金属矿山酸性废水形成机理及治理现状10700字

合集下载

采矿业中的矿山水环境保护与治理

采矿业中的矿山水环境保护与治理

采矿业中的矿山水环境保护与治理在采矿业发展的同时,矿山水环境保护和治理成为了一个重要的议题。

随着工业化进程的加速,矿山活动对水资源的利用和水环境的破坏问题日益突出。

本文将探讨采矿业中的矿山水环境保护与治理,并提出相应的对策。

一、矿山水环境问题的产生原因首先,矿山活动导致水资源过度开发和污染。

矿山企业对水资源的需求相对较大,为了保证生产的连续性,常常会大量开采地下水或者河水。

这导致了水资源的过度开发,使得周围地区的水源逐渐枯竭或者水位下降。

其次,矿山开采过程中产生的废水和尾矿渣对周围水环境造成了严重污染。

矿山废水中含有大量的重金属、有机物和悬浮物,这些物质对水体生态系统和人体健康都具有一定的危害。

而尾矿渣是矿山开采后产生的固体废弃物,其中的黄铁矿等硫化物在暴露于空气中时容易产生酸性,并通过降雨引起酸性洗渣,造成水体酸化。

最后,矿山活动对地下水位和地下水冲击区产生了一定的影响。

矿山开采过程中,常常需要进行长时间和大量的抽水工作,使得地下水位下降,给周围的生态系统和农田灌溉带来了一定的影响。

此外,地下水冲击区的形成,也可能导致地下水与地表水的交互作用不稳定,进一步加剧了矿山水环境的问题。

二、矿山水环境保护与治理的对策为了解决矿山水环境问题,必须采取一系列的保护与治理措施。

首先,建立健全的水资源管理制度和监管体系。

政府应加强对矿山企业的监管,建立完善的许可和审批制度,规定矿山开采过程中对水资源的利用和消耗情况,确保矿山企业合理使用水资源。

其次,加强矿山废水和尾矿渣的处理和回收利用。

矿山企业应配备先进的废水处理设备,对废水进行综合处理,减少污染物的排放。

同时,尾矿渣可以通过高效的固液分离和干浸法等技术进行处理,以减少对水环境的影响。

此外,需要加强矿山周边水环境监测和预警工作。

通过对矿山周边水质和水量进行定期监测,及时发现和处理异常情况,预警和避免水环境问题的发生。

最后,加强科研与技术创新。

开展与矿山水环境治理相关的科研项目,推动科研成果的转化和应用。

锑矿采选废水生产现状及治理措施

锑矿采选废水生产现状及治理措施

锑矿采选废水生产现状及治理措施锑矿采选废水是指在锑矿采选过程中产生的废水。

由于锑矿的采选过程中会使用大量的水,水中还会溶解出大量的废矿石、废石灰及其他有毒有害物质,这些废水如果未经处理直接排放,会对周围的环境和居民的健康造成严重影响。

治理锑矿采选废水已成为当今环境保护工作的重点之一。

本文将就锑矿采选废水的生产现状及治理措施进行探讨。

一、锑矿采选废水生产现状锑矿采选废水主要来源于矿石的洗选、破碎、磨矿和浮选过程中使用的大量水以及矿产中的有毒有害物质溶解在水中形成的废水。

据统计,每年中国锑矿采选废水排放量高达数亿吨,其中含有大量的砷、铅、锑等重金属物质,且浓度较高,对土壤、水体和生态环境造成了不可忽视的破坏。

锑矿采选废水对生态环境和人类健康造成的影响主要表现在以下几个方面:1. 土壤污染:锑矿采选废水中的重金属物质会渗透到土壤中,导致土壤酸化、结构松散、营养物质流失、微生物死亡等现象,进而影响植物的生长和土壤功能。

2. 水体污染:锑矿采选废水直接排放或渗漏至河流、湖泊等水体,其中的有毒有害物质会对水生生物造成毒害,破坏水生生态系统的平衡。

3. 生活环境污染:锑矿采选废水中的有害物质会通过大气降尘、水体渗透等方式进入周围的居民生活环境中,对人们的健康造成风险。

二、锑矿采选废水治理措施为了减轻锑矿采选废水对环境的影响,降低对周围居民的健康风险,各地政府和企业采取了一系列的治理措施。

1. 加强监管:政府应加强对锑矿采选过程中废水排放的监管力度,通过建立监控站点、加大执法力度等手段,严格控制锑矿采选废水的排放标准,确保废水排放符合环境保护要求。

2. 技术改造:锑矿企业应加强技术改造,采用节水、减排、循环利用等技术手段,减少废水的产生,降低锑矿采选废水的排放量。

3. 建设治理设施:政府和企业应建设锑矿采选废水处理设施,对废水进行集中处理,采用化学沉淀、生物降解等方法,去除废水中的有毒有害物质,净化废水后再排放或循环利用。

矿山酸性废水与土壤重金属污染治理

矿山酸性废水与土壤重金属污染治理

矿山酸性废水与土壤重金属污染治理纪鸣洛摘要:随着现代化工业的迅猛发展,越来越多的矿山被开采,正是这种矿业活动成为了矿山废水和重金属污染的主要来源,本文总结了国内外矿山废水和重金属污染现状,并对矿山废水和重金属污染的主要来源及危害进行了分析,并针对目前矿山废除治理的中和法、土壤重金属修复的物理、化学、物理化学、生物等技术及其特点进行了综述。

关键词:矿山废水处理中和法重金属土壤污染治理方法0.引言矿产资源是人类文明必需的物质基础。

在矿产开发利用过程中不可避免地要破坏和改变自然环境,产生各种污染物质,污染大气、水体及土壤,给生态环境和人体健康带来诸多不利影响。

事实证明,一些国家或地区的环境污染状况,在某种程度上总是与其矿产资源消耗水平相一致。

矿山废水以及重金属是矿山环境的主要污染源,消除矿山酸性废水以及重金属污染的危害已成为开采矿山时必须要考虑的问题1.1 矿山废水的成分及危害矿山废水是从采掘场、选矿厂、尾矿坝、排土场以及生活区等地排出废水的统称。

开采、选矿、运输、防尘及防火等诸多生产及辅助工艺均需要使用大量的水,这些矿山废水排放量大、持续性强,对环境污染严重。

矿山废水中的主要污染成分包括有机和油类污染物、氰化物、酸和重金属污染、氟化物和可溶性盐类。

除此之外,还有热污染、水的浊度污染以及固体悬浮物和颜色变化等污染形式。

矿山废水中有机污染物是指其中所含的碳水化合物、蛋白质、脂肪和木质素等有机化合物。

油类污染物是矿山废水中较为普遍的污染物,当水面油膜厚度在10-4cm以上时,它会阻碍水面的复氧过程,阻碍水分蒸发和大气与水体间的物质交换,改变水面的发射率和进入水面表层的日光辐射,对局部区域气候可能造成影响,主要是影响鱼类和其它水生物的生长繁殖。

矿山废水中的重金属主要有: Hg、Cr、Cd、Pb、Zn、Ni、Cu、Co、Mn、Ti、V、Mo和Bi等。

被重金属污染的矿山废水排入农田时,除流失一部分外,另外部分被植物吸收,剩余的大部分在泥土中聚积,当达到一定数量时,农作物就会出现病害。

矿山酸性废水怎么处理

矿山酸性废水怎么处理

矿山酸性废水主要是由还原性的硫化矿物在开采、运输、选矿及废石排放和尾矿贮存等过程中经空气、降水和菌的氧化作用形成的。

矿山酸性废水水量较大、pH值较低、含高浓度的硫酸盐和可溶性的重金属离子。

矿山酸性废水的处理方法主要分为中和法和微生物法2种。

中和法是最常用的方法,即向酸性废水中投加碱性中和剂(碱石灰、消石灰、碳酸钙、高炉渣、白云石等),一方面使废水的pH值提高,另一方面废水中的重金属离子与中和剂发生化学反应形成氢氧化物沉淀、去除水体中的重金属离子。

为了提高处理效果,中和法通常与氧化或曝气过程(如将Fe2+转变为Fe3+)相结合使用。

王洪忠等人利用中和法对排入孝妇河的矿山酸性废水进行处理,出水pH值达到7.5,硫酸根和总铁含量为微量。

陈喜红对江西万年银金矿矿山废水采用中和法处理,出水水质指标优于农灌用水标准。

银山铜锌矿采用两段石灰中和法处理矿山酸性废水得到含锌量达40%的锌渣。

栅原矿山和平水铜矿分别采用分段中和沉淀法处理酸性废水,有效地回收了有价金属。

微生物法是利用自然界中的硫循环原理,利用硫酸盐还原菌通过异化硫酸盐的生物还原反应,将硫酸盐还原成H2S,并利用某些微生物将H2S氧化为单质硫,同时重金属离子在微生物体内“积累”起来。

国外应用微生物法处理矿山酸性废水的实例较多,如美国蒙大拿州对某矿山酸性废水建立(硫化还原菌)处理系统,出水pH值达到7,Fe,Al,Cd和Cu的去除率也较高。

随着科学的进步,矿山酸性废水的处理技术不断得到新的发展,如湿地处理法、生物膜吸附处理法和生化材料过滤法等。

对于含硫酸根的酸性废水,国内多采用以石灰乳为中和剂的一段中和法,但是如果酸性废水的pH值较低,采用石灰乳为中和剂的一段中和法,一方面治理每吨废水需要的石灰量较大、处理成本较高;另一方面将产生大量的废渣,给环境带来潜在的二次污染风险。

因此,国内许多学者试图探索新的处理方法,以达到在环境保护目标的基础上,减少处理成本、节约处理费用。

矿山水土流失原因及相关治理措施探讨

矿山水土流失原因及相关治理措施探讨

矿山水土流失原因及相关治理措施探讨矿山水土流失是当今世界上最为严重的环境问题之一,它严重破坏了矿山生态,危害了人类健康,引发了社会和政治不稳定。

矿山水土流失的主要原因是矿山开采造成的生态破坏、土壤侵蚀和水资源消耗。

治理矿山水土流失,需要采取一系列的措施,包括强化环境管理、加强科研技术支持、落实企业责任等方面。

一、矿山开采与生态破坏矿山的开采会直接破坏当地的生态环境,进一步诱发土壤侵蚀和水资源浪费。

矿山内地面上的植被和草本植物被割断、炸毁、捣毁,原本的地表水域被抹平、填埋,然后形成了矿山的裸露地面和堆放的材料。

裸露地面容易导致水土流失,矿山遗留物的搬运和堆放也会给环境造成不可逆转的影响。

原本繁茂的植被和树木消失后,土壤解构力下降,水分流失,令土壤脆弱不堪。

另外,矿场的水污染更是一大问题,尤其是大型金属矿山在稀有金属提取过程中会释放出许多的危险物质,再加上人的日常洗涤、处理污水等原因,使得矿山周边的地下水被污染。

治理建议针对以上问题,治理矿山水土流失,应首先严格限制矿业的规模和产量,减少矿山开采对当地环境和生态系统的破坏。

同时,重视矿业的环境管理和监管,推广矿业企业自主负责的原则,落实生态环保法规和规范,保护当地的水土资源和生态环境。

二、土壤侵蚀导致水土流失除矿山开采外,土壤侵蚀也是引发矿山水土流失的重要原因之一。

尽管土地似乎是稳定不动的,但任何人工干扰土地的行为都可能导致土地侵蚀,从而引发水土流失。

其中自然要素变化、自然灾害、人为因素影响都是土壤侵蚀的主要原因。

治理建议治理矿山水土流失,针对土壤侵蚀问题,必须采取一些措施,比如树种的重复种植,降低土壤蒸发,提高土壤水分含量,建立土地保护机制,实施草地恢复计划等。

此外,进行排水、排泥和排砂,是防止水土流失的必要手段,只有有效控制水量和土壤酸度,才能保持生态平衡,保障当地的水资源。

三、水资源浪费导致水土流失水资源的大量消耗也是导致矿山水土流失的重要原因之一。

金属冶炼废水处理与治理

金属冶炼废水处理与治理

化学吸附法
利用吸附剂将废水中的有害物质吸附 在表面,达到净化废水的目的。
生物处理技术
活性污泥法
利用活性污泥中的微生物群体对 废水中的有机物进行降解和转化
,达到净化废水的目的。
生物膜法
通过在生物反应器中培养生物膜, 利用生物膜对废水中的有机物进行 降解和转化,达到净化废水的目的 。
厌氧生物处理法
利用厌氧微生物对废水中的有机物 进行厌氧发酵和产酸,达到净化废 水的目的。
CHAPTER
02
金属冶炼废水处理技术
物理处理技术
沉淀法
通过降低废水中悬浮颗粒的比 重,使其自然沉淀或投加药剂 后沉淀,达到去除悬浮物的目
的。
过滤法
通过过滤介质(如砂、活性炭 等)去除废水中的悬浮物和胶 体物质,实现固液分离。
浮选法
利用气泡将废水中的微小悬浮 颗粒吸附并浮至水面,达到去 除悬浮物的目的。
废水治理效果。
CHAPTER
04
金属冶炼废水处理与治理的未 来展望
新技术研发与应用
01
02
03
04
高级氧化技术
利用强氧化剂将有机物转化为 无害物质,如臭氧、过氧化氢
等。
生物技术
利用微生物降解有机物,如厌 氧、好氧生物反应器等。
膜分离技术
利用膜的渗透性分离不同物质 ,如反渗透、超滤等。
纳米技术
利用纳米材料和纳米技术提高 废水处理效率。
CHAPTER
03
金属冶炼废水治理实践
废水治理流程设计
废水分类收集
预处理
根据废水来源和污染物种类,将废水进行 分类收集,以便有针对性地进行处理。
通过物理、化学或生物方法去除废水中的 大颗粒物、油脂和重金属等杂质,为后续 处理创造有利条件。

金属冶炼过程中的废水治理与资源化


悬浮物,处理难度大。
高盐、高浓度的废水
02
金属冶炼废水中的盐分和浓度较高,对生物处理和后续处理产
生较大影响。
排放标准严格
03
随着环保要求的提高,金属冶炼废水的排放标准日趋严格,需
要更高效的处理技术。
技术发展趋势与展望
新型处理技术的研发
针对金属冶炼废水的特点,研发高效、低成本的新型处理技术, 如高级氧化、电化学、膜分离等。
金属冶炼过程中的废水治理与资源化
汇报人:可编辑 2024-01-06
目 录
• 金属冶炼废水概述 • 金属冶炼废水治理技术 • 金属冶炼废水治理资源化 • 金属冶炼废水治理与资源化的挑战与展望
01
金属冶炼废水概述
金属冶炼废水的来源与特点
金属冶炼废水的来源
金属矿石的开采、选矿、烧结、炼焦 、炼铁、炼钢等生产过程中都会产生 大量的废水。
资源化利用
通过废水治理,将有价值的金属元素回收利用,减少资源浪费, 同时降低废水处理成本。
智能化监控与管理
利用物联网、大数据等信息技术,实现对金属冶炼废水治理过程 的智能化监控与管理,提高处理效率。
THANKS
感谢观看
生物法
活性污泥法
利用活性污泥中的微生物对废水 中的重金属离子进行吸附和转化 ,从而达到净化的目的。
生物膜法
利用生物膜上的微生物对废水中 的重金属离子进行吸附和转化, 从而达到净化的目的。
生物修复法
利用特定的植物或微生物对废水 中的重金属离子进行吸收、转化 或固定,从而达到净化的目的。
03
金属冶炼废水治理资源化
大气污染
废水中挥发性有害气体释放到大气中,会对大气环境造成污染,影 响人类健康。

矿山废水对环境的污染及治理

矿山废水对环境的污染及治理
硫铁矿遇水很快就生成酸性水,如对云浮硫铁矿矿山常年观测,废石场和大台水库的pH
值年平均在3.5左右。

云浮硫铁矿矿山采取了严格控制酸性水的措施,积极治理酸性水,在生产的全过程加强管理,加强综合治理。

对污染源的预防是治本的措施,对采场和废石场的来水进行拦截,减少产生酸性水的量;封闭矿石表面,隔绝与空气和水分的接触;选矿合理配矿,以减少酸性水的产生。

尽管采取一些综合治理方法,但酸性水的产生仍不可避免,云浮硫铁矿矿山对简单型酸性水的治理,是采用倒锥型旋流池石灰石粉一段中和酸性水工艺。

可将水质pH从3.0升至6.5左右,再经多级平流式沉淀池澄清,水质完全能达到国家工业污水排放标准。

对复杂型酸性水(锰、锌、铁的含量特别高的酸性水)采用两段中和工艺,即第一段采用倒锥旋流池石灰石粉中和,pH由3.0上升至4.5左右,第二段投生石灰用滚筒或搅拌槽中和处理,经平流式沉淀式澄清后排放。

一般矿山的酸性水用石灰乳中和处理达标排放,目前绝大部分硫铁矿选矿采用碱性流程浮选,这既可避免酸对设备的腐蚀,同时选矿废水为碱性水,与地下酸性水中和后达标排放。

有的选矿工艺需要加硫酸,利用地下酸性水可省去部分硫酸的用量,降低选矿成本,又合理利用了部分酸性水,也是较为合理的方法,但要保证选矿的工艺指标。

采矿业中的矿山废水处理与利用

采矿业中的矿山废水处理与利用随着采矿业的发展,矿山废水排放问题日益突出。

由于矿山废水的复杂性和危害性,对其进行有效的处理和利用是保护环境的关键。

本文将探讨采矿业中矿山废水处理与利用的相关问题,并提出可行的解决方案。

一、矿山废水的特点与危害矿山废水是指在矿山生产过程中形成的含有各种有机物、无机物、悬浮物和重金属等污染物质的水体。

其主要特点如下:1. 多种污染物:矿山废水中含有多种有机物、无机物、悬浮物和重金属等污染物,具有较高的毒性和危害性。

2. 高浓度:矿山废水中污染物浓度较高,直接排放会对周围环境造成严重污染。

3. 大量排放:采矿业是一个高耗水行业,每年产生大量的矿山废水,给水资源造成了巨大压力。

矿山废水对环境和人类健康的危害主要表现在以下几个方面:1. 土壤污染:矿山废水中的重金属等有害物质会渗透入土壤,破坏土壤结构,影响植物生长和农作物质量。

2. 水源污染:矿山废水直接排放到河流、湖泊等水源中,污染了水质,危害饮用水安全和水生态系统。

3. 生物毒性:矿山废水中的有害物质会对水中的生物产生剧毒作用,破坏水生生态系统,导致生物大量死亡。

二、矿山废水处理技术为了减少矿山废水的危害,保护环境,采矿业需要采取适当的废水处理技术。

以下是一些常用的矿山废水处理技术:1. 物理处理:物理处理技术主要包括沉淀、过滤、吸附等方法,通过去除矿山废水中的悬浮物和颗粒污染物来提高水质。

2. 化学处理:化学处理技术主要包括氧化、还原、络合等方法,通过添加化学药剂来降解有机物和去除重金属等有害物质。

3. 生物处理:生物处理技术通过利用微生物降解有机物及改变废水中的pH值等方式来改善水质,常用的方法有好氧处理和厌氧处理。

以上的处理技术可以根据矿山废水的特点和要求进行组合使用,达到更好的处理效果。

三、矿山废水的利用途径除了进行废水处理,矿山废水还可以通过适当的利用途径得到合理的利用,以减少对水资源的消耗。

以下是一些常见的矿山废水利用途径:1. 再生利用:经过处理的矿山废水可以用于矿山的生产过程中,如用于矿山降尘、矿井排涝等,实现废水的再利用,减少对清洁水资源的需求。

采矿业中的矿山废水处理与利用

采矿业中的矿山废水处理与利用矿山废水处理与利用是采矿业可持续发展的重要环节。

随着我国矿业经济的快速发展,对环境保护的要求也越来越高。

本文将就采矿业中的矿山废水处理与利用进行探讨,分析其意义与挑战,并提出相应的解决方案。

一、矿山废水的特点与危害矿山废水是指在矿山开采、选矿以及冶炼过程中产生的含有大量污染物质的水体。

其主要特点包括高浓度、复杂性、多样性等。

矿山废水中常含有有害金属离子、固体颗粒物、酸性物质等,对土壤、水体以及生物造成严重污染。

除了直接的环境危害,矿山废水还对人类健康构成威胁。

废水中的有害物质可能通过地下水、地表水等途径进入人体,引起各种疾病。

因此,矿山废水的处理与利用是非常紧迫且必要的。

二、矿山废水处理技术与方法为了解决矿山废水处理问题,针对不同的矿种和废水特点,研发了一系列的废水处理技术与方法。

1. 硬质废水处理技术硬质废水指含有多种金属离子、固体悬浮物等的矿山废水。

主要的处理方法包括沉淀、过滤、离子交换等。

沉淀法通过加入沉淀剂,使废水中的固体颗粒物沉淀下来,达到净化废水的目的。

过滤法通过滤材的筛选,将废水中的颗粒物拦截下来。

离子交换则是通过树脂等材料对废水中的金属离子进行吸附和交换,使其得到去除。

2. 酸性废水的处理技术酸性废水是指含有酸性物质的矿山废水,如硫酸、盐酸等。

酸性废水处理的方法包括中和法、逆渗透法等。

中和法是通过向废水中加入碱性物质,将废水的酸性中和为中性或碱性溶液,减少对环境的危害。

逆渗透法则是利用半透膜,将废水中的酸性物质和杂质截留住,使得废水的纯净度得到提高。

三、矿山废水的综合利用对于矿山废水的处理与利用,纯粹的治理是不够的,还需要将废水中的有用物质进行回收与利用。

1. 废水中金属离子的回收矿山废水中含有大量的金属离子,如铜、锌等。

通过适当的处理方法,可以将这些金属离子从废水中回收出来,用于再生资源的开发与利用。

这不仅可以减少废水对环境的污染,还可以实现资源的循环利用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属矿山酸性废水形成机理及治理现状10700字简介:含硫金属矿山在开采过程中,由于空气、水、微生物的作用,生成酸性废水。

这些酸性废水不但ph低、酸度大,而且含有大量的有毒、有害重金属。

现在普遍采用的是石灰中和法治理,相比其它处理工艺离子交换、吸附法、生物法、电化学处理技术,石灰中和法工艺简单、可靠、处理成本低,而且由于石灰中和法长时间的应用,其处理技术逐渐的成熟、完善。

本文对金属矿山酸性废水形成机理和治理技术进行了讨论、分析,对普遍采用的石灰中和法的各处理工艺进行了着重比较、分析。

金属矿山矿体酸性废水的产生主要是开采金属矿体矿石中含有硫化矿,硫化矿在自然界中分布广、数量多,它可以出现于几乎所有的地质矿体中,尤其是铜、铅、锌等金属矿床[1],这些硫化矿物在空气、水和微生物作用下,发生溶浸、氧化、水解等一系列物理化学反应,形成含大量重金属离子的黄棕色酸性废水,这些酸性水ph一般为2~4,成份复杂含有多种重金属,每升水中离子含量从几十到几百毫克;同时废水产生量大,一些矿山每天酸水排放量为几千甚至几万m3,且水量、水质受开采情况,及不同季节雨水丰沛情况不同而变化波动较大,这些酸性重金属废水的存在对矿区周围生态环境构成了严重的破坏。

针对矿山酸性废水特点的处理技术的研究已有很大发展,但各处理工艺各有特点一、形成机理分析金属矿山酸性废水的形成机理比较复杂,含硫化物的废石、尾矿在空气、水及微生物的作用下,发生风化、溶浸、氧化和水解等系列的物理化学及生化等反应,逐步形成含硫酸的酸性废水。

其具体的形成机理由于废石的矿物类型、矿物结构构造、堆存方式、环境条件等影响因素较多,使形成过程变的十分复杂,很难定量研究说明[1]。

一些研究资料[2]表明,黄铁矿(fes2)是通过如下反应过程被氧化的:fes2+2o2-fes2(o2)2(1)fes2(o2)2-feso4+s0(2)2s0+3o2+2h2o-2h2so4(3)上式表明元素硫是黄铁矿氧化过程中的中间产物。

而另有研究则认为其氧化反应过程是通过下式进行的,即:(1)在干燥环境下,硫化物与空气中的氧气起反应生成硫酸亚铁盐和二氧化硫,在此过程中氧化硫铁杆菌及其它氧化菌起到了催化作用,加快了氧化反应速度:fes2+3o2-feso4+so2(4)在潮湿的环境中,硫化物与空气中的氧气、空气土壤中的水分共同作用成硫酸亚铁盐和硫酸。

2fes2+7o2+2h2o-2feso4+2h2so4(5)反应(4)、(5)为初始反应,反应速度很慢。

据中科院1993年的调研资料[3]证明矿物中的硫元素在初始氧化过程以四价态为主,反应过程(5)可以表示为:2fes2+5o2+2h2o-2feso3+2h2so32feso3+o2-2feso42h2so3+o2-2h2so4(2)硫酸亚铁盐在酸性条件下,在空气及废水中含氧的氧化作用下,生成硫酸铁,在此过程中氧化铁铁杆菌及其它氧化菌起到了催化作用,大大加快了氧化反应过程:4feso4+2h2so4+o2-2fe2(so4)3+2h2o(6)反应(6)是决定整个氧化过程反应速率的关键步骤。

(3)硫酸铁盐同时还可以与fes2及其它金属硫化矿物发生氧化反应过程,形成重金属硫酸盐和硫酸,促进了矿物中其它重金属的溶解及酸性废水的形成。

7fe2(so4)3+fes2+8h2o-15feso4+8h2so4(7)2fe2(so4)3+ms+2h2o+3o2-2mso4+4feso4+2h2so4(8)(其中m表示各种重金属离子)反应(7)、(8)反应速度最快,但是取决于反应(6),也即亚铁离子的氧化反应速率。

(4)硫酸亚铁盐中的fe3+,同时会发生水解作用(具体水解程度与废水的ph大小有关),一部分会形成较难沉降的氢氧化铁胶体,一部分形成fe(oh)3沉淀,其反应方程式如下:fe2(so4)3+6h2o-2fe(oh)3(胶体)+3h2so4(9)fe2(so4)3+6h2o-2fe(oh)3↓+3h2so4(10)二、金属矿山酸性废水治理现状2.1石灰/石灰石中和沉淀法[6]中和沉淀法是处理矿山酸性废水最常用的方法,该方法主要是通过投加碱性中和剂,提高矿山酸性废水的ph,并使废水中的重金属离子形成溶度积较小的氢氧化物或碳酸盐沉淀。

常用的中和剂有生石灰(cao)、石灰乳(ca(oh)2)、石灰石(caco3)、白云石(caco3、mgco3)、电石渣(ca(oh)2)、mg(oh)2等,此类方法可在一定ph值条件下去除多种重金属离子,具有工艺简单、可靠、处理成本低等特点。

工程上较为常用的中和沉淀法为石灰/石灰石中和沉淀法,根据其具体方法的不同,石灰/石灰石处理方法又具有不同的处理工艺、系统。

(1)水塘处理工艺水塘处理系统(pondtreatment)是矿山酸性废水与生石灰混合进入反应沉淀池,进行中和反应,中和泥渣沉降,上层澄清水外排。

反应沉淀池一般是考虑两段设计,第一段主要用作反应沉降,水面较深,底泥要定期清理,第二段主要用作进一步沉降,增强出水水质(图2-1为水塘处理工艺)。

此处理工艺简单可靠、工程投资及运行费用低,且能较好的适应水量、水质的变化。

但由于处理系统没有考虑控制问题,在处理过程中可能要出现一些问题,例如处理过程中由于没有混合反应设备反应时间及混合不均匀导致一部分铁离子不能被充分氧化,但如果添加曝气系统,会对污泥对沉降性能产生影响。

另外水塘一般地势低洼,处理出水及底泥到排放需要添加动力提升设备,将会加大能耗,增加处理运行成本。

同时在处理过程中天气对处理出水水质有重要影响,水塘的塘面比较大,较大的风力会引起搅动,影响出水水质。

水塘处理系统最大的不利条件是中和药剂石灰的利用率比较低,低于50%,为提高石灰的利用率可以考虑建立底泥回流系统,把一部分中和污泥用机械设备输送回处理系统,这样不但能提高石灰的利用率,而且提高污泥的浓度,从而可以降低处理运行成本。

图2-1水塘处理工艺(2)基坑连续/批处理系统基坑连续/批处理系统(pittreatment)类似与水塘处理工艺,但在水塘处理工艺的基础上添加泵入、泵出设备,反应过程的混合作用增加了中和药剂石灰的效率。

批处理过程是矿山酸性废水在中和反应器中与配置的石灰乳液混合,发生中和反应,使重金属离子以形成相应的氢氧化物沉淀,在此过程中可以添加絮凝剂,一段处理出水自流进入基坑,在其中进行絮凝沉降,基坑上层清液通过浮动泵泵入二段中和反应器,通过添加硫酸调节ph值,使其达到出水限制要求,二段反应器最终出水达标排放。

图2-2为某基坑连续/批处理工艺系统图。

图2-2基坑连续/批处理系统基坑连续/批处理系统运作的关键是保证浮动泵泵出的是基坑内表面澄清液。

泵入泵出基坑的水量是变化的,基坑内的水面高度同时也是波动的,整个处理过程可以连续进行也可以进行批处理操作。

虽然基坑连续/批处理工艺系统相比水塘处理工艺能较好的提高中和药剂石灰的利用率,但是同样面临着中和ph不易控制,中和污泥沉降效果不佳等问题。

(3)传统处理工艺传统处理工艺(conventionaltreatmentplant)矿山酸性废水进入石灰中和反应池,进行中和反应,通过控制反应池ph使废水中的重金属以氢氧化物沉淀的形式去除,处理出水经投加絮凝剂后进入澄清池,进行泥水分离,上层清夜达标外排,底泥从澄清池底部泵入污泥池或者压滤机进行进一步的处理、处置。

但是通常要添加砂滤池或者其它过滤澄清设备,对溢流出水进行进一步处理,除去剩余的悬浮物、杂质,以提高出水水质。

图2-3传统处理工艺江西德兴铜矿、永平铜矿及拟建中的铜陵化工集团新桥矿业公司的污水处理系统均采用传统处理工艺。

此处理工艺简单可靠,处理运行费用低,在德兴铜矿、永平铜矿废水治理过程中取得了较好的废水处理效果,处理出水均可达到相应的国家排放标准。

虽然与水塘处理工艺及基坑连续/批处理工艺相比具有较好的石灰利用效率,但是与hds底泥循环处理技术相比石灰的利用率还是较低。

同时hds底泥循环处理技术污泥的固含量可以达到20%,而传统处理工艺污泥的固含量不到5%,同时hds处理技术在防止由于石膏的生成造成管道堵塞问题,而且hds污泥回流工艺与传统处理工艺相比仅增加了底泥回流系统对整个工程投资及运行费用来说仅占较小的比例。

(4)简易底泥回流工艺简易底泥回流技术(simplesludgerecycle),这项处理技术没有被申请专利,其成果也没有被广泛发布,但是在一些地方也得到应用。

主要是因为其增加了底泥回流系统,如图2-4。

此种处理工艺与传统处理工艺相比有较多的优点:1)缩小了反应器容积2)提高了污泥的沉降性能3)提高了石灰的利用率,降低药剂石灰的用量4)增加底泥浓度关键点是简易底泥回流工艺底泥浓度明显的高于水塘处理系统和传统处理系统,其污泥固含量可达到15%,低于hds处理技术的20%,但相对水塘处理工艺及传统处理工艺产生的污泥固含量的不足1%、5%来说是一个重大的提高。

但从整个工艺流程来说,简易底泥回流技术省略了hds处理技术中的混合池,从处理设施基建投资及运行费用方面来说是简易底泥回流技术较hds处理技术具有低的基建投资及运行成本。

图2-4简易底泥处理工艺(5)hds处理技术与简易底泥回流系统不同,hds处理方法(thehighdensitysludgeprocess),增加了石灰/污泥混合池,澄清池回流底泥与中和药剂石灰在混合池(lime/sludgemixtank)中混合,此过程可以促进中和药剂石灰颗粒在回流沉淀物上的凝结,从而增加沉淀颗粒粒径和污泥密度,同时通过石灰的添加调节混合池ph值。

混合池混合反应物溢流进入快速反应池(rmt)与酸性废水发生中和反应,中和污泥溢流进入中和反应池,完成进一步的中和反应。

通常反应过程中要鼓入空气进行曝气,氧化中和废水中的亚铁,提高出水水质。

中和反应池溢流水进入絮凝池,通过加入絮凝剂使中和污泥形成絮体,提高在澄清池中的沉降性能。

澄清池沉降污泥一部分外排进行处理处置,一部分进入底泥循环系统,进一步循环利用。

图2-5为hds工艺处理系统。

图2-5hds处理工艺系统hds处理技术在世界范围内的多数矿山都有广泛的应用,国内,江西德兴铜矿为解决传统处理工艺在实际应用过程中,出现的管道结、底泥含水率高等问题,通过国际招标,选择与加拿大pra公司合作,开展了利用hds技术处理矿山酸性废水的现场试验研究,已经取得了较好的效果,底泥浓度可控制在25%~30%,当so42-离子浓度大于25g/l时,整个试验工艺流程不存在结垢现象,生产实践中可有效的延长设备的使用周期[11]。

图2-6显示了不同的hds处理工艺系统,称为theheathsteele处理技术,与hds处理系统不同,heathsteele 处理系统没有快速混合池和絮凝池。

相关文档
最新文档