湖北省黄冈中学【初高中数学衔接教材】(WROD版,118页)

合集下载

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初下中数教贯串课本之阳早格格创做咱们正在初中已经教习过了下列一些乘法公式:(1)仄圆好公式 22()()a b a b a b +-=-;(2)真足仄圆公式222()2a b a ab b ±=±+.咱们还不妨通过道明得到下列一些乘法公式:(1)坐圆战公式2233()()a b a ab b a b +-+=+;(2)坐圆好公式2233()()a b a ab b a b -++=-;(3)三数战仄圆公式2222()2()a b c a b c ab bc ac ++=+++++;(4)二数战坐圆公式 33223()33a b a a b ab b +=+++;(5)二数好坐圆公式 33223()33a b a a b ab b -=-+-.对于上头列出的五个公式,有兴趣的共教不妨自己去道明.例1 估计:22(1)(1)(1)(1)x x x x x x +--+++.解法一:本式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:本式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,供222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.挖空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.采用题:(1)假如212x mx k ++一个真足仄办法,则k 等于( ) (A )2m (B )214m (C )213m (D )2116m (2)没有管a ,b 为何真数,22248a b a b +--+的值( )(A )经常正数 (B )经常背数(C )不妨是整 (D )不妨是正数也不妨是背数2.果式领会果式领会的主要要领有:十字相乘法、提与公果式法、公式法、分组领会法,其余还应相识供根法及待定系数法.1.十字相乘法例1 领会果式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2领会成图中的二个x 的积,再将常数项2领会成-1与-2的乘积,而图中的对于角线上的二个数乘积的战为-3x ,便是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).道明:以后正在领会与本例类似的二次三项式时,不妨间接将图1.1-1中的二个x 用1去表示(如图1.1-2所示). (2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y)-1=(x -1) (y+1) (如图1.1-5所示).课堂训练一、挖空题:1、把下列各式领会果式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay-by x x 图1.1-4 -1 1 x y 图1.1-5=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、采用题:(每小题四个问案中惟有一个是精确的)1、正在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相共果式的是( )A 、惟有(1)(2)B 、惟有(3)(4)C 、惟有(3)(5)D 、(1)战(2);(3)战(4);(3)战(5)2、领会果式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 领会果式得( )A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可领会为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或者9B 、3±C 、9±D 、3±或者9±三、把下列各式领会果式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提与公果式法例2 领会果式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或者32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂训练:一、挖空题:1、多项式xyz xy y x 42622+-中各项的公果式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --领会果式得_____________________.7.估计99992+=二、推断题:(精确的挨上“√”,过失的挨上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3领会果式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂训练一、222b ab a +-,22b a -,33b a -的公果式是______________________________.二、推断题:(精确的挨上“√”,过失的挨上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式领会1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x4.分组领会法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或者222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂训练:用分组领会法领会多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.闭于x 的二次三项式ax2+bx+c(a≠0)的果式领会.若闭于x 的圆程20(0)ax bx c a ++=≠的二个真数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠便可领会为12()()a x x x x --.例5 把下列闭于x 的二次多项式领会果式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-, ∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.采用题:多项式22215x xy y --的一个果式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.领会果式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.领会果式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.正在真数范畴内果式领会:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 谦脚222a b c ab bc ca ++=++,试判决ABC ∆的形状.4.领会果式:x2+x -(a2-a).5. (测验考查题)已知abc=1,a+b+c=2,a²+b²+c²=,供1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次圆程、一元二次没有等式与二次函数的闭系2、一元二次没有等式的解法步调一元二次没有等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相映的一元二次圆程()002≠=++a c bx ax 的二根为2121x x x x ≤且、,ac b 42-=∆,则没有等式的解的百般情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次圆程()的根002>=++a c bx ax 有二相同真根)(,2121x x x x < 有二相等真根 a b x x 221-== 无真根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1解没有等式:(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解闭于x 的没有等式0)1(2>---a a x x解:本没有等式不妨化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或者a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或者a x ->1 例3已知没有等式20(0)ax bx c a ++<≠的解是2,3x x <>或供没有等式20bx ax c ++>的解.解:由没有等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且圆程20ax bx c ++=的二根分别为2战3,∴5,6b c a a-==, 即 5,6b c a a=-=. 由于0a <,所以没有等式20bx ax c ++>可形成20b c x x a a ++< , 即 -2560,x x ++<整治,得所以,没有等式20bx ax c +->的解是x <-1,或者x >65. 道明:本例利用了圆程与没有等式之间的相互闭系去办理问题.练 习1.解下列没有等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解闭于x 的没有等式x2+2x +1-a2≤0(a 为常数).做业:1.若0<a<1,则没有等式(x -a)(x -a1)<0的解是 ( )A.a<x<a1 B.a 1<x<a C.x>a 1或者x<a D.x<a1或者x>a 2.如果圆程ax2+bx +b =0中,a <0,它的二根x1,x2谦脚x1<x2,那么没有等式ax2+bx +b <0的解是______.3.解下列没有等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解闭于x 的没有等式x2-(1+a)x +a <0(a 为常数).5.闭于x 的没有等式02<++c bx ax 的解为122x x <->-或 供闭于x 的没有等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的观念及本量内心:本量:中心:本量:沉心:本量:垂心:例1 供证:三角形的三条中线接于一面,且被该接面分成的二段少度之比为2:1.已知D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中面, 供证AD 、BE 、CF 接于一面,且皆被该面分成2:1.道明 连结DE ,设AD 、BE 接于面G ,D 、E 分别为BC 、AE 的中面,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AGGD BG GE . 设AD 、CF 接于面'G ,共理可得,'2','2'.AG G D CG G F则G 与'G 沉合, AD 、BE 、CF 接于一面,且皆被该面分成2:1.例 2 已知ABC 的三边少分别为,,BC a AC b AB c ,I 为ABC 的内心,且I 正在ABC 的边BC AC AB 、、上的射影分别为D E F 、、,供证:2b c a AE AF . 道明 做ABC 的内切圆,则D E F 、、分别为内切圆正在三边上的切面,,AE AF 为圆的从共一面做的二条切线,AE AF ,共理,BD=BF ,CD=CE. 即2b c a AE AF . 例3 若三角形的内心与沉心为共一面,供证:那个三角形为正三角形. 已知O 为三角形ABC 的沉心战内心.供证 三角形ABC 为等边三角形.道明 如图,连AO 并延少接BC 于 D.O 为三角形的内心,故AD 仄分BAC ,AB BD AC DC (角仄分线本量定理)O 为三角形的沉心,D 为BC 的中面,即BD=DC. 1AB AC ,即AB AC . 共理可得,AB=BC. ABC 为等边三角形.例4 供证:三角形的三条下接于一面.已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 接于H 面. 供证CH AB .道明 以CH 为曲径做圆,D E 、正在以CH 为曲径的圆上,FCB DEH .共理,E 、D 正在以AB 为曲径的圆上,可得BED BAD .BCH BAD , 又ABD 与CBF 有大众角B ,90o CFB ADB。

初高中数学衔接教材(50页)

初高中数学衔接教材(50页)

初高中数学衔接教材现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。

方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

目录第一章:数与式的运算和因式分解1.1 数与式的运算1.1.1绝对值 1.1.2. 乘法公式 1.1.3.二次根式 1.1.4.分式1.2 分解因式第二章:方程、函数、方程组、不等式组2.1 一元二次方程2.1.1根的判别式 2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质 2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用2.3 方程组不等式2.3.1 二元二次方程组解法 2.3.2 一元二次不等式解法第三章:相似形、圆3.1相似形3.1.1.平行线分线段成比例定理 3.1.2相似形3.2 三角形3.2.1 三角形的“四心” 3.2.2 几种特殊的三角形3.3 圆3.3.1 直线与圆,圆与圆的位置关系 3.3.2 点的轨迹1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零。

初高中数学衔接教材1

初高中数学衔接教材1
第4 共 29
令代 12 x 2 + xy − 6 y 2 = __________________________________________________
= (x + 3)(x + ) 以 x2 − 4x + 2 左 若 x + ax + b = (x + 2)(x − 4) 则 a = b= 二 选择题 小题四个答案中 有一个是 确的 令 在多项式 令 x 2 + 7 x + 6 以 x 2 + 4 x + 3 左 x 2 + 6 x + 8 巧 x 2 + 7 x + 10 5 x 2 + 15 x + 44 中 有相同因式的是 A 有 令 以 B 有 左 巧 件 有 左 5 价 令 和 以 左 和 巧 左 和 5 2 2 以 解因式 a + 8ab − 33b 得 A (a + 11)(a − 3) B (a + 11b)(a − 3b) 件 (a − 11b)(a − 3b) 价 (a − 11b)(a + 3b) 2 左 (a + b) + 8(a + b) − 20 解因式得 B (a + b + 5)(a + b − 4) A (a + b + 10)(a + b − 2) 件 (a + b + 2)(a + b − 10 ) 价 (a + b + 4)(a + b − 5) 巧 若多项式 x 2 − 3 x + a 可 解 (x − 5)(x − b) 则 a b 的值是 B a = 10 b = −2 件 a = −10 b = −2 价 a = −10 b = 2 A a = 10 b = 2 2 5 若 x + mx − 10 = (x + a )(x + b) 中 a b 整数 则 m 的值 B ±3 件 ±9 价 ±3或±9 A 3或9 把 列各式 解因式 令 6(2 p − q)2 − 11(q − 2 p ) + 3 以 a 3 − 5a 2 b + 6ab 2

最新-初高中数学衔接教材(完整版) 精品

最新-初高中数学衔接教材(完整版) 精品

初高中数学衔接教材(完整版)篇一:初高中衔接教材数学《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。

既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢?提几点建议:一、“信心”是源泉。

人缺乏信心,就丧失了驱动力,终将一事无成。

二、“恒心”是保障。

人缺乏恒心,将“三天打鱼,两天晒网”。

三、“巧心”是支柱。

人无巧心,就缺乏灵气和创造力。

最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。

主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。

怎样学好数学?要学好数学,就应该了解数学本身具有的三大特点。

(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。

(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。

罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。

”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材之羊若含玉创作我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 盘算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方法,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分化因式分化的主要办法有:十字相乘法、提取公因式法、公式法、分组分化法,别的还应懂得求根法及待定系数法.1.十字相乘法例1 分化因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分化成图中的两个x 的积,再将常数项2分化成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:往后在分化与本例相似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示).(2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 教室演习一、填空题:1、把下列各式分化因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________. 2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分化因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分化因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分化为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分化因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分化因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++教室演习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分化因式得_____________________.7.盘算99992+=二、断定题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分化因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++ 教室演习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、断定题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分化1、()()229n m n m ++--2、3132-x3、()22244+--x x4、1224+-x x4.分组分化法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.教室演习:用分组分化法分化多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分化.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分化为12()()a x x x x --.例5 把下列关于x 的二次多项式分化因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤----⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分化因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分化因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数规模内因式分化:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 知足222a b c ab bc ca ++=++,试剖断ABC ∆的形状.4.分化因式:x2+x -(a2-a).5. (测验测验题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步调一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各类情况如下表: 0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x解:原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分离为2和3, ∴5,6b c a a -==, 即 5,6b ca a =-=.由于0a <,所以不等式20bx ax c ++>可变成20b cx x a a ++< ,即 -2560,x x ++<整理,得所以,不等式20bx ax c +->的解是x <-1,或x >65 .说明:本例应用了方程与不等式之间的相互关系来解决问题. 练 习1.解下列不等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数).作业:1.若0<a<1,则不等式(x -a)(x -a 1)<0的解是 ( )A.a<x<a 1B.a 1<x<aC.x>a 1或x<a D.x<a 1或x>a2.如果方程ax2+bx +b =0中,a <0,它的两根x1,x2知足x1<x2,那么不等式ax2+bx +b <0的解是______.3.解下列不等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数).5.关于x 的不等式02<++c bx ax 的解为122x x <->-或求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质心坎:性质:外心:性质:重心:性质:垂心:例1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知D 、E 、F 分离为△ABC 三边BC 、CA 、AB 的中点,求证AD 、BE 、CF 交于一点,且都被该点分成2:1.证明 贯穿连接DE ,设AD 、BE 交于点G ,D 、E 分离为BC 、AE 的中点,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AG GD BG GE . 设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F 则G 与'G 重合, AD 、BE 、CF 交于一点,且都被该点分成2:1.例 2 已知ABC 的三边长分离为,,BC a AC b AB c ,I 为ABC 的心坎,且I 在ABC 的边BC AC AB 、、上的射影分离为D E F 、、,求证:2bc a AE AF . 证明 作ABC 的内切圆,则D E F 、、分离为内切圆在三边上的切点,,AE AF 为圆的从同一点作的两条切线,AE AF ,同理,BD=BF ,CD=CE. 即2b c a AE AF . 例3 若三角形的心坎与重心为同一点,求证:这个三角形为正三角形. 已知O 为三角形ABC 的重心和心坎.求证 三角形ABC 为等边三角形.证明 如图,连AO 并延长交BC 于 D. O 为三角形的心坎,故AD 平分BAC , ABBD AC DC (角平分线性质定理)O 为三角形的重心,D 为BC 的中点,即BD=DC. 1AB AC ,即AB AC .同理可得,AB=BC. ABC 为等边三角形.例4 求证:三角形的三条高交于一点. 已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CH AB .证明 以CH 为直径作圆, D E 、在以CH 为直径的圆上, FCB DEH .同理,E 、D 在以AB 为直径的圆上,可得BED BAD . BCH BAD , 又ABD 与CBF 有公共角B ,90o CFB ADB。

初高中数学衔接教材共28页.doc

初高中数学衔接教材共28页.doc

初高中数学衔接教材引 入 乘法公式第一讲 因式分解第二讲 函数与方程第三讲 三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+;(2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ). 2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.说明:(2)x 2+4x -12=(x -2)(x +6).(3) 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1 =(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

初高中数学衔接教材已整理精品

初高中数学衔接教材已整理精品

实用标准初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.初中升高中数学教材变化分析解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材之巴公井开创作1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明获得下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( );(2)(4m +22)164(m m =++); (3 ) 2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 即是( )(A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示). (2)由图1.1-3,得 x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________. -1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2-2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个谜底中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( )A 、()()3 11-+a a B 、()()b a b a 3 11-+ C 、()()b a b a 3 11-- D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分解因式1、()()3211262+---p q q p2、22365ab b a a +- 3、6422--y y 4、8224--b b2.提取公因式法例2 分解因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂练习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分解因式得_____________________.7.计算99992+=二、判断题:(正确的打上“√”,毛病的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分解因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂练习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、判断题:(正确的打上“√”,毛病的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x ………………………… ( )2、()()()()b a b a b a b a 43 4343892222-+=-=-…………………………………( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分解1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂练习:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦ =(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分解因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x2+x -(a2-a).5. (检验考试题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 3.一元二次不等式的解法 1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步伐一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x解:原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分别为2和3, ∴5,6b c a a -==, 即 5,6b c a a=-=. 由于0a <,所以不等式20bx ax c ++>可酿成 20b c x x a a++< , 即 -2560,x x ++< 整理,得所以,不等式20bx ax c +->的解是 x <-1,或x >65. 说明:本例利用了方程与不等式之间的相互关系来解决问题. 练 习1.解下列不等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数).作业:1.若0<a<1,则不等式(x -a)(x -a 1)<0的解是( ) A.a<x<a 1 B.a1<x<a C.x>a 1或x<a D.x<a 1或x>a2.如果方程ax2+bx +b =0中,a <0,它的两根x1,x2满足x1<x2,那么不等式ax2+bx +b <0的解是______.3.解下列不等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数).5.关于x 的不等式02<++c bx ax 的解为122x x <->-或 求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质内心:性质:外心:性质:重心:性质:垂心:2.典范例题例 1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中点,求证AD 、BE 、CF 交于一点,且都被该点分成2:1.证明 连结DE,设AD 、BE 交于点G,D 、E 分别为BC 、AE 的中点,则DE//AB,且12DE AB , GDE ∽GAB ,且相似比为1:2, 2,2AG GD BG GE .设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F则G 与'G 重合,AD 、BE 、CF 交于一点,且都被该点分成2:1.例2 已知ABC 的三边长分别为,,BC a AC b AB c ,I 为ABC 的内心,且I 在ABC 的边BC AC AB 、、上的射影分别为D E F 、、,求证:2b c a AE AF . 证明 作ABC 的内切圆,则D E F 、、分别为内切圆在三边上的切点,,AE AF 为圆的从同一点作的两条切线,AE AF ,同理,BD=BF,CD=CE.22b c a AF BF AE CE BD CD AF AE AF AE即2b c a AE AF . 例 3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形.已知O 为三角形ABC 的重心和内心.图3.2-3图3.2-4图3.2-6图3.2-5求证 三角形ABC 为等边三角形. 证明 如图,连AO 并延长交BC 于D.O 为三角形的内心,故AD 平分BAC , AB BD AC DC (角平分线性质定理)O 为三角形的重心,D 为BC 的中点,即BD=DC.1ABAC ,即AB AC .同理可得,AB=BC.ABC 为等边三角形.例4 求证:三角形的三条高交于一点. 已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CH AB .证明 以CH 为直径作圆,D E 、在以CH 为直径的圆上,FCB DEH .同理,E 、D 在以AB 为直径的圆上,可得BED BAD .BCH BAD ,又ABD 与CBF 有公共角B ,90o CFBADB 时间:二O 二一年七月二十九日图3.2-7 图3.2-8 图3.2-9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省黄冈中学【初高中数学衔接教材】(WROD版,118页)黄冈中学初高中数学衔接教材{新课标人教A版}118页超权威超容量完整版典型试题举一反三理解记忆成功衔接分析原因对症下药{黄冈中学教材系列}第一部分如何做好初高中衔接 1-4页第二部分现有初高中数学知识存在的“脱节” 5页第三部分初中数学与高中数学衔接紧密的知识点 6-10页第四部分新生预习高中数学三大策略 11-12页第五部分新生消除数学学习障碍的四大对策 12-13页第六部分怎样做数学作业才能发挥最大效益 13-15页第七部分女生学好高一数学的六个法宝 15-16页第八部分如何科学合理的学习高一数学 16-18页第九部分影响高中数学成绩的原因和解决方法18-20页第十部分高中数学的考试特点 20-22页第十一部分新高一年级学生的心理特征与学习对策22-23第十二部分新高一学生如何顺利度过数学“适应期”23第十三部分分章节讲解 24-85页第十四部分衔接知识点的专题强化训练 86-117页第十五部分高考过来人经验谈---没有学不好的数学118页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

当然,能力的发展是渐进的,不是一朝一夕的。

这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。

3 知识内容的整体数量剧增。

高中数学在知识内容的“量”上急剧增加了。

例如:高一《代数》第一章就有基本概念52个,数学符号28个;《立体几何》第一章有基本概念37个,基本公理、定理和推论21个;两者合在一起仅基本概念就达89个之多,并集中在高一第一学期学习,形成了概念密集的学习阶段。

加之高中一年级第一学期只有七十多课时,辅助练习、消化的课时相应地减少了。

使得数学课时吃紧,因而教学进度一般较快,从而增加了教与学的难度。

这样,不可避免地造成学生不适应高中数学学习,而影响成绩的提高。

这就要求:第一,要做好课后的复习工作,记牢大量的知识。

第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中。

第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好,因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”。

如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法。

第四,要多做总结、归类,建立主体的知识结构网络。

二不良的学习状态1 学习习惯因依赖心理而滞后。

初中生在学习上的依赖心理是很明显的。

第一,为提高分数,初中数学教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。

升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了。

许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。

表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

2 思想松懈。

有些同学把初中的那一套思想移植到高中来。

他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,有的还是重点中学里的重点班,因而认为读高中也不过如此。

高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。

存有这种思想的同学是大错特错的。

有多少同学就是因为高一、二不努力学习,临近高考了,发现自己缺漏了很多知识再弥补后悔晚矣。

3 学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。

而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆;课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。

还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

4 不重视基础。

一些“自我感觉良好”的同学,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。

到正规作业或考试中不是演算出错就是中途“卡壳”。

5 进一步学习条件不具备。

高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。

这就要求必须掌握基础知识与技能为进一步学习作好准备。

高中数学很多地方难度大、方法新、分析能力要求高。

如二次函数值的求法、实根分布与参变量的讨论、,三角公式的变形与灵活运用、空间概念的形成、排列组合应用题及实际应用问题等。

有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。

三科学地进行学习高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。

1 培养良好的学习习惯。

反复使用的方法将变成人们的习惯。

什么是良好的学习习惯?良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

(1)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动主动学习和克服困难的内在动力。

但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

(2)课前自学是上好新课、取得较好学习效果的基础。

课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。

自学不能走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。

(3)上课是理解和掌握基础知识、基本技能和基本方法的关键环节。

“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

(4)及时复习是高效率学习的重要一环。

通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。

(5)独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。

这一过程也是对意志毅力的考验,通过运用使对所学知识由“会”到“熟”。

(6)解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。

解决疑难一定要有锲而不舍的精神。

做错的作业再做一遍。

对错误的地方要反复思考。

实在解决不了的要请教老师和同学,并要经常把易错的知识拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,使所学到的知识由“熟”到“活”。

(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。

小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。

经常进行多层次小结,能对所学知识由“活”到“悟”。

(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。

课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

2 循序渐进,防止急躁。

由于同学们年龄较小,阅历有限,为数不少的同学容易急躁。

有的同学贪多求快,囫囵吞枣;有的同学想靠几天“冲刺”一蹴而就;有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。

同学们要知道,学习是一个长期地巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的。

为什么高中要学三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。

3 注意研究学科特点,寻找最佳学习方法。

数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。

它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。

学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。

对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。

方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。

第二部分,现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

相关文档
最新文档