠OBC=∠OCB=∠FBE,∵∠FBE=∠BEP+∠EPB,∠OCB=∠PCB+∠OCP,∵PE=PC,∴∠BEP=∠PCB,∴∠EPB=∠OCP,∵EF∥AC,∴∠COP=∠BFE,∴△PEF≌△CPO(AAS),∴OC=PF=OB,∴OB﹣PB=PF﹣PB,即OP=BF;(3)∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OD=OC,∵∠COD=60°,∴△COD是等边三角形,∴OC=CD=3,如图3,当∠PEF=90°时,∵EF∥AC,∴∠POC=∠OFE=60°,∴∠BFE=120°,∴OB =OC , ∴∠OBC =∠OCB =∠FEB =30°,∵∠FEP =90°,∴∠PEC =60°,∵PE =PC ,∴△PEC 是等边三角形,∴∠PCB =60°,∴∠PCO =60°﹣30°=30°=∠FPE ,∴△PFE ≌△COP (ASA ),∴PF =OC =3,Rt △PFE 中,EF =,PE =,∴S △PEF ===;∴当△PEF 成为直角三角形时的面积是.7.(1)①证明:∵四边形ABCD 是正方形,P 与C 重合,∴OB =OP ,∠BOC =∠BOG =90°,∵PF ⊥BG ,∠PFB =90°,∴∠GBO =90°﹣∠BGO ,∠EPO =90°﹣∠BGO ,∴∠GBO =∠EPO ,在△BOG 和△POE 中,∵,∴△BOG ≌△POE (ASA );②由①知,△BOG ≌△POE ,∴BG =PE ,∵∠BPE =∠ACB ,∠BPF +∠GPF =∠ACB ,∴∠BPF =∠GPF ,∵BF⊥PE,∴BF=BG,∴=,故答案为:;(2)解:猜想.证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,∵,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即.8.(1)证明:在矩形ABCD中,∠DCE=90°,AD∥BC,∴∠ADE=∠DEC,∠DCE=∠DFE=90°,∵CE=EF,DE=DE,∴△CED≌△FED(HL),∴∠CED=∠FED,∴∠ADE=∠AED,∴AD=AE;(2)①分两种情况:当点E在线段BC上时,AF=BF,如图 1 所示:∴∠ABF=∠BAF,∵∠ABF+∠EBF=90°,∠BAF+∠BEF=90°,∴∠EBF=∠BEF,∴EF=BF,∴AF=EF,∵DF⊥AE,∴DE=AD=10,在矩形ABCD中,CD=AB=6,∠DCE=90°,∴CE=8,∴BE=10﹣8=2;当点E在BC延长线上时,AF=BF,如图 2 所示:同理可证AF=EF,∵DF⊥AE,∴DE=AD=10,在矩形ABCD中,CD=AB=6,∠DCE=90°,∴CE=8,∴BE=10+8=18,综上,BE的长是2或8;②m﹣n=0,理由如下:当BF∥DE时,延长BF交AD于G.如图3:在矩形ABCD中,AD∥BC,AD=BC,AB=CD,∠BAG=∠DCE=90°,∵BF∥DE,∴四边形BEDG是平行四边形,∴BE=DG,∴S△DEF=,AG=CE,▱BEDGS △BEF +S △DFG =S ▱BEDG ,∵△ABG ≌△CDE ,∴S △ABG =S △CDE ,∵S △ABE =S ▱BEDG ,∴S △ABE =S △BEF +S △DFG ,∴S △ABF =S △DFG ,∴S △ABF +S △AFG =S △DFG +S △AFG ,即S △ABG =S △ADF ,∴S △CDE =S △ADF ,即m ﹣n =0.9.解:(1)∵矩形COAB 绕点C 顺时针旋转60度的角,得到矩形CFED , ∴∠BCD =60°,CB =CD ,∴△CBD 为等边三角形;故答案为:等边三角形;(2)①∵四边形CFED 是矩形,∴∠DCH =90°,∵△CHD 的面积等于10,∴CD •CH =10,∵CD =4,∴,CH =5,Rt △BCH 中,由勾股定理得:BH ===3, ∴AH =8﹣3=5,即m =5;②当△OHC 为等腰三角形时,分三种情况:i )当OH =CH 时,如图2,∵OA=BC,∴Rt△AOH≌Rt△BCH(HL),∴AH=BH=4,即m=4;ii)当OH=OC=8时,如图3,∵OA=4,由勾股定理得:AH===4,即m=4;iii)当OC=CH=8时,如图4,此时F与H重合,则BH=4,∴m=8﹣4,综上,m的值是4或4或8﹣4.10.(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,∵在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=8﹣2t,解得:t=;当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣8(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣8,解得:t=8;综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.故答案为或8s.②∵AG∥BC,∴当AE=2CF时, S△AEC=S△EFC,∴t=2(8﹣2t)或t=2(2t﹣8),解得t=或,故答案为:或.11.解:分别以OB、OA所在的直线为x、y轴建立平面直角坐标系.(1)由题意,解得n=2,∴m=4,∴B(2,0),C(4,4).如图1中,∵S四边形AOBC=S△OBC+S△AOC,∴×2×4+×OA×4=6,∴OA=1.(2)如图2中,结论:∠ABQ+∠OAB﹣∠Q=135°.理由如下:∵OC∥PQ,∴∠Q=∠OCB,∵∠ABQ=∠1+∠OCB=∠1+∠Q,∠1=180°﹣∠OAB﹣∠AOC=180°﹣∠OAB ﹣45°=135°﹣∠OAB,∴∠ABQ=∠Q+135°﹣∠OAB,∴∠ABQ+∠OAB﹣∠Q=135°.(3)如图3中,∵AD∥BC,∴∠ADC=∠DCB=α,∵BE平分∠CBx,∴∠CBE=∠EBx,∵∠CBE=∠F+∠OCB=α+β,∴∠OBF=∠EBx=α+β,∵C(4,4),∴OC平分∠AOB,∴∠COB=45°=∠F+∠OBF=α+(α+β),∴α+2β=45°.12.解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴∠BCE=45°+45°=90°,故答案为:BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴DE=AD,∴2AD2=BD2+CD2;(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴AF==6.13.解:(1)结论:BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,,∴△ADE≌△BDG(SAS),∴BG=AE.(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,,∴△BDG≌△ADE(SAS),∴BG=AE;②如图③中,连接AF.如图②中,在△BDG中,∵BD=1,DG=2,∴2﹣1≤BG≤1+2,∴GB的最小值为1,此时如图③中,G,B,D共线,在Rt△AEF中,AF===.14.解:(1)①∵∠DBE绕点B顺针旋转90°,如图(1)由旋转可知,∠DBE=∠GBF,∵四边形ABCD是正方形,∴∠BDC=∠ADB=45°,∵∠DBG=90°,∴∠G=45°,∴∠G=∠BDG,∴GB=BD,∴△GBF≌△DBE(SAS),∴BE=BF;故答案为:BE=BF②DF+DE=BD,理由如下:由旋转可知,∠DBE=∠GBF,∵四边形ABCD是正方形,∴∠BDC=∠ADB=45°,∵∠DBG=90°,∴∠G=45°,∴∠G=∠BDG,∴GB=BD,∴△GBF≌△DBE(SAS),∴DE=GF,∴DF+DE=DG,∵DG=BD,即DE+DF=BD;(2)①DF+DE=BD,理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=,由旋转120°得∠EBF=∠DBG=120°,∠EBD=∠FBG,在△DBG中,∠G=180°﹣120°﹣30°=30°,∴∠BDG=∠G=30°,∴BD=BG,∴△EBD≌△FBG(ASA),∴DE=FG,∴DE+DF=DF+FG=DG,过点B作BM⊥DG于点M,如图(2)∵BD=BG,∴DG=2DM,在Rt△BMD中,∠BDM=30°,∴BD=2BM.设BM=a,则BD=2a,DM=,∴DG=2a,∴,∴DF+DE=BD,②过点B作BM⊥DG,BN⊥DC,如图(3)∵DE=DC=2a,由①中同理可得:FM=7a,AG=4a.15.解:(1)如图1中,作AH⊥CD于H.∵四边形ABCD是菱形,∴CD=AB=BC=10,CD∥AB,∵A(﹣8,8),∴AH=OH=8,DH==6,∴OD=2,OC=8,∴B(2,8),C(8,0).(2)如图2,连接DE,作EK⊥AD于K.设直线AC的解析式为y=kx+b,∵A(﹣8,8),C(8,0),∴,∴,∴直线AC地方解析式为y=﹣x+4,∴E(0,4),∴EF=OE=4,∵四边形ABCD是菱形,∴∠EAF=∠EAK,∵AE=AE,∠AFE=∠AKE=90°,∴△AEF≌△AEK(AAS),∴EF=EK=4,当0≤t<5时,S=×4(10﹣t)=﹣2t+20.当5<t≤10时,S=×4(t﹣10)=2t﹣20.(3)①如图3中当点P在AD上,AP=AE时,沿PE翻折,可得四边形PAEA′为菱形,在Rt△AEF中,AE===4,∴AP=AE=4,∴t=20﹣4②如图4中,当点P在AD上,PA=PE时,沿AE翻折,可得四边形PAP′E是菱形,设PA=PE=EP′=AP′=x,在RtEFP′中,则有x2=(8﹣x)2+42,∴x=5,∴PA=5,∴t=20﹣5=15,综上所述,满足条件的t的值为20﹣4或15s.16.解:(1)∵又∵≥0,|b﹣4|≥0,∴a+b﹣2=0,b﹣4=0,∴a=﹣2,b=4,∴A(﹣2,0).B(4,0),∵四边形ABCD是矩形,点C的纵坐标为2,∴C(4,2).(2)设M(,t),∵S△ABC=×(4+2)×2=6,△COM的面积=△ABC的面积,∴•|t|•4=6,解得t=±3,∴M点坐标为(0,3)或(0,﹣3);(3)结论:∠OPD=2∠EOQ.∵OE平分∠AOP,∴∠AOE=∠POE=∠1+∠2,∵OF⊥OE,∴∠1+∠2+∠3=90°,∠4+∠AOE=90°,∴∠3=∠4,∵CD⊥y轴,∴CD∥AB,∴∠OPD=∠POB=2∠3,∵∠1+∠2+∠3=90°,∠2+∠3+∠4=90°,∴∠1+∠2+∠3=∠2+2∠3,∴∠1=∠3,∴∠OPD=2∠EOQ.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.解答题(共30小题)
1.(顺义区)如图,直线l
1:y=kx+b平行于直线y=x﹣1,且与直线l
2
:
相交于点P(﹣1,0).
(1)求直线l
1、l
2
的解析式;
(2)直线l
1
与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运
动,到达直线l
2上的点B
1
处后,改为垂直于x轴的方向运动,到达直线l
1
上的
点A
1处后,再沿平行于x轴的方向运动,到达直线l
2
上的点B
2
处后,又改为垂
直于x轴的方向运动,到达直线l
1上的点A
2
处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B
1,A
1
,B
2
,A
2
,B
3
,A
3
,…,B
n
,A
n
,…
①求点B
1,B
2
,A
1
,A
2
的坐标;
②请你通过归纳得出点A
n 、B
n
的坐标;并求当动点C到达A
n
处时,运动的总路径
的长?
2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.
(1)求直线AC的解析式;
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.
3.(资阳)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1=﹣4x+190,y 2=5x ﹣170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求.
(1)求该商品的稳定价格和稳定需求量;
(2)当价格为45(元/件)时,该商品的供求关系如何?为什么?
4.(哈尔滨)如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(﹣3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;
(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);
(3)在(2)的条件下,当t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.
5.(桂林)如图已知直线L :y=x+3,它与x 轴、y 轴的交点分别为A 、B 两点. (1)求点A 、点B 的坐标.
(2)设F 为x 轴上一动点,用尺规作图作出⊙P,使⊙P 经过点B 且与x 轴相切于点F (不写作法,保留作图痕迹).
(3)设(2)中所作的⊙P 的圆心坐标为P (x ,y ),求y 关于x 的函数关系式. (4)是否存在这样的⊙P,既与x 轴相切又与直线L 相切于点B ?若存在,求出圆心P 的坐标;若不存在,请说明理由.
6.(防城港)如图,在平面直角坐标系,直线y=﹣(x﹣6)与x轴、y轴分
别相交于A、D两点,点B在y轴上,现将△AOB沿AB翻折180°,使点O刚好落在直线AD的点C处.
(1)求BD的长;
(2)设点N是线段AD上的一个动点(与点A、D不重合),S
△NBD =S
1
,S
△NOA
=S
2
,
当点N运动到什么位置时,S
1•S
2
的值最大,并求出此时点N的坐标;
(3)在y轴上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标,并选择一个写出其求解过程;若不存在,简述理由.
7.(大兴安岭)直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O⇒B⇒A 以每秒1个单位长度的速度运动,到达A点时运动停止.
(1)直接写出A、B两点的坐标;
(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);
(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
8.(云南)如图,在直角坐标系中,半圆直径为OC,半圆圆心D的坐标为(0,2),四边形OABC是矩形,点A的坐标为(6,0).
(1)若过点P(2,0)且与半圆D相切于点F的切线分别与y轴和BC边交于点H与点E,求切线PF所在直线的解析式;
(2)若过点A和点B的切线分别与半圆相切于点P
1和P
2
(点P
1
、P
2
与点O、C
不重合),请求P
1、P
2
点的坐标并说明理由.(注:第(2)问可利用备用图作
答).
9.(厦门)如图,在直角梯形OABD中,DB∥OA,∠OAB=90°,点O为坐标原点,
点A在x轴的正半轴上,对角线OB,AD相交于点M.OA=2,AB=2,BM:MO=1:2.
(1)求OB和OM的值;
(2)求直线OD所对应的函数关系式;
(3)已知点P在线段OB上(P不与点O,B重合),经过点A和点P的直线交梯形OABD的边于点E(E异于点A),设OP=t,梯形OABD被夹在∠OAE内的部分的面积为S,求S关于t的函数关系式.
10.(天门)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A
运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B
运动.设运动了x秒.
(1)点N的坐标为(_________ ,_________ );(用含x的代数式表示)
(2)当x为何值时,△AMN为等腰三角形;
(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.
11.(乐山)如图,在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C.若点C的坐标为(0,2),AB=5,A,B两点的横坐标
x A ,x
B
是关于x的方程x2﹣(m+2)x+n﹣1=0的两根.
(1)求m,n的值;
(2)若∠ACB平分线所在的直线l交x轴于点D,试求直线l对应的一次函数解析式;
(3)过点D任作一直线l′分别交射线CA,CB(点C除外)于点M,N.则
的是否为定值?若是,求出该定值;若不是,请说明理由.
12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t秒.
(1)求直线BC的解析式;
(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB 面积的;
(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;
(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?并求出此时动点P的坐标.
13.(遵义)如图,已知一次函数的图象与x轴,y轴分别相交于A,
B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.(1)求AB的长;
(2)当t为何值时,△ACD与△AOB相似并直接写出此时点C的坐标;
(3)△ACD的面积是否有最大值?若有,此时t为何值;若没有,请说明理由.
14.(株洲)已知Rt△ABC,∠ACB=90°,AC=4,BC=3,CD⊥AB于点D,以D为坐标原点,CD所在直线为y轴建立如图所示平面直角坐标系.
(1)求A,B,C三点的坐标;
(2)若⊙O
1,⊙O
2
分别为△ACD,△BCD的内切圆,求直线O
1
O
2
的解析式;
(3)若直线O
1O
2
分别交AC,BC于点M,N,判断CM与CN的大小关系,并证明
你的结论.。