2017年秋季学期新版新人教版九年级数学上册第23章旋转双休作业
最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。
2、旋转的性质(1)对应点到旋转中心的距离相等。
(旋转中心就是各对应点所连线段的垂直平分线的交点。
)(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全等。
3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。
4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。
5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。
人教版九年级数学上册第二十三章旋转压轴题专题训练【含答案】

人教版九年级数学上册第二十三章旋转压轴题专题训练1.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD 与MN相交于点E,则∠CEN= °.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转 °时,边CD恰好与边MN平行.(直接写出结果)2.问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B= °,所以∠BPC=∠AP′B= °,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为 ,问题得到解决.(1)根据李明同学的思路填空:∠AP′B= °,∠BPC=∠AP′B= °,等边三角形ABC的边长为 .(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=,PB=,PC=1.求∠BPC的度数和正方形ABCD的边长.3.在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m≥0,四边形ABCD是菱形.(1)如图,当四边形ADCD为正方形时,求m,n的值.(2)探究:当m为何值时,菱形ABCD的对角线AC的长度最短,并求出AC的最小值.4.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定PA+PB+PC的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:PA+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置 .问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.5.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.6.如图,已知△BAD≌△BCE,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M 为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为 ;(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.7.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB 与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1= 度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB 与A1C交于点D,试说明A1D=CD.8.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.9.如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.10.如图,△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度α(0°<α<180°)得到△ADE,连接CE,BD,BD与AC交于点F.(1)求证:BD=CE;(2)当α等于多少度时,四边形AFDE是平行四边形?并说明理由.11.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.12.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.13.如图,将矩形ABCD绕点A按逆时针方向旋转,得到矩形AEFG,E点正好落在边CD上,连接BE,BG,且BG交AE于P.(1)求证:∠CBE=∠BAE;(2)求证:BG=2PB;(3)若AB=,BC=3,直接写出BG的长.14.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.15.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.16.如图,矩形ABCD中,点E在AD边上,过点E作AB的平行线,交BC于点F,将矩形ABFE绕着点E逆时针旋转,使点F的对应点落在边CD上,点B的对应点N落在边BC上.(1)求证:BF=NF;(2)已知AB=2,AE=1,求EG的长;(3)已知∠MEF=30°,求的值.参考答案1.如图1,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°(1)观察猜想将图1中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD 与MN相交于点E,则∠CEN= 105 °.(2)操作探究将图1中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图3,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)深化拓展将图1中的三角尺OCD绕点O按沿顺时针方向旋转一周,在旋转的过程中,当边OC 旋转 75或255 °时,边CD恰好与边MN平行.(直接写出结果)解:(1)∵∠ECN=45°,∠ENC=30°,∴∠CEN=105°.故答案为:105°.(2)∵OD平分∠MON,∴∠DON=∠MPN=×90°=45°,∴∠DON=∠D=45°,∴CD∥AB,∴∠CEN=180°﹣∠MNO=180°﹣30°=150°;.(3)如图1,CD在AB上方时,设OM与CD相交于F,∵CD∥MN,∴∠OFD=∠M=60°,在△ODF中,∠MOD=180°﹣∠D﹣∠OFD,=180°﹣45°﹣60°,=75°,当CD在AB的下方时,设直线OM与CD相交于F,∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°﹣∠D﹣∠DFO=180°﹣45°﹣60°=75°,∴旋转角为75°+180°=255°,综上所述,当边OC旋转75°或255°时,边CD恰好与边MN平行.故答案为:75或255.2.问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B= 150 °,所以∠BPC=∠AP′B= 150 °,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为 ,问题得到解决.(1)根据李明同学的思路填空:∠AP′B= 150 °,∠BPC=∠AP′B= 150 °,等边三角形ABC的边长为 .(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=,PB=,PC=1.求∠BPC的度数和正方形ABCD的边长.解:(1)根据旋转可知:∠AP′B=150°,∠BPC=∠AP′B=150°,等边三角形ABC的边长为.故答案为150°、150°、.(2)解:将△BPC绕点B逆时针旋转90°,得△BP′A,则△BPC≌△BP′A.∴AP′=PC=1,BP′=PB=.连接PP′,如图.在Rt△BP′P中,∵PB=BP′=,∠PBP′=90°,∴PP′=2,∠BP′P=45°.在△AP′P中,AP′=1,PP′=2,PA=,∵12+22=()2,即AP′2+PP′2=PA2,∴△AP′P是直角三角形,即∠AP′P=90°.∴∠AP′B=135°,∴∠BPC=∠AP′B=135°.过点B作BE⊥AP′,交AP′的延长线于点E,则△BEP′是等腰直角三角形,∴∠EP′B=45°.又∵BP′=,∴EP′=BE=1,∴AE=2.在Rt△ABE中,∵BE=1,AE=2,∴由勾股定理,得AB=.综上可得,∠BPC=135°,正方形ABCD的边长为.答:∠BPC的度数为135°,正方形ABCD的边长为.3.在平面直角坐标系中,点A的坐标为(0,3),点B和点D的坐标分别为(m,0),(n,4),且m≥0,四边形ABCD是菱形.(1)如图,当四边形ADCD为正方形时,求m,n的值.(2)探究:当m为何值时,菱形ABCD的对角线AC的长度最短,并求出AC的最小值.解:(1)如图1中,作DF⊥y轴于F.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠DFA=∠AOB=90°,∴∠DAF+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAF=∠ABO,∴△DFA≌△AOB(AAS),∴DF=AB,AF=OB,∵A(0,3),D(n,4),∴OA=3,OF=4,AF=1,∴DF=3,OB=1,∴m=1,n=3.(2)如图2中,作DF⊥y轴于F,CE⊥x轴于E.∵四边形ABCD是菱形,∴AD=BC,∵AD∥BC,DF∥BE,∴∠ADF=∠CBE,∵∠AFD=∠CEB=90°,∴△DFA≌△BEC(AAS),∴EC=AF=1,∴点C的运动轨迹是直线y=1,由题意m>0,观察图形可知当点B与原点重合时,AC的值最小,此时菱形的边长=3,作CH⊥OA于H.则CH==2,AC===2,∴AC的最小值为2.4.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定PA+PB+PC的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:PA+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置 ∠APB=∠APC=120° .问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.解:问题的转化:如图1,由旋转得:∠PAP'=60°,PA=P'A,∴△APP'是等边三角形,∴PP'=PA,∵PC=P'C,∴PA+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,PA+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,PA+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时PA+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,PA+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴PA+PB+PC=PA+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.5.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.解:(1)如图1,延长EB交DG于点H,∵ABCD和AEFG为正方形,∴在Rt△ADG和Rt△ABE中,,∴Rt△ADG≌Rt△ABE,∴∠AGD=∠AEB,∵∠HBG=∠EBA,∴∠HGB+∠HBG=90°,∴DG⊥BE;(2)如图2,过点A作AP⊥BD交BD于点P,∵ABCD和AEFG为正方形,∴在△DAG和△BAE中,,∴△DAG≌△BAE(SAS),∴DG=BE,∵∠APD=90°,∴AP=DP=,∵AG=2,∴PG==,∴DG=DP+PG=+,∵DG=BE,∴BE=+.6.如图,已知△BAD≌△BCE,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M 为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为 AC=CN ;(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.解:(1)AC与CN数量关系为:AC=CN.理由如下:∵△BAD≌△BCE,∴BC=AD,EC=AB.∵EN∥AD,∴∠MEN=∠MDA.在△MEN与△MDA中,,∴△MEN≌△MDA(ASA),∴EN=AD,∴EN=BC.在△ABC与△CEN中,,∴△ABC≌△CEN(SAS),∴AC=CN.(2)结论仍然成立.理由如下:与(1)同理,可证明△MEN≌△MDA,∴EN=BC.设旋转角为α,则∠ABC=120°+α,∠DBE=360°﹣∠DBA﹣∠ABC﹣∠CBE=360°﹣30°﹣(120°+α)﹣60°=150°﹣α.∵BD=BE,∴∠BED=∠BDE=(180°﹣∠DBE)=15°+α.∵EN∥AD,∴∠MEN=∠MDA=∠ADB+∠BDE=60°+(15°+α)=75°+α.∴∠CEN=∠CEB+∠BED+∠MEN=30°+(15°+α)+(75°+α)=120°+α,∴∠ABC=∠CEN.在△ABC与△CEN中,,∴△ABC≌△CEN(SAS),∴AC=CN.(3)△CAN能成为等腰直角三角形,此时旋转角为60°.如下图所示:此时旋转角为60°或240°,点A、B、C在一条直线上,点N、E、C在一条直线上.7.将两块全等的含30°角的直角三角板按图1的方式放置,已知∠BAC=∠B1A1C=30°,AB=2BC.(1)固定三角板A1B1C,然后将三角板ABC绕点C顺时针方向旋转至图2的位置,AB 与A1C、A1B1分别交于点D、E,AC与A1B1交于点F.①填空:当旋转角等于20°时,∠BCB1= 160 度;②当旋转角等于多少度时,AB与A1B1垂直?请说明理由.(2)将图2中的三角板ABC绕点C顺时针方向旋转至图3的位置,使AB∥CB1,AB 与A1C交于点D,试说明A1D=CD.解:(1)①由旋转的性质得,∠ACA1=20°,∴∠BCD=∠ACB﹣∠ACA1=90°﹣20°=70°,∴∠BCB1=∠BCD+∠A1CB1,=70°+90°,=160°;②∵AB⊥A1B1,∴∠A1DE=90°﹣∠B1A1C=90°﹣30°=60°,∴∠ACA1=∠A1DE﹣∠BAC=60°﹣30°=30°,∴旋转角为30°;(2)∵AB∥CB1,∴∠ADC=180°﹣∠A1CB1=180°﹣90°=90°,∵∠BAC=30°,∴CD=AC,又∵由旋转的性质得,A1C=AC,∴A1D=CD.8.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠AC D+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE﹣CD=AD﹣BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD﹣CE=BE﹣AD;DE、AD、BE之间的关系为DE=BE﹣AD.9.如图,在三角形ABC中,AB=AC,点D在△ABC内,且∠ADB=90°.(1)如图1,若∠BAD=30°,AD=3,点E、F分别为AB、BC边的中点,连接EF,求线段EF的长;(2)如图2,若△ABD绕顶点A逆时针旋转一定角度后能与△ACG重合,连接GD并延长交BC于点H,连接AH,求证:∠DAH=∠DBH.(1)解:如图1,在Rt△ABD中,∠BAD=30°,∴AB=2BD,设BD=x,则AB=2x,由勾股定理得:,x=3或﹣3(舍),∴AB=2x=6,∵AC=AB=6,∵点E、F分别为AB、BC边的中点,∴EF=AC=3;(2)证明:如图2,由旋转得:△ADB≌△AGC,∴AG=AD,∠AGC=∠ADB=90°,CG=BD,∴∠AGD=∠ADG,∵∠ADB=90°,∴∠ADG+∠BDH=90°,∵∠AGD+∠MGC=90°,∴∠MGC=∠BDH,在GH上取一点M,使GM=DH,∴△CGM≌△BDH,∴CM=BH,∠GCM=∠DBH,∵∠CMH=∠MGC+∠MCG,∠CHM=∠BDH+∠DBH,∴∠CMH=∠CHM,∴CM=CH=BH,∵AC=AB,∴AH⊥BC,即∠AHB=90°=∠ADB,∵∠AOD=∠BOH,∴∠DAH=∠DBH.10.如图,△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度α(0°<α<180°)得到△ADE,连接CE,BD,BD与AC交于点F.(1)求证:BD=CE;(2)当α等于多少度时,四边形AFDE是平行四边形?并说明理由.(1)证明:∵△ADE是由△ABC旋转得到的,∴AB=AD,AC=AE,∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE,∴BD=CE;(2)当∠BAD=108°时,四边形AFDE是平行四边形,理由如下:∵∠BAD=108°,AB=AD,∴,∴∠DAE=∠ADB,∴AE∥FD,又∵∠CAD=∠BAD﹣∠BAC=72°,∴,∴∠CAD=∠ADE,∴AF∥ED,11.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.(1)①证明:∵把BA顺时针方向旋转60°至BE,∴BA=BE,∠ABE=60°,在等边△BCD中,DB=BC,∠DBC=60°,∴∠DBA=∠DBC+∠FBA=60°+∠FBA,∵∠CBE=60°+∠FBA,∴∠DBA=∠CBE,∴△BAD≌△BEC,∴DA=CE;②∠DEC+∠EDC=90°,∵DB=DC,DA⊥BC,∴,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°,在等边△BCD中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD=90°,∴∠DEC+∠EDC=90°;(2)分三种情况考虑:①当点A在线段DF的延长线上时,由(1)可得,△DCE为直角三角形,∴∠DCE=90°,当∠DEC=45°时,∠EDC=90°﹣∠DEC=45°,∴∠EDC=∠DEC,∴CD=CE,由(1)得DA=CE,∴CD=DA,在等边△DBC中,BD=CD,∴BD=DA=CD,∴∠BDC=60°,∵DA⊥BC,∴,在△BDA中,DB=DA,∴,在△DAC中,DA=DC,∴,∴∠BAC=∠BAD+∠DAC=75°+75°=150°.;②当点A在线段DF上时,∵以B为旋转中心,把BA顺时针方向旋转60°至BE,∴BA=BE,∠ABE=60°,在等边△BDC中,BD=BC,∠DBC=60°,∴∠DBC=∠ABE,∠DBC﹣∠ABC=∠ABE﹣∠ABC,即∠DBA=∠EBC,∴△DBA≌△CBE,∴DA=CE,在Rt△DFC中,∠DFC=90°,∴DF<DC,∵DA<DF,DA=CE,∴CE<DC,由②可知△DCE为直角三角形,∴∠DEC≠45°.③当点A在线段FD的延长线上时,同第②种情况可得△DBA≌△CBE,∴DA=CE,∠ADB=∠ECB,在等边△BDC中,∠BDC=∠BCD=60°,∵DA⊥BC,∴,∴∠ADB=180°﹣∠BDF=150°,∴∠ECB=∠ADB=150°,∴∠DCE=∠ECB﹣∠BCD=90°,当∠DEC=45°时,∠EDC=90°﹣∠DEC=45°,∴CD=CE,∴AD=CD=BD,∵∠ADB=∠ADC=150°,∴,,∴∠BAC=∠BAD+∠CAD=30°,综上所述,∠BAC的度数为150°或30°.12.已知如图,△ADC和△BDE均为等腰三角形,∠CAD=∠DBE,AC=AD,BD=BE,连接CE,点G为CE的中点,过点E作AC的平行线与线段AG延长线交于点F.(1)当A,D,B三点在同一直线上时(如图1),求证:G为AF的中点;(2)将图1中△BDE绕点D旋转到图2位置时,点A,D,G,F在同一直线上,点H在线段AF的延长线上,且EF=EH,连接AB,BH,试判断△ABH的形状,并说明理由.解:(1)∵AC∥EF,∴∠ACG=∠FEG,∵点G为CE的中点,∴CG=EG,∴△ACG≌△FEG,∴AG=FG,∴G为AF的中点;(2)△ABH为等腰三角形.理由:同(1)可证△ACG≌△FEG,∴AC=FE,又∵AC=AD,FE=HE,∴AD=HE,①∵AC∥EF,∴∠GFE=∠CAD=∠DBE,∵EF=EH,∴∠EFH=∠EHF,∵∠EFH+∠GFE=180°,∴∠FHE+∠DBE=180°,∴四边形BDHE中,∠BEH+∠BDF=180°,又∵∠BDA+∠BDF=180°,∴∠BEH=∠BDA,②又∵BD=BE,③∴由①②③,可得△ADB≌△HEB,∴AB=HB,即△ABH是等腰三角形.13.如图,将矩形ABCD绕点A按逆时针方向旋转,得到矩形AEFG,E点正好落在边CD 上,连接BE,BG,且BG交AE于P.(1)求证:∠CBE=∠BAE;(2)求证:BG=2PB;(3)若AB=,BC=3,直接写出BG的长.解:(1)∵矩形ABCD中,∠CBA=90°,∴∠CBE+∠ABE=90°,即2∠CBE+2∠ABE=180°,①由旋转可得,AB=AE,∴∠ABE=∠AEB,∴∠BAE+2∠ABE=180°,②由①②可得,∠BAE=2∠CBE,∴∠CBE=∠BAE;(2)如图,过B作BH⊥AE于H,则∠C=∠BH E=90°,由(1)可得,∠ABE=∠AEB,∵AB∥CE,∴∠ABE=∠CEB,∴∠BEC=∠BEH,即BE平分∠CEH,∴BH=BC,由旋转可得,AG=AD=BC,∠GAP=∠BAD=90°,∴AG=HB,∠GAP=∠BHP,又∵∠APG=∠HPB,∴△APG≌△HPB,∴GP=BP=BG,即BG=2PB;(3)∵AB=,BC=3=BH,∴Rt△ABH中,AH==4,∵△APG≌△HPB,∴PH=AP=AH=2,∴Rt△BHP中,BP==,∴BG=2BP=2.14.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE,在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).15.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.解:(1)由旋转的性质可知:∠BAE=∠DAG,由正方形的性质可知:AB=AD,AE=AG.∵在△ABE和△ADG中,,∴△ABE≌△ADG.∴BE=DG.(2)连接GE、BG,延长AD交GE与H.当α=45°时,则∠BAE=45°.∵∠BAD=∠EAG=90°.∴∠EAH=∠GAH=45°.又∵AE=AG,∴AH⊥GE.又∵AH⊥AB,∠EAH=45°,∴△AHE为等腰直角三角形.∴EH=AH=AE=4.∴EG=2EH=8.∴S△BEG=EG•AH=×8×4=16.设点G到BE的距离为h.BE==2S△BEG=EB•h=16,即×2•h=16,解得h=.∴点G到BE的距离为.16.如图,矩形ABCD中,点E在AD边上,过点E作AB的平行线,交BC于点F,将矩形ABFE绕着点E逆时针旋转,使点F的对应点落在边CD上,点B的对应点N落在边BC上.(1)求证:BF=NF;(2)已知AB=2,AE=1,求EG的长;(3)已知∠MEF=30°,求的值.解:(1)连结BE,EN,如图,∵四边形ABCD是矩形,∴∠BFE=90°,由旋转得BE=EN,∴BF=NF;(2)∵四边形ABCD是矩形,∴BF=AE,EF=AB,由旋转得EH=EA,∵BF=NF,∴EH=NF,∵∠BFE=∠GHE=90°,∠NGF=∠HGE,∴△N GF≌△HGE,∴FG=GH,设EG=x,则GF=GH=2﹣x,由勾股定理得x2﹣(2﹣x)2=1,解得x=,∴EG=;(3)∵EF∥DC,∴∠DME=∠MEF=30°,设DE=x,∵∠D=90°,∴ME=DC=AB=2x,DM=x,∴MC=(2﹣)x,∵∠NME=90°,∠DME=30°,∴∠NMC=60°,∴∠MNC=30°,∴MN=2MC=2(2﹣)x,∴BC=AD=DM+MN=2(2﹣)x+x=(5﹣2)x,∴=.。
人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。
人教版九年级数学上册第23章:旋转(课时作业2).docx

初中数学试卷
桑水出品
No. 26课题:图形的旋转预计完成时间:15分钟
班级组号 学生姓名
设计人:韩冰备课组长签名赵翠英级部主任审批许冰家长签名
(A)一、基础夯实
1.如图,△ABC是等边三角形,D是BC边的中点,△ABD经过旋转后到达△ACE的位置,那么:
(1)旋转中心是点;
(2)点B、D的对应点分别是;
取旋转角等于∠BAC,把△ABP逆时针旋转,画出旋转后的图形。
(C)三、拓展创新
4. 任意画一个△ABC,作下列旋转: 纠错区
(1)以B为中心,把这个三角形顺时针旋转60°;
(2)在三角形外任取一点角形内任取一点为中心,把这个三角形旋转180°
整洁正确日期:月日
(3)线段AB,BD,AD的对应线段分别是。
(4)∠B的对应角是;
(5)旋转角度是___________;
(6)△ACE的形状为。
(B)二、巩固提高
2.如图,点E是正方形ABCD中CD边上任意一点,以A为中心,
把△ADE顺时针旋转90°,画出旋转后的图形。
3. △ABC中,AB=AC,P是BC边上任意一点。以点A为中心,
人教版九年级数学上册 第23章 旋转23.1 第3课时 旋转作图【习题课件】

第二十三章 旋 转
第1节 图形的旋转 第3课时 旋转作图
习题链接
提示:点击 进入习题
1
(1) 旋 转 角 度 ; 旋 转 方 向 (2)对应点 Nhomakorabea2C
3B 4 旋转角
答案显示
(1)图略
6 (2)图略
(3)
17 2π
7
(1) △BPP′是等边三角 形 (2) 5
5B
课堂导练
1.旋转作图的步骤和方法: (1)确定旋转中心、___旋__转__角__度___及___旋__转__方__向___; (2)作出图形的关键点经过旋转后的__对__应__点__; (3)按一定的顺序连接对应点.
( B) A.(4,-3)
B.(-4,3)
C.(-3,4)
D.(-3,-4)
课堂导练
4.把一个图案进行旋转变换,选择不同的旋转中心、不同的 __旋__转__角__,会有不同的效果.
课堂导练 5.如图,该图形围绕圆心按下列角度旋转后,不.能.与其自身
重合的是( B )
A.72° B.108° C.144° D.216°
课后训练 7.如图,已知 P 为等边三角形 ABC 内一点,且 BP=3,
PC=4,将 BP 绕点 B 顺时针旋转 60°至 BP′的位置.
课后训练
(1)试判断△BPP′的形状,并说明理由; 解:△ BPP′是等边三角形.理由如下: ∵BP 绕点 B 顺时针旋转 60°至 BP′, ∴BP=BP′,∠PBP′=60°. ∴△BPP′是等边三角形.
课后训练 6.(2018·黑龙江)如图,在正方形网格中,每个小正方形的边
长都是一个单位长度,在平面直角坐标系内,△ABC 的 三个顶点坐标分别为 A(1,4),B(1,1),C(3,1).
人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第1课时 认识图形的旋转
8.(2020·苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A
按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,
则∠C′的度数为( )
C
A.18° B.20° C.24° D.28°
9.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕 点B逆时针旋转60°得到△BAE,连接ED,若BC=5,BD=4,则下列结 论错误的是( B )
A.AE∥BC B.∠ADE=∠BDC C.△BDE是等边三角形 D.△ADE的周长是9
10.如图,在正方形 ABCD 中,AD=1,将△ ABD 绕点 B 顺时针旋转 45 °得到△ A′BD′,此时 A′D′与 CD 交于点 E,则 DE 的长为_2_-____2_.
11.如图,在正方形 ABCD 中,AD=2 3 ,把边 BC 绕点 B 逆时针 旋转 30°得到线段 BP,连接 AP 并延长交 CD 于点 E,连接 PC,则 △ PCE 的面积为__9_-__5___3__________.
练习 2:如图,在△ ABC 中,∠C=90°,AC=4,BC=3,将△ ABC
绕点 A 逆时针旋转,使点 C 落在线段 AB 上的点 E 处,点 B 落在点 D
处,则 B,D 两点间的距离为( A )
A. 10
B.2 2
C.3 D.2 5
知识点1:旋转的概念 1.将左图按顺时针方向旋转90°后得到的图形是( A )
2.图形旋转的性质: (1)对应点到旋转中心的距离____相__等_________; (2)对应点与旋转中心所连线段的夹角等于 ______旋__转__角____________________________________________________; (3)旋转前、后的图形___全__等___.
人教版九年级数学上册 第23章 练习题(含答案)
人教版九年级数学上册23.1图形的旋转一.选择题(共6小题)1.如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD2.香港特别行政区的区徽中间紫金花图案如图所示,则至少需要旋转()和原图案重合.A.72°B.60°C.36°D.18°3.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10°B.30°C.40°D.70°4.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定5.在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.150二.填空题(共6小题)7.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是.8.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为°.9.如图,风车图案围绕着旋转中心至少旋转度,会和原图案重合.10.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是度.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是.三.解答题(共3小题)13.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?14.如图,P是等边三角形ABC内一点,且P A=6,PB=8,PC=10,若将△P AC绕点A 逆时针旋转后,得到△P′AB.求:(1)PP′的长度;(2)∠APB的度数.15.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.参考答案一.选择题(共6小题)1.如图△ABC绕点A旋转至△ADE,则旋转角是()A.∠BAD B.∠BAC C.∠BAE D.∠CAD【解答】解:∵△ABC绕点A旋转至△ADE,∴旋转角为∠BAD或∠CAE,故选:A.2.香港特别行政区的区徽中间紫金花图案如图所示,则至少需要旋转()和原图案重合.A.72°B.60°C.36°D.18°【解答】解:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是360°÷5=72°,∴这四次旋转中,旋转角度最小是72°,故选:A.3.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=30°,则旋转角度是()A.10°B.30°C.40°D.70°【解答】解:∵∠AOB=40°,∠BOC=30°,∴∠AOC=70°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=70°,故选:D.4.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定【解答】解:由题意得△OAB绕某点旋转到△OCD的位置,则旋转中心是点O.故选:C.5.在平面直角坐标系中,已知点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,则点A′在平面直角坐标系中的位置是在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:如图,∵点A(﹣2,3),若将OA绕原点O逆时针旋转180°得到OA′,∴A′的坐标是(2,﹣3),即点A′在第四象限,故选:D.6.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.150【解答】解:根据图形可得出:这是一个由基本图形绕着中心连续旋转3次,每次旋转120度角形成的图案.故选:C.二.填空题(共6小题)7.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是30°.【解答】解:由题意可得,∠CAE=50°,∵∠BAC=20°,∴∠BAE=∠CAE﹣∠BAC=50°﹣20°=30°,故答案为:30°.8.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为30°.【解答】解:∵将△ABC绕点A按顺时针方向旋转85°得到△ADE,∴△ABC≌△ADE,∴∠ACB=∠AED=30°,故答案为:30°.9.如图,风车图案围绕着旋转中心至少旋转60度,会和原图案重合.【解答】解:∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.故答案为:60.10.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是120度.【解答】解:∵时针从上午的6时到10时共旋转了4个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×4=120°.故答案为:120.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=2.【解答】解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.12.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是α+β=180°.【解答】解:∵使直角的顶点重合于点O,并能绕O点自由旋转,∴∠BOC=∠AOD,∵∠BOC+∠AOC=90°,∴∠AOD+∠AOC=90°,∵α+β=∠AOC+∠BOD=∠AOC+∠BOC+∠AOC+∠AOD=180°,∴α+β=180°,故答案为:α+β=180°.三.解答题(共3小题)13.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?【解答】解:(1)旋转中心为点A;(2)∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣21°﹣26°=133°,∴旋转的度数为133°;(3)由旋转性质知:AE=AC,AD=AB,∴AE=AB﹣CD=2.14.如图,P是等边三角形ABC内一点,且P A=6,PB=8,PC=10,若将△P AC绕点A 逆时针旋转后,得到△P′AB.求:(1)PP′的长度;(2)∠APB的度数.【解答】解:(1)∵△P AC绕点A逆时针旋转后,得到△P′AB,∴∠P AP′=60°,P′A=P A=6,∴△APP′是等边三角形,∴PP′=P A=6;(2)∵△P AC绕点A逆时针旋转后,得到△P′AB,∴P′B=PC=10,∵△APP′是等边三角形,∴∠APP′=60°,∵PB2+PP′2=82+62=100,P′B2=102=100,∴PB2+PP′2=P′B2,∴△P′PB是直角三角形,∠BPP′=90°,∴∠APB=∠APP′+∠BPP′=60°+90°=150°.15.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB,连接CD,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.求证:△BCD≌△FCE.【解答】证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).人教版九年级数学上册23.2.1中心对称一.选择题(共6小题)1.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′2.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组3.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=()A.2B.3C.4D.1.54.如图,已知图形是中心对称图形,则对称中心是()A.点C B.点D C.线段BC的中点D.线段FC的中点5.已知下列命题,其中正确的个数是()(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A.0个B.1个C.2个D.3个6.已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BO B.BO=EOC.点A关于点O的对称点是点D D.点D在BO的延长线上二.填空题(共6小题)7.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为.9.如图,△ABC与△DEC关于点C成中心对称,则线段AB与DE的大小关系是.10.如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,则△ABC与△A′B′C′关于点中心对称;若∠C=90°,∠B=30°,BC=1,则BB′的长为.11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A 与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是.三.解答题(共3小题)13.如图所示的两个图形成中心对称,请找出它的对称中点.14.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.15.如图,矩形ABCD和矩形A'B'C'D关于点D成中心对称.求证:四边形ACA'C'是菱形.参考答案一.选择题(共6小题)1.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′【解答】解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.2.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组【解答】解:根据中心对称的概念,知②③④都是中心对称.故选:C.3.如图,△ABC与△A′B′C′成中心对称,ED是△ABC的中位线,E′D′是△A′B′C′的中位线,已知BC=4,则E′D′=()A.2B.3C.4D.1.5【解答】解:∵△ABC与△A′B′C′成中心对称,∴△ABC≌△A′B′C′,∴B′C′=BC=4,∵E′D′是△A′B′C′的中位线,∴E′D′=B′C′=×4=2.故选:A.4.如图,已知图形是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点D.线段FC的中点【解答】解:∵此图形是中心对称图形,∴对称中心是线段FC的中点.故选:D.5.已知下列命题,其中正确的个数是()(1)关于中心对称的两个图形一定不全等;(2)关于中心对称的两个图形是全等形;(3)两个全等的图形一定关于中心对称.A.0个B.1个C.2个D.3个【解答】解:关于中心对称的两个图形一定全等,两个全等的图形不一定关于中心对称.故只有(2)说法正确,故选:B.6.已知△ABC和△DEF关于点O对称,相应的对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D在BO的延长线上【解答】解:A、AO=OE,错误;B、BO=DO,错误;C、点A关于点O的对称点是点E,错误;D、点D在BO的延长线上,正确;故选:D.二.填空题(共6小题)7.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为4.【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,根据中心对称的性质得到BB′=2AB=4.故答案为:4.9.如图,△ABC与△DEC关于点C成中心对称,则线段AB与DE的大小关系是AB=DE.【解答】解:∵△ABC与△DEC关于点C成中心对称,∴AB=DE故答案为:AB=DE.10.如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,则△ABC与△A′B′C′关于点A中心对称;若∠C=90°,∠B=30°,BC=1,则BB′的长为.【解答】解:∵如图,△ABC绕点A旋转180°,得到△A′B′C′,A为旋转中心,∴△ABC与△A′B′C′关于点A中心对称;∵在直角△ABC中,∠B=30°,BC=1,∴AB===∴BB′=2AB=.故答案是:A;.11.与电子显示的四位数6925不相等,但为全等图形的四位数是5269.【解答】答:5269.12.如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,观察点A 与点P,点B与点Q,点C与点R的坐标之间的关系.在这种变换下,如果△ABC中任意一点M的坐标为(x,y),那么它们的对应点N的坐标是(﹣x,﹣y).【解答】解:由图可知两三角形关于点O成中心对称,关于原点成中心对称的坐标的特点为横纵坐标均互为相反数,故点N的坐标是(﹣x,﹣y).三.解答题(共3小题)13.如图所示的两个图形成中心对称,请找出它的对称中点.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.14.如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.【解答】解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8;(3)∵在△ABD和△CDE中,,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<8,∴1<AD<4.15.如图,矩形ABCD和矩形A'B'C'D关于点D成中心对称.求证:四边形ACA'C'是菱形.【解答】解:∵矩形ABCD与矩形AB′C′D′关于点D成中心对称,∴∠ADC=90°,CD=CD′,DA=DA′,∴四边形ACA'C'是平行四边形,AA′⊥CC′,∴四边形ACA'C'是菱形.人教版九年级数学上册23.2.2中心对称图形一.选择题(共6小题)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形4.下列图形中(不考虑颜色),不是中心对称图形的是()A.B.C.D.5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个6.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1)B.(1,0)C.(1,﹣1)D.(1,﹣2)二.填空题(共6小题)7.在平面内将一个图形绕某一定点旋转度,图形的这种变化叫做中心对称.8.下列4种图案中,既是轴对称图形,又是中心对称图形的有个.9.下列图形中,其中是中心对称图形有个.①圆;②平行四边形;③长方形;④等腰三角形.10.如图,△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,已知AO=4cm,那么AA1=cm.11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是.12.如图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在处(填写区域对应的序号).三.解答题(共3小题)13.如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.14.下列这些是电子屏上显示的数字.(1)仔细观察后回答下列问题:①是中心对称图形而不是轴对称图形的数字是;②是轴对称图形,而不是中心对称图形的数字是;③既是轴对称又是中心对称图形的数字是;④能成中心对称的两个数字是;⑤能成轴对称的两个数字是.(2)小丽站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是.15.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.参考答案一.选择题(共6小题)1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.2.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、该图既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B、该图不是中心对称图形,是轴对称图形,故本选项不合题意;C、该图既是轴对称图形,又是中心对称图形,故本选项符合题意;D、该图不是中心对称图形,是轴对称图形,故本选项不合题意.故选:C.3.下列所述图形中,仅是中心对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形【解答】解:A、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意;B、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意;C、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意;D、菱形既是中心对称图形,又是轴对称图形,故本选项正确.故选:B.4.下列图形中(不考虑颜色),不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项不合题意;C、不是中心对称图形,是轴对称图形,故此选项符合题意;D、是中心对称图形,故此选项不合题意;故选:C.5.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有()A.5个B.4个C.3个D.2个【解答】解:矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.共3个既是轴对称图形又是中心对称图形.故选:C.6.如图,在平面直角坐标系xOy中,△ABC与△A1B1C1是中心对称图形.则对称中心的坐标是()A.(1,1)B.(1,0)C.(1,﹣1)D.(1,﹣2)【解答】解:对称中心的坐标是(1,﹣1),故选:C.二.填空题(共6小题)7.在平面内将一个图形绕某一定点旋转180度,图形的这种变化叫做中心对称.【解答】解:在平面内将一个图形绕某一定点旋转180度,图形的这种变化叫做中心对称.故答案为180.8.下列4种图案中,既是轴对称图形,又是中心对称图形的有1个.【解答】解:第一个图形是轴对称图形,也是中心对称图形;第二个图形不是轴对称图形,也不是中心对称图形;第三个图形不是轴对称图形,也不是中心对称图形;第四个图形是轴对称图形,不是中心对称图形.故答案为:1.9.下列图形中,其中是中心对称图形有3个.①圆;②平行四边形;③长方形;④等腰三角形.【解答】解:①圆;②平行四边形;③长方形是中心对称图形,共3个,故答案为:3.10.如图,△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,已知AO=4cm,那么AA1=8cm.【解答】解:∵△A1B1C1是△ABC关于点O成中心对称的图形,点A的对称点是点A1,AO=4cm,∴OA1=OA=4cm,∴AA1=OA+OA1=8cm,故答案为:8.11.图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是方块5.【解答】解:方块5旋转180°后得到图乙,故答案为:方块5.12.如图中阴影部分是由4个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在②处(填写区域对应的序号).【解答】解:把正方形添加在②处,使它与阴影部分组成的新图形是中心对称图形,故答案为:②.三.解答题(共3小题)13.如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.【解答】解:连接BB′,找BB′中点O或者连接BB′、CC′,交点为对称中心O.如图所示:14.下列这些是电子屏上显示的数字.(1)仔细观察后回答下列问题:①是中心对称图形而不是轴对称图形的数字是2和5;②是轴对称图形,而不是中心对称图形的数字是3;③既是轴对称又是中心对称图形的数字是1,8,0;④能成中心对称的两个数字是6和9;⑤能成轴对称的两个数字是2和5.(2)小丽站在镜子前,从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是21:01.【解答】解:(1)①是中心对称图形而不是轴对称图形的数字是2和5;②是轴对称图形,而不是中心对称图形的数字是3;③既是轴对称又是中心对称图形的数字是1,8,0;④能成中心对称的两个数字是6和9;⑤能成轴对称的两个数字是2和5.故答案为:2和5;3;1,8,0;6和9;2和5.(2)从镜子中看到镜子对面墙上挂着的电子钟上显示的读数如图所示,那么这时的实际时间是21:01,故答案为:21:01.15.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.【解答】解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.人教版九年级数学上册23.2.3关于原点对称的点的坐标一.选择题(共6小题)1.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)2.点P(5,﹣3)关于原点对称的点P'的横坐标是()A.5B.﹣5C.D.﹣3.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8 4.点P(m,2)关于原点O的对称点为P'(﹣3,n),则m、n的值为()A.m=3,n=2B.m=3,n=﹣2C.m=﹣3,n=2D.m=﹣3,n=﹣2 5.已知A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,再作点A1关于原点的对称点A2,则A2坐标为()A.(﹣1,3)B.(1,﹣3)C.(9,8)D.(﹣9,﹣8)6.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.二.填空题(共6小题)7.点M(1,﹣4)关于原点对称的点的坐标是.8.若点A(3,5)与点B(﹣3,n)关于原点对称,则n的值为.9.如果点P(x,y)关于原点的对称点为(2,3),则x+y=.10.在平面直角坐标中,点A(2,3)关于x轴的对称点是;关于y轴的对称点是;关于原点的对称点是.11.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.12.在平面直角坐标系中,点P(m2+1,﹣3)关于原点对称点在第象限.三.解答题(共3小题)13.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.14.如图,已知M(3,4),点N是点M关于原点的对称点,过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,求△MNP的面积.15.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.参考答案一.选择题(共6小题)1.点M(1,2)关于原点对称的点的坐标是()A.(﹣1,2)B.(1,2)C.(﹣1,﹣2)D.(﹣2,1)【解答】解:点M(1,2)关于原点对称的点的坐标是(﹣1,﹣2).故选:C.2.点P(5,﹣3)关于原点对称的点P'的横坐标是()A.5B.﹣5C.D.﹣【解答】解:点P(5,﹣3)关于原点对称的点P'的横坐标是:﹣5.故选:B.3.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8【解答】解:∵点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,y﹣5=﹣3,解得:x=﹣1,y=2,故选:A.4.点P(m,2)关于原点O的对称点为P'(﹣3,n),则m、n的值为()A.m=3,n=2B.m=3,n=﹣2C.m=﹣3,n=2D.m=﹣3,n=﹣2【解答】解:∵点P(m,2)关于原点O的对称点为P'(﹣3,n),∴m、n的值为:m=3,n=﹣2,故选:B.5.已知A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,再作点A1关于原点的对称点A2,则A2坐标为()A.(﹣1,3)B.(1,﹣3)C.(9,8)D.(﹣9,﹣8)【解答】解:∵A点坐标为(﹣4,5),将点A向右平移5个单位,再向下平移8个单位,得到点A1,∴点A1的坐标为:(1,﹣3),∵点A1关于原点的对称点A2,∴A2坐标为(﹣1,3).故选:A.6.若点P(a+1,a﹣2)关于原点对称的点位于第二象限,则a的取值范围表示正确的是()A.B.C.D.【解答】解:∵点P(a+1,a﹣2)关于原点的对称的点在第二象限,∴点P在第四象限,∴a+1>0,a﹣2<0,解得:﹣1<a<2,∴a的取值范围表示正确的是C.故选:C.二.填空题(共6小题)7.点M(1,﹣4)关于原点对称的点的坐标是(﹣1,4).【解答】解:M(1,﹣4)关于原点对称的点的坐标是(﹣1,4),故答案为:(﹣1,4).8.若点A(3,5)与点B(﹣3,n)关于原点对称,则n的值为﹣5.【解答】解:由点A(3,5)与点B(﹣3,n)关于原点对称,可得n=﹣5.故答案为:﹣5.9.如果点P(x,y)关于原点的对称点为(2,3),则x+y=﹣5.【解答】解:∵点P(x,y)关于原点的对称点为(2,3),∴x=﹣2,y=﹣3;∴x+y=﹣2﹣3=﹣5.故答案是:﹣5.10.在平面直角坐标中,点A(2,3)关于x轴的对称点是(2,﹣3);关于y轴的对称点是(﹣2,3);关于原点的对称点是(﹣2,﹣3).【解答】解:在平面直角坐标中,点A(2,3)关于x轴的对称点是(2,﹣3);关于y 轴的对称点是(﹣2,3);关于原点的对称点是(﹣2,﹣3).故答案为:(2,﹣3);(﹣2,3);(﹣2,﹣3).11.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是a<2.【解答】解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.12.在平面直角坐标系中,点P(m2+1,﹣3)关于原点对称点在第二象限.【解答】解:点P(m2+1,﹣3)关于原点对称点为(﹣m2﹣1,3),∵﹣m2﹣1<0,∴(﹣m2﹣1,3)在第二象限.故答案为:二.三.解答题(共3小题)13.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.【解答】解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.14.如图,已知M(3,4),点N是点M关于原点的对称点,过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,求△MNP的面积.【解答】解:如图所示:∵点N是点M关于原点的对称点,M(3,4),∴N(﹣3,﹣4),∴过点M作x轴的垂线,过点N作y轴的垂线,两条垂线相交于点P,∴△MNP的面积:6×8=24.15.如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(2,3),(4,3),嘴角左右端点的坐标分别是(2,1),(4,1).(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;(2)从对称的角度来考虑,说一说你是怎样得到的;(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.【解答】解:(1)左图案中的左眼睛坐标为(﹣4,3),右眼睛坐标为(﹣2,3),嘴角的左端点坐标为(﹣4,1),右端点坐标为(﹣2,1).(2)关于y轴对称的两个图形横坐标互为相反数,纵坐标不变;(3)(﹣2,﹣1),(﹣4,﹣1).。
人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图及应用
12.(梧州中考)如图,在菱形 ABCD 中,AB=2,∠BAD=60°,将菱 形 ABCD 绕点 A 逆时针方向旋转,对应得到菱形 AEFG,点 E 在 AC 上,EF 与 CD 交于点 P,则 DP 的长是___3__-__1______________.
13.(南宁中考)如图,在平面直角坐标系中,已知△ABC的三个顶点坐 标分别是A(1,1),B(4,1),C(3,3). (1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1; (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2; (3)判断以O,A1,B为顶点的三角形的形状.(无需说明理由)
解:(1)如图所示,△A1B1C1即为所求
(2)如图所示,△A2B2C2 即为所求 (3)三角形的形状为等腰直角三角形, OB=OA1= 16+1 = 17 ,A1B= 25+9 = 34 ,即 OB2+OA12= A1B2,因此以 O,A1,B 为顶点的三角形的形状为等腰直角三角形
14.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目 的.下面是一个案例,请补充完整. 原题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF= 45°,连接EF,则EF=BE+DF,试说明理由.
人教版
第二十三章 旋转
23.1 图形的旋转
第2课时 旋转作图及应用
知识点1:旋转作图 1.(教材P63习题7变式)观察下列图形,其中可以看成是由“基本图案” 通过旋转形成的有( D )
A.1个 B.2个 C.3个 D.4个
2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( D )
(1)思路梳理 ∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD 重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F,D,G共线. 根据___S_A__S_____,易证△AFG≌___△__A__F_E________,得EF=BE+DF; (2)类比引申 如图②,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在 边BC,CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D 满足等量关系____∠__B__+__∠__D_=__1_8_0_°_______时,仍有EF=BE+DF;
人教版九年级数学第二十三章第1节图形的旋转解答题 59含解析.docx
第二十三章第1节《图形的旋转》解答题(59)一、解答题1.如图(1),已知四边形ABCD和一点0,求作四边形ABCD,使它与四边形ABCD关于点0对称;如果把。
点移至如图(2)所示位置,又该怎么作图呢?2.如图,AABC是等边三角形,AABP旋转后能与△C3P'重合.P'(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP后,列/'是什么三角形?简单说明理由.3. 如图1,在菱形/WCD中,AC=2, BD = 2jL AC, BD相交于点0.(1)求边的长;⑵求ABAC的度数;⑶如图2,将一个足够大的直角三角板60。
角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60。
角的两边分别与边BC, CD相交于点E, F,连接EF.判断是哪一种特殊三角形,并说明理由.4. 已知抛物线y=ax2+bx-3a-5经过点A(2, 5)(1)求出a和b之间的数量关系.(2)巳知抛物线的顶点为D点,直线AD与y轴交于(0, -7)①求出此时抛物线的解析式;②点B为y轴上任意一点且在直线y=5和直线y=-13之间,连接BD绕点B逆时针旋转90。
,得到线段BC,连接AB、AC,将AB绕点B顺时针旋转90。
,得到线段BH.截取BC的中点F和DH的中点G.当点D、点H、点C三点共线时,分别求出点F和点G的坐标.5.如图1,在等腰RtZVIBC 中,ZBAC=90°, AB=AC=2,点、M 为BC中点.点P 为AB 边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90。
,得到线段PE,连接EC.A(P)(1) 当点P与点4重合时,如图2.①根据题意在图2中完成作图;②判断EC与BC的位置关系并证明.(2) 连接写出一个BP的值,使得对于任意的点。
总有EM=EC,并证明.6.如图,点D是等边△ABC内一点,将线段AD绕着点A逆时针旋转60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双休作业6(第23章全章)
(时间:60分钟 满分:100分)
一、选择题(每小题4分,共32分)
1.(2016·新疆)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,
A,C′在同一条直线上,则三角板ABC旋转的角度是( )
A.60° B.90° C.120° D.150°
2.(2016·郴州)下列生态环保标志中,是中心对称图形的是( )
A B C D
3.在平面直角坐标系中,点A(-2,1)与点B关于原点对称,则点B的坐标为( )
A.(-2,1) B.(2,-1)
C.(2,1) D.(-2,-1)
4.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于点E成中心对称,则对称
中心E点的坐标是( )
A.(3,-1) B.(0,0)
C.(2,-1) D.(-1,3)
第4题图
第5题图
5.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋
转60°,得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是( )
A.AE∥BC
B.∠ADE=∠BDC
C.△BDE是等边三角形
D.△ADE的周长是9
6.如图,△DEC是由△ABC经过了如下的几何变换而得到的:①以AC所在直线为对
称轴作轴对称图形,再以C为旋转中心,顺时针旋转90°;②以C为旋转中心,顺时针旋转
90°得△A′B′C′,再以A′C′所在直线为对称轴作轴对称图形;③将△ABC向下、向左平移1
个单位,再以AC的中点为中心作中心对称图形.其中正确的变换有( )
A.①② B.①③ C.②③ D.①②③
第6题图
第7题图
7.如图,点A,点B的坐标分别是(0,1),(a,b),将线段AB绕A旋转180°后得到
线段AC,则点C的坐标为( )
A.(-a,-b+1) B.(-a,-b-1)
C.(-a,-b+2) D.(-a,-b-2)
8.(2016·河南)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针
旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )
A.(1,-1)
B.(-1,-1)
C.(2 ,0)
D.(0,-2)
二、填空题(每小题4分,共32分)
9.由8时15分到8时40分,时钟的分针旋转的角度为________.
10.在英文大写字母H,K,J,L,M,N中,是中心对称图形的有________个.
11.已知点A(-y-15,-15-2x),点B(3x,9y)关于原点对称,则x的值是______,
y的值是______.
12.如图,阴影部分组成的图案既是关于x轴成轴对称的图形,又是关于坐标原点O
成中心对称的图形.若点A的坐标为(1,3),则点M和点N的坐标分别为M________,
N________.
第12题图
第13题图
13.如图,△ABO中,AB⊥OB,AB=3,OB=1,把△ABO绕点O旋转120°后得
到△A1B1O,则点A1的坐标为____________.
14.如图,矩形OABC在平面直角坐标系中,OA=4,OC=2,经过点P(-1,0)的直
线将矩形OABC的面积两等分,则此直线的解析式为____________.
第14题图
第15题图
15.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C旋转
得到△EDC,使点D在AB边上,斜边DE交AC边于点F,则图中△CDF的面积为________.
16.(2016·西宁)如图,已知正方形ABCD的边长为3,点E,F分别是AB,BC边上的
点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长
为________.
三、解答题(共36分)
17.(8分)如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD,BC
于点E,F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请
说明理由.
18.(8分)如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D
1
,D
三点的坐标分别是(0,4),(0,3),(0,2).
(1)求对称中心的坐标;
(2)写出顶点B,C,B1,C1的坐标.
19.(8分)(2016·攀枝花)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是
A(-3,1),B(0,3),C(0,1).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;
(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.
20.(12分)如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作
正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于
360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以
证明;如果不成立,请说明理由;
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.