专题检测(一) 集合与常用逻辑用语

合集下载

专题01 集合与常用逻辑用语专项高考真题总汇(带答案与解析)

专题01 集合与常用逻辑用语专项高考真题总汇(带答案与解析)

专题01集合与常用逻辑用语1.【2021·浙江高考真题】设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【解析】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.【2021·全国高考真题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .3.【2021·全国高考真题(理)】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.4.【2021·全国高考真题(理)】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.5.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.6.【2021·全国高考真题(理)】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .7.【2021·全国高考真题(理)】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .8.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.9.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B = ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.10.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为A .2B .3C .4D .6【答案】C 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.11.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩ðA .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知{}2,1,1U B =--ð,则(){}U 1,1A B =- ð.故选C .【点睛】本题主要考查补集运算,交集运算,属于基础题.12.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】【分析】根据交集定义直接得结果.【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D .【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.13.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选A .【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.14.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U .故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.15.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则P I Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<【答案】B 【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q ==I I .故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.16.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选B.【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.17.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得π(1)k k αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)k k αβ=+-.所以,“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的充要条件.故选C .【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.18.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<,则{|22}M N x x =-<< .故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.19.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞ .故选A .【名师点睛】本题考点为集合的运算,为基础题目.20.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =- .故选A .【名师点睛】本题考查了集合交集的求法,是基础题.21.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B = A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C = ,所以(){1,2,3,4}A C B = .故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.22.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =- ð.故选A.【名师点睛】注意理解补集、交集的运算.23.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.24.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<,易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围.25.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.26.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.27.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2A B =I .故答案为{}0,2.【点睛】本题考查了交集及其运算,是基础题型.28.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.29.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B = .【名师点睛】本题主要考查交集的运算,属于基础题.。

第一章 集合与常用逻辑用语【压轴题专项训练】(原卷版)

第一章 集合与常用逻辑用语【压轴题专项训练】(原卷版)

第一章集合与常用逻辑用语【压轴题专项训练】一、单选题1.对于非空数集M ,定义()f M 表示该集合中所有元素的和.给定集合{2,3,4,5}S =,定义集合(){},T f A A S A =⊆≠∅,则集合T 的元素的个数为()A .11B .12C .13D .142.非空集合A 具有下列性质:①若x 、y A Î,则xA y∈;②若x 、y A Î,则x y A +∈,下列判断一定成立的是()(1)1A -∉;(2)20202021A ∈;(3)若x 、y A Î,则xy A ∈;(4)若x 、y A Î,则x y A -∉.A .(1)(3)B .(1)(2)C .(1)(2)(3)D .(1)(2)(3)(4)3.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是A .11B .12C .15D .164.有三支股票A ,B ,C ,28位股民的持有情况如下:每位股民至少持有其中一支股票.在不持有A 股票的人中,持有B 股票的人数是持有C 股票的人数的2倍.在持有A 股票的人中,只持有A 股票的人数比除了持有A 股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A 股票.则只持有B 股票的股民人数是()A .7B .6C .5D .45.设四边形的两条对角线为、,则“四边形为菱形”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列语句不是全称量词命题的是()A .任何一个实数乘以零都等于零B .自然数都是正整数C .高一(一)班绝大多数同学是团员D .每一个实数都有大小7.已知命题2:2,:2320p x q x x <--<,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件8.下列命题中是全称量词命题并且是真命题的是()A .2,210x R x x ∀∈++>B .所有菱形的4条边都相等C .若2x 为偶数,则x ∈ND .π是无理数二、多选题9.已知全集U 的两个非空真子集A ,B 满足()U A B B =ð,则下列关系一定正确的是()A .AB =∅B .A B B =C .A B U ⋃=D .()U B A A=ð三、填空题10.集合{}123456S =,,,,,,A 是S 的一个子集,当x A ∈时,若1x A -∉,1x A +∉,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的4元子集的个数是_____.11.已知集合111,,,1,2232P ⎧⎫=-⎨⎬⎩⎭,集合P 的所有非空子集依次记为:1231,,,M M M ⋯,设1231,,,m m m ⋯分别是上述每一个子集内元素的乘积.(如果P 的子集中只有一个元素,规定其积等于该元素本身),那么1231m m m ++⋯+=__________.四、解答题12.设A 是集合P ={1,2,3…n }的一个k 元子集(即由k 个元素组成的集合),且A 的任何两个子集的元素之和不相等;而集合P 的包含集合A 的任意k +1元子集B ,则存在B 的两个子集,使这两个子集的元素之和相等.(1)当n =6时,试写出一个三元子集A .(2)当n =16时,求证:k ≤5;(3)在(2)的前提下,求集合A 的元素之和S 的最大值.13.对于四个正数x 、y 、z 、w ,如果xw yz <,那么称(),x y 是(),z w 的“下位序对”(1)对于2、3、7、11,试求()2,7的“下位序对”;(2)设a 、b 、c 、d 均为正数,且(),a b 是(),c d 的“下位序对”,试判断c d 、a b、a cb d ++之间的大小关系;(3)设正整数n 满足条件:对集合{}02014t t <<内的每个m N +∈,总存在k N +∈,使得(),2017m 是(),k n 的“下位序对”,且(),k n 是()1,2018m +的“下位序对”.求正整数n 的最小值.14.判断下列命题是否为全称量词命题或存在量词命题,如果是,写出这些命题的否定,并说明这否定的真假,不必证明;如果不是全称量词命题和存在量词命题,则不用写出命题的否定,只需判断合题真假,并给出证明.(1)存在实数x ,使得2230x x ++≤;(2)有些三角形是等边三角形;(3)方程28100x x --=的每一个根都不是奇数.(4)若0ab ≠,则1a b +=的充要条件是2220a b ab a b ++--=.15.设,,a b c 分别为ABC 的三边,,BC AC AB 的长,求证:关于x 的方程2220x ax b ++=与2220x cx b +-=有公共实数根的充要条件是90A ∠=︒.16.给定的正整数()2n n ≥,若集合{}12,,,n A a a a M =⊆满足1212n n a a a a a a +++=⋅,则称A 为集合M 的n 元“好集”.(1)写出一个实数集R 的2元“好集”;(2)证明:不存在自然数集N 的2元“好集”;(3)是否在自然数集N 的3元“好集”?若存在,请求出所有自然数集N 的3元“好集”;若不存在,请说明理由.17.已知集合(){1,2,3,,2}A n n N*=∈,对于A 的子集S 若存在不大于n 的正整数m ,使得对于S 中的任意一对元素1a 、2a ,都有12a a m -≠,则称S 具有性质P .(1)当10n =时,判断集合{|9}B x A x =∈>和{}|31,C x A x k k N *=∈=-∈是否具有性质P ?并说明理由;(2)若1000n =时,①如果集合S 具有性质P ,那么集合{(2001)|}D x x S =-∈是否一定具有性质P ?并说明理由;②如果集合S 具有性质P ,求集合S 中元素个数的最大值.18.设是不小于3的正整数,集合12{(,,,)|{0,1},1,2,,}n n i S a a a a i n =∈=,对于集合nS 中任意两个元素12(,,,)n A a a a =,12(,,,)n B b b b =.定义1:1122(||||||)n n A B n a b a b a b ⋅=--+-++-.定义2:若0A B ⋅=,则称12(,,,)n A a a a =,12(,,,)n B b b b =互为相反元素,记作A B =,或B A =.(Ⅰ)若3n =,(0,1,0)A =,(1,1,0)B =,试写出A ,B ,以及A B ⋅的值;(Ⅱ)若,n A B S ∈,证明:A B A B n ⋅+⋅=;(Ⅲ)设k 是小于n 的正奇数,至少含有两个元素的集合n M S ⊆,且对于集合M 中任意两个不相同的元素12(,,,)n A a a a =,12(,,,)n B b b b =,都有A B n k ⋅=-,试求集合M 中元素个数的所有可能值.。

第一章 集合与常用逻辑用语 单元测试卷(Word版含答案)

第一章  集合与常用逻辑用语 单元测试卷(Word版含答案)

《第一章集合与常用逻辑用语》单元测试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U={1,2,3,4,5,6},A={1,3,4},B={1,3,5},则(∁U A)∪B=()A.{5}B.{1,3}C.{1,2,3,5,6}D.⌀2.命题“∀x∈Q,3x2+2x+1∈Q”的否定为()A.∀x∉Q,3x2+2x+1∉QB.∀x∈Q,3x2+2x+1∉QC.∃x∉Q,3x2+2x+1∉QD.∃x∈Q,3x2+2x+1∉Q3.已知集合A={0,1,2},B={1,m}.若B⊆A,则m=()A.0B.0或1C.0或2D.1或24.设全集U=R,M={x|x<-3或x>3},N={x|2≤x≤4},如图,阴影部分所表示的集合为()A.{x|-3≤x<2}B.{x|-3≤x≤4}C.{x|x≤2或x>3}D.{x|-3≤x≤3}5. “|x|≠|y|”是“x≠y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.设集合A={x|2a<x<a+2},B={x|x<-3或x>5},若A∩B=⌀,则实数a的取值范围为()A.{a|a≥-32} B.{a|a>-32}C.{a|a≤-32} D.{a|a<-32}7.若p:x2+x-6=0是q:ax-1=0(a≠0)的必要不充分条件,则实数a的值为()A.-12B.-12或13C.-13D.12或-138.已知集合A中有10个元素,B中有6个元素,全集U有18个元素,A∩B≠⌀.设集合(∁U A)∩(∁U B)中有x个元素,则x的取值范围是()A.{x|3≤x≤8,且x∈N}B.{x|2≤x≤8,且x∈N}C.{x|8≤x≤12,且x∈N}D.{x|10≤x≤15,且x∈N}二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的值可以是()A.1B.0C.3D.-310.图中阴影部分表示的集合是()A.N∩(∁U M)B.M∩(∁U N)C.[∁U(M∩N)]∩ND.(∁U M)∩(∁U N)11.设全集为U,下列选项中,是“B⊆A”的充要条件的是()A.A∪B=AB.A∩B=AC.(∁U A)⊆(∁U B)D.A∪(∁U B)=U12.整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},其中k∈{0,1,2,3,4}.以下判断正确的是()A.2 022∈[2]B.-2∈[2]C.Z=[0]∪[1]∪[2]∪[3]∪[4]D.若a-b∈[0],则整数a,b属于同一“类”三、填空题:本题共4小题,每小题5分,共20分.13.设集合M={2,3,a2+1},N={a2+a,a+2,-1},且M∩N={2},则实数a的值为.14.写出一个使得命题“∀x∈R,ax2-2x+3>0恒成立”是假命题的实数a的值:.15.若p:m-1≤x≤2m+1,q:2≤x≤3,q是p的充分不必要条件,则实数m的取值范围是.16.已知有限集合A={a1,a2,a3,…,a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N*}中的元素的个数为集合A的“容量”,记为L(A).若集合A={x∈N*|1≤x≤3},则L(A)=;若集合A={x∈N*|1≤x≤n},且L(A)=4 041,则正整数n的值是.(本题第一空2分,第二空3分.)四、解答题:本题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤.≤x≤2}.17.(10分)已知集合A={x|2-b≤ax≤2b-2}(a>0),B={x|-12(1)当a=1,b=3时,求A∪B和∁R B.(2)是否存在实数a,b,使得A=B?若存在,求出a,b的值;若不存在,请说明理由.18.(10分)在①A∪B=B,②“x∈A”是“x∈B”的充分条件,③“x∈∁R A”是“x∈∁R B”的必要条件这三个条件中任选一个,补充到本题第(2)问的横线处,并求解下列问题.问题:已知集合A={x|a≤x≤a+2},B={x|-1<x<3}.(1)当a=2时,求A∩B;(2)若,求实数a的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.参考答案一、单项选择题1.C2.D3.C4.A5.A6.A7.D8.A二、多项选择题9.AC 10.AC 11.ACD 12.ACD三、填空题13.-2或014.-1(答案不唯一)15.{m|1≤m≤3}16.3 2 022四、解答题17. 解:(1)当a =1,b =3时,A ={x |-1≤x ≤4}.又B ={x |-12≤x ≤2},所以 A ∪B ={x |-1≤x ≤4},(2分) ∁R B ={x |x <-12或x >2}.(4分)(2)假设存在实数a ,b 满足条件.因为a >0,所以由2-b ≤ax ≤2b -2,得2−b a ≤x ≤2b−2a .(6分) 由A =B ,得{2−b a =−12,2b−2a =2, 解得{a =2,b =3.(9分) 故存在a =2,b =3,使得A =B.(10分)18. 解:(1)当a =2时,A ={x |2≤x ≤4}, 所以A ∩B ={x |2≤x <3}.(4分)(2)方案一 选条件①.因为A ∪B =B ,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案二 选条件②.因为“x ∈A ”是“x ∈B ”的充分条件, 所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分) 方案三 选条件③.因为“x ∈∁R A ”是“x ∈∁R B ”的必要条件,所以A ⊆B ,(7分)所以{a >−1,a +2<3,解得-1<a <1.(10分)。

第一章 集合与常用逻辑用语单元检测试卷(基础过关)(原卷版)

第一章 集合与常用逻辑用语单元检测试卷(基础过关)(原卷版)

第一章 集合与常用逻辑语言 单元检测试卷(基础过关)一、单选题1.对于命题:p x R ∃∈,使得210x x ++<,则p ⌝是( )A.:p x R ⌝∀∈,210x x ++>B.:p x R ⌝∃∈,210x x ++≠C.:p x R ⌝∀∈,210x x ++≥D.:p x R ⌝∃∈, 210x x ++< 2.若{}2{1,4,},1,A x B x==且B A ⊆,则x =( ) A.2± B.2±或0 C.2±或1或0 D.2±或±1或03.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A.63B.127C.255D.511 4.集合3{|40}M x x x =-=,则M 的子集个数为( )A.2B.3C.4D.85.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A.A B ∈B.A B =C.B A ⊆D.A B ⊆6.设全集为R ,集合{}A |10x x =->,{}B |||2x x =>,则集合()R A B (⋃= ) A.{|1}x x ≤B.{|2x x <-或1}x >C.{|12}x x ≤<D.{|1x x ≤或2}x >7.下列命题错误的是( ) A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件8.设集合A 是集合*N 的子集,对于*i ∈N ,定义1,()0,i i A A i A ϕ∈⎧=⎨∉⎩,给出下列三个结论:①存在*N 的两个不同子集,A B ,使得任意*i ∈N 都满足()0i A B ϕ=且()1i A B ϕ=;②任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i AB ϕ=()i A ϕ()i B ϕ;③任取*N 的两个不同子集,A B ,对任意*i ∈N 都有()i AB ϕ=()+i A ϕ()i B ϕ;其中,所有正确结论的序号是( )A.①②B.②③C.①③D.①②③二、多选题 9.下列说法中正确的是( )A.“A B B =”是“B =∅”的必要不充分条件B.“3x =”的必要不充分条件是“2230x x --=”C.“m 是实数”的充分不必要条件是“m 是有理数”D.“1x =”是“1x =”的充分条件10.设非空集合P ,Q 满足P Q Q ⋂=,且P Q ≠,则下列选项中错误的是( ).A.x Q ∀∈,有x P ∈B.x P ∃∈,使得x Q ∉C.x Q ∃∈,使得x P ∉D.x Q ∀∉,有x P ∉11.下列与集合1(,)|30x y M x y x y ⎧+=⎧⎫=⎨⎨⎬--=⎩⎭⎩表示同一个集合的有( ) A.{(2,1)}-B.{2,1}-C.{(,)|2,1}x y x y ==-D.{2,1}x y ==-E.{(1,2)}-三、填空题12.若集合{}12A x x =≤≤,集合{}B x x k =≥,若A B ⋂≠∅,则k 的取值范围是______.13.已知命题:1p x <-或3x >,命题:31q x m <+或2x m >+,若p 是q 的充分非必要条件,则实数m 的取值范围是________14.已知集合A ={|x x =21,},3n n B +∈Z ={|x x =21,}3n n Z +∈,则集合A B 、的关系为__________. 15.已知全集{}22,3,23U a a =+-,若{},2A b =,{}5U C A =,则实数的a =____________,b =_________.四、解答题16.已知集合{}2,,1,,,0y A x B x x y x ⎧⎫==+⎨⎬⎩⎭,若A B =,求20192018x y +的值.17.已知集合{}2|2A x x -=≤≤,集合{}|1B x x =>.(1)求()R C B A⋂;(2)设集合{}|6M x a x a =<<+,且A M M ⋃=,求实数a 的取值范围.18.设集合A {x |a 1x 2a,a R}=-<<∈,不等式2x 2x 80--<的解集为B.()1当a 0=时,求集合A ,B ;()2当A B ⊆时,求实数a 的取值范围.19.已知命题:“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题.(1)求实数m 的取值集合B ;(2)设不等式(3)(2)0x a x a ---<的解集为A ,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围.20.已知两个关于x 的一元二次方程2440mx x -+=和2244450x mx m m -+--=,求两方程的根都是整数的充要条件.21.给定数集A ,若对于任意,a b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合.(1)判断集合{4,2,0,2,4},{|3,}A B x x k k Z =--==∈是否为闭集合,并给出证明.(2)若集合A ,B 为闭集合,则A B 是否一定为闭集合?请说明理由. (3)若集合A ,B 为闭集合,且,A R B R ,求证:()A B R ⋃.。

专题一 集合与常用逻辑用语 第一讲集合答案部分 (1)

专题一  集合与常用逻辑用语  第一讲集合答案部分 (1)

专题一 集合与常用逻辑用语第一讲 集合答案部分1.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}AB =,故选A . 2.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R≤A x x x {|12}=-≤≤x x ,故选B .3.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}AB =.故选C . 4.B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<,因为{02}A x x =<<, 所以()=R A B {|01}x x <<,故选B .5.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A {2,4,5}.故选C .6.A 【解析】通解 由223+≤x y 知,33≤x 33y又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.A 【解析】∵{|0}B x x =<,∴{|0}AB x x =<,选A . 8.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .9.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B .10.D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D.11.B 【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B.12.A 【解析】由题意可知{|12}PQ x x =-<<,选A .13.A 【解析】{}21A B x x =-<<-,故选A.14.C 【解析】因为{|||2}{|22}A x x x x =<=-<<,所以{1,0,1}AB =-. 15.C 【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .16.D 【解析】由题意{1,4,7,10}B =,所以{1,4}AB =. 17.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2AB =. 选D . 18.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =,,,,故选C . 19.D 【解析】(,2][3,)S =-∞+∞,所以(0,2][3,)S T =+∞,故选D .20.A 【解析】由于{|21}B x x ,所以{1,0}A B . 21.C 【解析】{|02}R P x x ,故(){|1<<2}R P Q =x x .22.A 【解析】{|12}A x x ,{|13}B x x ,∴{|13}A B x x .23.C 【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .24.D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D. 25.C 【解析】∵AB A ,得A B ,反之,若A B , 则A B A ;故“A B A =”是“A B ⊆”的充要条件.26.D 【解析】 由(4)(1)0x x 得4x 或1x ,得{1,4}M . 由(4)(1)0x x 得4x 或1x ,得{1,4}N .显然=∅MN . 27.A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1MN =,故选A . 28.A 【解析】{2,5,8}U B =,所以{2,5}U A B =,故选A.29.C 【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.30.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].31.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.32.B 【解析】∵{}1,2B =-,∴A B ⋂={}233.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B ⋂=.34.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =[1,2).35.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .36.A 【解析】P Q ⋂=}{34x x ≤<37.B 【解析】由题意知{|2}U x N x =∈≥,{|5}A x N x =∈,所以=A C U {|25}x N x ∈<≤,选B .38.C 【解析】∵{}{}2|200,2A x x x =-==.∴AB =={}0,2. 39.C 【解析】A B ={|23}x x <<40.B 【解析】∵21x <,∴11x -<<,∴M N ={}|01x x <≤,故选B .41.C 【解析】{}|3,3A x x =-<,{}C |15R B x x x =->≤或, ∴()R A C B ={}|31x x --≤≤42.D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<.43.A 【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-44.C 【解析】{}2,4,7U A =.45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆”⇔“∅=B A ”,选C .46.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .47.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=48.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =49.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.50.A 【解析】由题意{}1,2,3A B =,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故U A B ={}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.52.A 【解析】A :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B A C R ,所以答案选A53.D 【解析】由集合A ,14x <<;所以(1,2]A B ⋂=54.B 【解析】集合B 中含-1,0,故{}1,0A B =-55.A 【解析】∵{}2,0S =-,{}0,2T =,∴ST ={}0. 56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.57.D 【解析】()f x 的定义域为M =[-1,1],故R M =(,1)(1,)-∞-⋃+∞,选D .58.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59.C 【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞.60.A 【解析】U C M ={,,}24661.D 【解析】{}3,4,5Q =,∴U Q ={}1,2,6,∴ U P Q ⋂={}1,2.62.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D63.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.64.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=65.C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.66.D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D .67.B 【解析】{1,3}P M N ==,故P 的子集有4个.68.D 【解析】因为集合[1,1]P =-,所以(,1)(1,)U C P =-∞-+∞.69.D 【解析】因为{1,2,3,4}M N =,所以()()n n C M C N ⋂=()U C MN ={5,6}. 70.B 【解析】因为U C M N ⊂,所以()()()U U U U N NC M C C N C M == =[()]U U N M ={1,3,5}.71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =, 这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.72.A 【解析】集合{1,0,1}{0,1,2}={0,1}MN =-. 73.C 【解析】因为P M P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复212x +<21x <,所以(1,1)N =-,则[0,1]MN =.75.A 【解析】根据题意可知,N 是M 的真子集,所以MN M =. 76.C 【解析】{}{}{}1,2,32,3,42,3MN ==故选C. 77.D 【解析】{}{}|1,|12R R B x x A B x x =≥⋂=≤≤78.B 【解析】{}22<<x x Q -=,可知B 正确, 79.A 【解析】不等式121log 2x,得12112201log log ()2x >⎧⎪⎨⎪⎩,得22x , 所以R A =2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭. 80.D 【解析】因为{3}A B =,所以3∈A ,又因为{9}U B A =,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.81.{1,8}【解析】由集合的交运算可得A B ={1,8}.82.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.83.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==,5个元素.84.{}1,3-【解析】=B A {}1,3-85.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =,{}()7,9U A B ⋂=.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.87.{}6,8【解析】()U A B ={6,8}{2,6,8}{6,8}=.88.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .89.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-). 令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。

专题1 集合与常用逻辑用语

专题1 集合与常用逻辑用语1.1集合的含义与表示 (1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{|具有的性质},其中为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().1.2集合间的基本关系(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.解析获取vx :lingzi980N N *N +Z Q R a M a M ∈a M ∉x x x ∅A (1)n n ≥2n21n-21n-22n -1.3 集合的基本运算1. 2.注意:1. 元素与集合的关系,.2.德摩根公式.3.包含关系4.容斥原理.【例1】(2022•新高考Ⅰ)若集合 }4|{,<=x x M }13| {,≥=x x N 则=N MA .}40|{<≤x xB . }231|{<≤x x C .}163|{<≤x x D . }1631|{<≤x x 【例2】(2022•新高考II )已知集合{}4211,,,-=A ,{}11≤-=x x B ,则=⋂B A A.{}21,- B.{}21, C.{}41, D.{}41,-【例3】(2022•乙卷理)设全集{1U =,2,3,4,5},集合M 满足{1U M =,3},则( )AB {|x x ∈A A A =A∅=∅A B A ⊆A B B ⊆AB {|x x ∈A A A =AA ∅=AB A ⊇AB B ⊇U A {|x x ()U A A =∅()U A A U =U x A xC A ∈⇔∉U x C A x A ∈⇔∉();()U U U U U U C A B C A C B C A B C A C B ==A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+()()()UU U A B A B =()()()U U U A B A B =A .2M ∈B .3M ∈C .4M ∉D .5M ∉【例4】(2019•全国)设集合P ={x |x 2﹣2>0},Q ={1,2,3,4},则P ∩Q 的非空子集的个数为( ) A .8B .7C .4D .3【例5】(2020•上海)集合A ={1,3},B ={1,2,a },若A ⊆B ,则a = . 【例6】已知集合{0A =,1,2},{|B ab a A =∈,}b A ∈,则集合B 中元素个数为( ) A .2B .3C .4D .5【例7】已知集合{{}A =∅,}∅,下列选项中均为A 的元素的是( ) (1){}∅;(2){{}}∅;(3)∅;(4){{}∅,}∅. A .(1)(2)B .(1)(3)C .(2)(3)D .(2)(4)【例8】已知函数2()f x x ax b =++,集合{|()0}A x f x =,集合5|(())4B x f f x ⎧⎫=⎨⎬⎩⎭,若A B =≠∅,则实数a 的取值可以是( ) A .2B .3C .4D .5【例9】向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.则下列说法正确的是( ) A .赞成A 的不赞成B 的有9人 B .赞成B 的不赞成A 的有11人 C .对A 、B 都赞成的有21人D .对A 、B 都不赞成的有8人【例10】(2015•上海)设集合21{|10}P x x ax =++>,22{|20}P x x ax =++>,21{|0}Q x x x b =++>,22{|20}Q x x x b =++>,其中a ,b R ∈,下列说法正确的是( ) A .对任意a ,1P 是2P 的子集,对任意b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集,存在b ,使得1Q 是2Q 的子集 C .存在a ,1P 不是2P 的子集,对任意b ,1Q 不是2Q 的子集 D .存在a ,1P 不是2P 的子集,存在b ,使得1Q 是2Q 的子集1.(2022•乙卷文)集合{}{}2,4,6,8,10,16M N x x ==-<<,则MN =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2.(2022•上海)已知集合A =(﹣1,2),集合B =(1,3),则A ∩B = .3.(2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}4.(2021•上海)已知集合A ={x |x >﹣1,x ∈R },B ={x |x 2﹣x ﹣2≥0,x ∈R },则下列关系中,正确的是( ) A .A ⊆BB .∁R A ⊆∁R BC .A ∩B =∅D .A ∪B =R5.(2022•天津)设全集{2U =-,1-,0,1,2},集合{0A =,1,2},{1B =-,2},则()(U A B =⋂)A .{0,1}B .{0,1,2}C .{1-,1,2}D .{0,1-,1,2}6.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = )A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}7.(2022•北京)已知全集{|33}U x x =-<<,集合{|21}A x x =-<,则(UA = )A .(2-,1]B .(3,2)[1--,3) C .[2-,1)D .(3-,2](1,3)- 8.(2021•乙卷)已知集合{|21S s s n ==+,}n Z ∈,{|41T t t n ==+,}n Z ∈,则(S T = )A .∅B .SC .TD .Z9.(2020•全国)若集合A 共有5个元素,则A 的真子集的个数为( ) A .32B .31C .16D .1510.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .611.(2017•江苏)已知集合{1A =,2},{B a =,23}a +.若{1}A B =,则实数a 的值为 .12.(2022•重庆期末)下列说法正确的是( ) A .任何集合都是它自身的真子集B .集合{a ,}b 共有4个子集C .集合{|31x x n =+,}{|32n Z x x n ∈==-,}n Z ∈D .集合2{|1x x a =+,*2}{|45a N x x a a ∈==-+,*}a N ∈13.(2021•重庆期末)已知全集为U ,A ,B 是U 的非空子集且UA B ⊆,则下列关系一定正确的是()A .x U ∃∈,x A ∉且xB ∈ B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈14.(2021•虎丘区月考)江苏省实验中学科技城校举行秋季运动会,高一某班共有30名同学参加比赛,有20人参加田赛,13人参加径赛,有19人参加球类比赛,同时参加田赛与径赛的有8人,同时参加田赛与球类比赛的有9人,没有人同时参加三项比赛.以下说法正确的有( ) A .同时参加径赛和球类比赛的人数有3人 B .只参加球类一项比赛的人数有2人C .只参加径赛一项比赛的人数为0人D .只参加田赛一项比赛的人数为3人1.4 充分条件与必要条件充要条件(1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.抓住关键词:大必小充。

专题01 集合与常用逻辑用语(原卷版) Word版无答案

一、填空题1. 【 2016年第二次全国大联考(江苏卷)】已知集合{||2}A x x =<,{1,0,1,2,3}B =-,则集合A B 中元素的个数为_______.2. 【2016年第三次全国大联考【江苏卷】】已知集合{}P x x a =≤,{}4212≤<=-x x Q ,若P Q ⊇,则实数a 的取值范围是 . 3. 【2016年第四次全国大联考【江苏卷】】已知全集U {1,2,3,4},=集合{1,2},{2,4}A B ==,则集合()U A B 等于_______.4. 【2016年第一次全国大联考【江苏卷】】已知,U R =集合{11}A x x =-<<,2{20}B x x x =-<,则()_______.U A C B =5. 【江苏省扬州中学2015—2016学年第二学期质量检测】“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的_______________条件.(空格处请填写“充分不必要条件” 、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”)6. 【2016高考押题卷(3)【江苏卷】】已知集合}2,0,1{},3,2,1,0{-==B A ,则集合B A 中所有元素之和为 .7. 【2016高考冲刺卷(2)【江苏卷】】已知集合{}|11M x x =-<<,|01x N x x ⎧⎫=≤⎨⎬-⎩⎭,则=⋂N M __________.8. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】设集合{}1,0,1A =-,11,B a a a ⎧⎫=-+⎨⎬⎩⎭,{}0A B =,则实数a 的值为 ▲ . 9. 【2016高考冲刺卷(8)【江苏卷】】已知集合M ={0,2,4},N ={x|x =2a,a ∈M},则集合M∩N = ▲ .10. 【2016高考押题卷(2)【江苏卷】】已知集合{}{}=12357=21,M N x x k k M =-∈,,,,,,则M N ⋂=11. 【2016高考冲刺卷(1)【江苏卷】】已知集合},0{a A =,}3,1,0{=B ,若}3,2,1,0{=B A ,则实数a 的值为 .12. 【江苏省扬州中学2016届高三4月质量监测】“m =-1”是“直线mx +(2m -1)y +1=0和直线3x +my +3=0垂直”的___________条件.13. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】已知全集{}12345U =,,,,,{}12A =,,{}234B =,,,那么()U A B = ▲ .14. 【2016高考冲刺卷(6)【江苏卷】】已知集合1{1,2,}2A =,集合2{|,}B y y x x A ==∈,则A B = .15. 【2016高考冲刺卷(7)【江苏卷】】设全集U R =,集合2{|log 1}A x x =≥,2{|230}B x x x =--<,则A B = .16. 【2016高考冲刺卷(9)【江苏卷】】设全集U ={x | x ≥2,x ∈N },集合A ={x | x2≥5,x ∈N },则A C U = .17. 【盐城市2016届高三年级第三次模拟考试】已知集合{1,2,3,4,5}A =,{1,3,5,7,9}B =,B A C =,则集合C 的子集的个数为 ▲ .。

第一章 集合与常用逻辑用语 课件(共22张PPT)

∴(∁uA)∩B={x|x≤-2,或x≥3}∩{x|2<x≤6}={x|3≤x≤6}
专题一 集合的概念及基本运算
设全集U=R,集合A={x|-2<x<3},集合B={x|m-1<x≤2m}。
①若m=3,求集合A∪B、A∩B、(∁uA)∩B;
②若m=2,求集合A∪B、A∩B、A∩(∁uB)。
②解:
∵A={x|-2<x<3},B={x|m-1<x≤2m}
②若m=2,求集合A∪B、A∩B、A∩(∁uB)。
①解:
∵A={x|-2<x<3},
∴∁uA={x|x≤-2,或x≥3},
∵集合B={x|m-1<x≤2m},
∴当m=3时,集合B={x|2<x≤6},
∴A∪B={x|-2<x<3}∪{x|2<x≤6}={x|-2<x≤6}
∴A∩B={x|-2<x<3}∩{x|2<x≤6}={x|2<x<3}
命题q:关于x的二次函数y=2x2+ax+4在区间[3,+∞)上单调递增,
若p,q都是真命题,求实数a的取值范围。
解:
∵关于x的方程x2-4x+a=0有实根
∴∆≥0,解得a≤4
∵关于x的二次函数y=2x2+ax+4

∴对称轴为x=-
∵在区间[3,+∞)上单调递增

∴-≤3,解得a≥-12
∴综上所述-12≤a≤4
∵B⊆A
∵“x∈A”是“x∈B”必要条件
∴B⊆A
∴B⊆A,
∴当B=∅时,m-1>2m,得m<-1
≥ −
−2 ≤ − 1
3
∴当B≠∅时,ቐ − 1<2 ,解得൞> −31 ,即 − 1<< 2
< 2
2<3

高考专题复习—集合与常用逻辑用语 第一讲+第二讲(解析版)

高考专题复习—集合与常用逻辑用语(解析版)➱第一讲集合◎基础巩固1.集合的基本概念(1)集合元素的性质:确定性、无序性、互异性.(2)元素与集合的关系①属于,记为∈;②不属于,记为∉.(3)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N +Z Q R(4)集合的表示方法:①列举法;②描述法;③韦恩图.2.集合间的基本关系关系自然语言符号语言Venn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B(或B⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A B 或B A集合相等集合A ,B 中的元素相同或集合A ,B 互为子集A =B3.集合的基本运算基本运算并集交集补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示数学语言{x |x ∈A ,或x ∈B }{x |x ∈A,且x ∈B }{x |x ∈U ,且x ∉A }运算性质A ∪∅=A ;A ∪A =A;A ∪B =B ∪A .A ∩∅=∅;A ∩A =A;A ∩B =B ∩A .A ∪(∁U A )=U ;A ∩(∁U A )=∅;∁U (∁U A )=A.1.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.2.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)∅={0}.()(2)空集是任何集合的子集,两元素集合是三元素集合的子集.()(3)a在集合A中,可用符号表示为a⊆A.()(4)N⊆N+⊆Z.()(5)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.()答案:(1)×(2)×(3)×(4)×(5)×[小题查验]1.若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:D[由题意知A={0,1,2,3},由a=22,知a∉A.]2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4解析:B[由题意可得:A∩B={2,4},故选B.]3.已知全集U={1,2,3,4,5},A={1,2,4},B={2,5},则(∁U A)∪B=()A.{3,4,5}B.{2,3,5}C.{5}D.{3}解析:B[因为U={1,2,3,4,5},A={1,2,4},所以∁U A={3,5},又B={2,5},所以(∁U A)∪B={2,3,5}.] 4.已知集合A={x|x2-2x+a>0},且1∉A,则实数a的取值范围是________.解析:∵1∉{x|x2-2x+a>0},∴1∈{x|x2-2x+a≤0},即1-2+a≤0,∴a≤1.答案:(-∞,1]5.(教材改编)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=___________________.答案:{2,4}◎考点探究考点一集合的基本概念(自主练透)[题组集训]1.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为()A .9B .8C .5D .4解析:A[∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1,当x =-1时,y =-1,0,1;当x =0时,y =-1,0,1;当x =1时,y =-1,0,1;所以共有9个,选A.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =()A.92B.98C .0D .0或98解析:D[若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.]3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去.当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-324.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2019=________.解析:由M =N =1,2n =m =m ,2n =1,=0,=12,=2.∴(m -n )2019=-1或0.答案:-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二集合间的基本关系(师生共研)[典例](1)已知集合A ={x |ax =1},B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是()A .{-1}B .{1}C .{-1,1}D .{-1,0,1}(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.[解析](1)由题意,得B ={-1,1},因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1.又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}.故选D.(2)当B =∅时,有m +1≥2m -1,则m ≤2.当B ≠∅时,若B ⊆A ,如图.+1≥-2m -1≤7+1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.[答案](1)D (2){m |m ≤4}[互动探究]本例(1)中若A ={x |ax >1(a ≠0)},B ={x |x 2-1>0},其它条件不变,则a 的取值范围是________.解析:由题意,得B ={x |x >1,或x <-1},对于集合A ,①当a >0时,A |x >1a因为A ⊆B ,所以1a ≥1.又a >0,所以0<a ≤1.②当a <0时,A |x <1a因为A ⊆B ,所以1a ≤-1,又a <0,所以-1≤a <0,综上所述,0<a ≤1,或-1≤a <0.答案:[-1,0)∪(0,1]由集合的关系求参数的关键点由两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论,注意区间端点的取舍.提醒:解决两个集合的包含关系时,要注意空集的情况.[跟踪训练](1)若集合A ={x |ax 2+ax +1=0}的子集只有两个,则实数a =________.解析:∵集合A 的子集只有两个,∴A 中只有一个元素,即方程ax 2+ax +1=0只有一个根.当a =0时方程无解.当a ≠0时,Δ=a 2-4a =0,∴a =4.故a =4.答案:4(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析:由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4},而B =(-∞,a ).由于A ⊆B ,如图所示,则a >4,即c =4.答案:4考点三集合的基本运算(多维探究)[命题角度1]求交集、并集1.(文科)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =()A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:A[根据集合交集中元素的特征,可以求得A ∩B ={0,2},故选A.]2.(文科)已知集合A ={x |x <2},B ={x |3-2x >0},则()A .A ∩B |x B .A ∩B =∅C .A ∪B |xD .A ∪B =R解析:A[由3-2x >0得x <32,所以A ∩B ={x |x <2}|x |x ,故选A.][命题角度2]集合的交、并、补的综合运算3.(文科)设集合A ={1,2,3,4,5,6},B ={x |2<x <5},则A ∩(∁R B )等于()A .{2,3,4,5}B .{1,2,5,6}C .{3,4}D .{1,6}解析:B[因为∁R B ={x |x ≤2,或x ≥5},A ={1,2,3,4,5,6};所以A ∩(∁R B )={1,2,5,6}.][命题角度3]利用集合的基本运算求参数的取值(范围)4.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =()A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:C[由题意知x =1是方程x 2-4x +m =0的解,代入解得m =3,所以x 2-4x +3=0,解得x =1或x =3,从而B ={1,3}.]5.已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪∁R B =R ,则实数a 的取值范围是________.解析:∁R B ={x |x <1,或x >2},要使A ∪(∁R B )=R ,则a ≥2.答案:[2,+∞)解集合运算问题应注意以下三点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.提醒:Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.考点四集合的新定义问题(师生共研)数学抽象——集合新定义中的核心素养以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.[典例]设A是自然数集的一个非空子集,对于k∈A,如果k2∉A,且k∉A,那么k是A的一个“酷元”,给定S={x∈N|y=lg(36-x2)},设M⊆S,集合M中有两个元素,且这两个元素都是M的“酷元”,那么这样的集合M有()A.3个B.4个C.5个D.6个[解析]C[由36-x2>0可解得-6<x<6,又x∈N,故x可取0,1,2,3,4,5,故S={0,1,2,3,4,5}.由题意可知:集合M不能含有0,1,且不能同时含有2,4.故集合M可以是{2,3}、{2,5}、{3,5}、{3,4}、{4,5}.]解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.[跟踪训练]定义一种新的集合运算△:A△B={x|x∈A,且x∉B}.若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4}B.{x|3≤x≤4}C.{x|3<x<4}D.{x|2≤x≤4}解析:B[A={x|1<x<3},B={x|2≤x≤4},由题意知,B△A={x|x∈B,且x∉A}={x|3≤x≤4}.]◎课时作业[基础训练组]1.已知集合A ={1,3,5,7},B ={2,3,4,5},则A ∩B =()A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7}解析:C[A ={1,3,5,7},B ={2,3,4,5},∴A ∩B ={3,5},故选C.]2.集合P ={x |0≤x <3},M ={x ||x |≤3},则P ∩M =()A .{1,2}B .{0,1,2}C .{x |0≤x <3}D .{x |0≤x ≤3}解析:C[集合P ={x |0≤x <3},M ={x ||x |≤3}={x |-3≤x ≤3},则P ∩M ={x |0≤x <3}.]3.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是()A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩∁I SD .(M ∩P )∪∁I S解析:C [图中的阴影部分是M ∩P 的子集,不属于集合S ,属于集合S 的补集的子集,即是∁I S 的子集,则阴影部分所表示的集合是(M ∩P )∩∁I S .故选C.]4.满足{2018}⊆A {2018,2019,2020}的集合A 的个数为()A .1B .2C .3D .4解析:C[满足{2018}⊆A{2018,2019,2020}的集合A 可得:A ={2018},{2018,2019},{2018,2020}.因此满足的集合A 的个数为3.]5.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是()A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:C[因为P ∪M =P ,所以M ⊆P ,即a ∈P ,得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].]6.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=()A.0B .(-∞,0)∪12,+∞D .(-∞,0]∪12,+∞解析:D[A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}A ∩B所以∁R (A ∩B )=(-∞,0]∪12,+7.已知A =[1,+∞),B ∈R |12a ≤x ≤2a -A ∩B ≠∅,则实数a 的取值范围是()A .[1,+∞) B.12,1 C.23,+∞D .(1,+∞)解析:A[因为A ∩B ≠∅a -1≥1,a -1≥12a ,解得a ≥1,故选A.]8.函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =()A .(1,2]B .[1,2]C .(-∞,1]∪[2,+∞)D .(-∞,1)∪[2,+∞)解析:D[使x -2有意义的实数x 应满足x -2≥0,∴x ≥2,∴M =[2,+∞),y =ln(1-x )中x 应满足1-x>0,∴x <1,∴N =(-∞,1),所以M ∪N =(-∞,1)∪[2,+∞),故选D.]9.已知集合A ={(x ,y )|x ,y ∈R ,x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,y =4x 2-1},则A ∩B 的元素个数是________.解析:集合A 是以原点为圆心,半径等于1的圆周上的点的集合,集合B 是抛物线y =4x 2-1上的点的集合,观察图像可知,抛物线与圆有3个交点,因此A ∩B 中含有3个元素.答案:310.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________.解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]11.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =3x ,x ∈R },B ={y |y =-(x -1)2+2,x ∈R },则A ⊕B =________.解析:由题意得A ={y |y =3x ,x ∈R }={y |y >0},B ={y |y =-(x -1)2+2,x ∈R }={y |y ≤2},故A -B ={y |y >2},B -A ={y |y ≤0},所以A ⊕B ={y |y ≤0,或y >2}.答案:(-∞,0]∪(2,+∞)12.若A ={x |ax 2-ax +1≤0,x ∈R }=∅,则a 的取值范围是________.解析:∵A ={x |ax 2-ax +1≤0,x ∈R }=∅,∴a =0>0=(-a )2-4a <0,解得0≤a <4.∴a 的取值范围是[0,4).[能力提升组]13.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是()A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}解析:B [易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.]14.设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是()A .2B .3C .4D .5解析:B[当a =0时,无论b 取何值,z =a ÷b =0;当a =-1,b =-2时,z =(-1)÷(-2)=12;当a =-1,b =2时,z =(-1)÷2=-12;当a =1,b =-2时,z =1÷(-2)=-12;当a =1,b =2时,z =1÷2=12.故P *Q ,12,-3个元素.]15.若集合A={x|(a-1)x2+3x-2=0,x∈R}有且仅有两个子集,则实数a的值为________.解析:由题意知,方程(a-1)x2+3x-2=0,x∈R,有一个根,∴当a=1时满足题意,当a≠1时,Δ=0,即9+8(a-1)=0,解得a=-18.答案:1或-1816.某班共有学生40名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项,没有人三项均会.若该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,则该班会其中两项运动的学生人数是________.解析:设同时会打乒乓球和篮球的学生有x人,同时会打乒乓球和排球的学生有y人,同时会打排球和篮球的学生有z人,∵该班18人不会打乒乓球,24人不会打篮球,16人不会打排球,∴该班会打乒乓球或篮球的学生有24人,会打乒乓球或排球的学生有16人,会打篮球或打排球有22人,∴x+y+z=24+16+22-40=22.∴该班会其中两项运动的学生人数是22.答案:22➱第二讲命题、充分条件与必要条件◎基础巩固1.命题的概念可以判断真假、用文字或符号表述的语句叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.1.互为逆否的两个命题具有相同的真假性,互逆的或互否的两个命题真假性没有关系.2.若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(2)若p是q成立的充分条件,则q是p成立的必要条件.()(3)若p是q成立的充要条件,则可记为p⇔q.()(4)命题“若p,则q”的否命题是“若p,则q”.()答案:(1)√(2)√(3)√(4)×[小题查验]1.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:A[因为x2-2x+1=0有两个相等的实数根为x=1,所以“x=1”是“x2-2x+1=0”的充要条件.] 2.给出命题:“若实数x,y满足x2+y2=0,则x=y=0”,在它的逆命题、否命题、逆否命题中,真命题的个数是()A.0个B.1个C.2个D.3个解析:D[原命题显然正确,其逆命题为:若x=y=0,则x2+y2=0,显然也是真命题,由四种命题之间的关系知,其否命题、逆否命题也都是真命题.故选D.]3.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:B[直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=14.(教材改编)已知命题:若m>0,则方程x2+x-m=0有实数根.则其逆否命题为_________.答案:若方程x2+x-m=0无实根,则m≤05.下列命题:①若ac2>bc2,则a>b;②若sinα=sinβ,则α=β;③“实数a=0”是“直线x-2ay=1和直线2x-2ay=1平行”的充要条件;④若f(x)=log2x,则f(|x|)是偶函数.其中正确命题的序号是________.解析:对于①,∵ac2>bc2,∴c2>0,∴a>b正确;对于②,sin30°=sin150°⇒/30°=150°,所以②错误;对于③,l1∥l2⇔A1B2=A2B1,即-2a=-4a⇒a=0且A1C2≠A2C1,所以③正确;④显然正确.答案:①③④◎考点探究考点一命题的四种形式及其关系(自主练透)[题组集训]1.命题p:若a>b,则a-1>b-1,则命题p的否命题为()A.若a>b,则a-1≤b-1B.若a≥b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:C[根据否命题的定义:若原命题为:若p,则q,否命题为:若非p,则非q.∵原命题为:若a>b,则a-1>b-1,∴否命题为:若a≤b,则a-1≤b-1,故选C.]2.命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:C[根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故选C.]3.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.1.由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.提醒:当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提不动.2.命题真假的判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题和其逆否命题的等价关系进行判断.考点二充分、必要条件的判断与应用(多维探究)[命题角度1]充分、必要条件的判定1.设p∶0<x<1,q∶2x≥1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:A[q∶2x≥1,解得x≥0.又p∶0<x<1,则p是q的充分不必要条件.]2.函数f(x)在x=x0处导数存在,若p∶f′(x0)=0,q∶x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:C[函数在x=x0处有导数且导数为0,x=x0未必是函数的极值点,还要看函数在这一点左右两边的导数的符号,若符号一致,则不是极值点;反之,若x=x0为函数的极值点,则函数在x=x0处的导数一定为0,所以p是q的必要不充分条件.]3.已知向量a=(-2,m),b m∈R,则“a⊥(a+2b)”是“m=2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件解析:B[∵a=(-2,m),b m∈R,∴a+2b=(4,2m)若a⊥(2a+2b),则-8+2m2=0,解得m=±2,故“a⊥(a+2b)”是“m=2”的必要不充分条件.]命题的充分、必要条件的判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:利用A⇒B与非B⇒非A,B⇒A与非A⇒非B,A⇔B与非B⇔非A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[命题角度2]利用充要条件求参数的取值(范围)逻辑推理——充分、必要条件关系中的核心素养充分、必要条件问题中常涉及参数取值(范围)问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.4.已知p:-2≤x≤10,q:(x-a)(x-a-1)>0,若p是q成立的充分不必要条件,则实数a的取值范围是______.[破题关键点]若p是q成立的充分不必要条件,则{x|-2≤x≤10} {x|x>a+1,或x<a},即转化为相对应的集合间的基本关系来求实数a的取值范围.解析:由(x-a)(x-a-1)>0,得x>a+1或x<a,由题意,得{x|-2≤x≤10} {x|x>a+1,或x<a},所以a+1<-2或a>10,即a<-3或a>10.答案:(-∞,-3)∪(10,+∞)[互动探究]本例中,若p:-2<x<10,q:(x-a)(x-a-1)≥0,其他条件不变,则a的取值范围是______.解析:由(x-a)(x-a-1)≥0,得x≥a+1或x≤a,由题意得{x|-2<x<10} {x|x≥a+1,或x≤a}.所以a+1≤-2,或a≥10,即a≤-3,或a≥10.答案:(-∞,-3]∪[10,+∞)(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.(2)注意利用转化的方法理解充分必要条件:若非p是非q的充分不必要(必要不充分、充要)条件,则p是q的必要不充分(充分不必要、充要)条件.◎课时作业[基础训练组]1.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是()A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0解析:D[写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.]2.设a ∈R ,则“a >3”是“函数y =log a (x -1)在定义域上为增函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数y =log a (x -1)在定义域(1,+∞)上为增函数,所以a >1,因此“a >3”是“函数y =log a (x -1)在定义域上为增函数”的充分不必要条件.]3.“m =1”是“圆C 1:x 2+y 2+3x +4y +m =0与圆C 2“x 2+y 2=4的相交弦长为23”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[由题意知圆C 1与圆C 2的公共弦所在的直线是3x +4y +m +4=0,故(0,0)到3x +4y +m +4=0的距离d=|m +4|5=4-3=1,即|m +4|=5,解得m =1或m =-9.故m =1是m =1或m =-9的充分不必要条件,故选A.4.已知条件p :|x -4|≤6,条件q :x ≤1+m ,若p 是q 的充分不必要条件,则m 的取值范围是()A .(-∞,-1]B .(-∞,9]C .[1,9]D .[9,+∞)解析:D[由|x -4|≤6,解得-2≤x ≤10,即p :-2≤x ≤10;又q :x ≤1+m ,若p 是q 的充分不必要条件,则1+m ≥10,解得m ≥9.故选D.]5.若x >m 是x 2-3x +2<0的必要不充分条件,则实数m 的取值范围是()A .[1,+∞)B .(-∞,2]C .(-∞,1]D .[2,+∞)解析:C[由x 2-3x +2<0得1<x <2,若x >m 是x 2-3x +2<0的必要不充分条件,则m ≤1,即实数m 的取值范围是(-∞,1].]6.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为a sin θ+b cos θ=a 2+b 2sin (θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故a 2+b 2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.]7.“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[因为函数f (x )=3x +m -33在区间[1,+∞)上单调递增且无零点,所以f (1)=31+m -33>0,即m +1>32,解得m >12,故“m >1”是“函数f (x )=3x +m -33在区间[1,+∞)无零点的充分不必要条件,故选A.]8.设等比数列{a n }的公比为q ,前n 项和为S n .给出命题s :若|q |=2,则S 6=7S 2,则在命题s 的逆命题、否命题、逆否命题中,错误命题的个数是()A .3B .2C .1D .0解析:B[若|q |=2,则q 2=2,S 6=a 1(1-q 6)1-q =a 1(1-q 2)(1+q 2+q 4)1-q =7·a 1(1-q 2)1-q=7S 2,所以原命题为真,从而逆否命题为真;而当S 6=7S 2时,显然q ≠1,这时a 1(1-q 6)1-q =7·a 1(1-q 2)1-q ,解得q =-1或|q |=2,因此,逆命题为假,否命题为假,故错误命题的个数为2.]9.《左传·僖公十四年》有记载:“皮之不存,毛将焉附?”这句话的意思是说皮都没有了,毛往哪里依附呢?比喻事物失去了借以生存的基础,就不能存在.皮之不存,毛将焉附?则“有毛”是“有皮”的_______条件(将正确的序号填入空格处).①充分条件②必要条件③充要条件④既不充分也不必要条件解析:由题意知“无皮”⇒“无毛”,所以“有毛”⇒“有皮”即“有毛”是“有皮”的充分条件.答案:①10.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.解析:由正弦定理,得a sin A =bsin B,故a ≤b ⇔sin A ≤sin B.答案:充要11.若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则实数a 的取值范围是_________.解析:由x 2-5x +6≥0得x ≥3或x ≤2,若“x >a ”是“x 2-5x +6≥0”成立的充分不必要条件,则a ≥3,即实数a 的取值范围是[3,+∞).答案:[3,+∞)12.已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若非p 是非q 的必要不充分条件,则实数a 的取值范围是________.解析:由2x 2-3x +1≤0,得12≤x ≤1,∴命题p |12≤x ≤由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,∴命题q 为{x |a ≤x ≤a +1}.非p 对应的集合A |x >1或x q 对应的集合B ={x |x >a +1或x <a }.∵非p 是非q 的必要不充分条件,∴a +1≥1且a ≤12,∴0≤a ≤12,即实数a 的取值范围是0,12.答案:0,12[能力提升组]13祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:A[设命题a :“若p ,则q ”,可知命题a 是祖暅原理的逆否命题,则a 是真命题.故p 是q 的充分条件.设命题b :“若q ,则p ”,若A 比B 在某些等高处的截面积小一些,在另一些等高处的截面积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题b 是假命题,即p 不是q 的必要条件.综上所述,p 是q 的充分不必要条件.故选A.]14.已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且非q 的一个充分不必要条件是非p ,则a 的取值范围是()A.-2,-12B.12,2C .[-1,2],12∪[2,+∞)解析:C [由4x -1≤-1,移项得4x -1+1≤0,通分得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0.由非q 的一个充分不必要条件是非p ,可知非p 是非q 的充分不必要条件,即p 是q 的必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.设f (x )=x 2+x -a 2+a -3)=-a 2+a +6≥0,1)=-a 2+a +2≥0,2<a <31≤a ≤2∴-1≤a ≤2,故选C.]15.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.解析:对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得b a =sin B sin A =3,若B =60°,则sin A =12,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =32,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.答案:①④16.设命题p :2x -1x -1<0,命题q ∶x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1.[a ,a +1].≤12,+1≥1,解得0≤a ≤12.答案:0,12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 5 页
专题检测(一) 集合与常用逻辑用语
一、选择题
1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=( )
A.{1} B.{1,2}
C.{0,1,2,3} D.{-1,0,1,2,3}
解析:选C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1所以A∪B={0,1,2,3}.
2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是( )
A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b
C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c
解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题
为“若a≤b,则a+c≤b+c”.
3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n
∈N*},则A∩B等于( )
A.{-1,1} B.{-1,3}
C.{1,3} D.{3,1,-1}
解析:选C ∵A={x|-2∴A∩B={1,3}.

4.(2017·郑州第二次质量预测)已知集合A={x|log2x≤1},B=x 1x>1,则A∩(∁RB)
=( )
A.(-∞,2] B.(0,1]
C.[1,2] D.(2,+∞)
解析:选C 因为A={x|0或x≥1}={x|1≤x≤2}.
5.(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”
的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
解析:选A ∵m=λn,∴m·n=λn·n=λ|n|2.
∴当λ<0,n≠0时,m·n<0.

反之,由m·n=|m||n|cos〈m,n〉<0⇔cos〈m,n〉<0⇔〈m,n〉∈π2,π,
当〈m,n〉∈π2,π时,m,n不共线.
第 2 页 共 5 页
故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.
6.(2018届高三·湘中名校联考)已知集合A={x|x2-11x-12<0},B={x|x=2(3n+1),
n∈Z},则A∩B等于( )
A.{2} B.{2,8}
C.{4,10} D.{2,4,8,10}
解析:选B 因为集合A={x|x2-11x-12<0}={x|-1<x<12},集合B为被6整除余
数为2的数.又集合A中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2
和8,所以A∩B={2,8}.
7.(2017·石家庄调研)设全集U=R,集合A={x|x≥1},B={x|(x+2)(x-1)<0},则( )
A.A∩B=∅ B.A∪B=U
C.∁UB⊆A D.∁UA⊆B
解析:选A 由(x+2)(x-1)<0,解得-2∪B={x|x>-2},∁UB={x|x≥1或x≤-2},A⊆∁UB,∁UA={x|x<1},B⊆∁UA,故选A.

8.若x∈A,则1x∈A,就称A是伙伴关系集合,集合M=



-1,0,13,12,1,2,3,4

的所有非空子集中,具有伙伴关系的集合的个数为( )
A.15 B.16
C.28 D.25
解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3

和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15.

9.(2017·郑州第一次质量预测)已知命题p:1a>14,命题q:∀x∈R,ax2+ax+1>0,则
p成立是q成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A 命题p等价于00,必有a=0或






a>0,
a2-4a<0,
则0≤a<4,所以命题p是命题q的充分不必要条件.

10.已知f(x)=3sin x-πx,命题p:∀x∈0,π2,f(x)<0,则( )
A.p是假命题,綈p:∀x∈0,π2,f(x)≥0

B.p是假命题,綈p:∃x0∈0,π2,f(x0)≥0
第 3 页 共 5 页
C.p是真命题,綈p:∃x0∈0,π2,f(x0)≥0
D.p是真命题,綈p:∀x∈0,π2,f(x)>0
解析:选C 因为f′(x)=3cos x-π,所以当x∈0,π2
时,f′(x)<0,函数f(x)单调递减,即对∀x∈0,π2,f(x)真命题.而p的否定为∃x0∈0,π2,f(x0)≥0,故选C.
11.已知命题p:函数f(x)=2ax2-x-1在(0,1)内恰有一个零点;命题q:函数y=x
2-a

在(0,+∞)上是减函数.若p且綈q为真命题,则实数a的取值范围是( )
A.(1,+∞) B.(-∞,2]
C.(1,2] D.(-∞,1]∪(2,+∞)
解析:选C 由题意可得,对命题p,令f(0)·f(1)<0,即-1·(2a-2)<0,得a>1;对命

题q,令2-a<0,即a>2,则綈q对应的a的范围是(-∞,2].因为p且綈q为真命题,

所以实数a的取值范围是(1,2].
12.在下列结论中,正确的个数是( )

①命题p:“∃x0∈R,x20-2≥0”的否定形式为綈p:“∀x∈R,x2-2<0”;

②O是△ABC所在平面上一点,若OA―→·OB―→=OB―→·OC―→=OC―→·OA―→,则O是△ABC的
垂心;

③“M>N”是“23M>23N”的充分不必要条件;
④命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”.
A.1 B.2
C.3 D.4
解析:选C 由特称(存在性)命题与全称命题的关系可知①正确.

∵OA―→·OB―→=OB―→·OC―→,
∴OB―→·(OA―→-OC―→)=0,即OB―→·CA―→=0,
∴OB―→⊥CA―→.
同理可知OA―→⊥BC―→,OC―→⊥BA―→,故点O是△ABC的垂心,∴②正确.
第 4 页 共 5 页
∵y=23x是减函数,
∴当M >N时,23M<23N,当23M>23N时,M∴“M>N”是“23M>23N”的既不充分也不必要条件,∴③错误.
由逆否命题的写法可知,④正确.
∴正确的结论有3个.
二、填空题

13.设命题p:∀a>0,a≠1,函数f(x)=ax-x-a有零点,则綈p:
________________________.
解析:全称命题的否定为特称(存在性)命题,綈p:∃a0>0,a0≠1,函数f(x)=ax0-x

-a0没有零点.
答案:∃a0>0,a0≠1,函数f(x)=ax0-x-a0没有零点

14.设全集U={(x,y)|x∈R,y∈R},集合M=x,y y-3x-2=1,P={(x,y)|y≠x
+1},则∁U(M∪P)=________.
解析:集合M={(x,y)|y=x+1,且x≠2,y≠3},
所以M∪P={(x,y)|x∈R,y∈R,且x≠2,y≠3}.
则∁U(M∪P)={(2,3)}.
答案:{(2,3)}

15.已知命题p:不等式xx-1<0的解集为{x|0<x<1};命题q:在△ABC中,“A>B”
是“sin A>sin B”成立的必要不充分条件.有下列四个结论:①p真q假;②“p∧q”为
真;③“p∨q”为真;④p假q真,其中正确结论的序号是________.
解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充
要条件,所以命题q是假命题,所以①③正确.
答案:①③
16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命
题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到
大依次是________.

解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来
看.
第 5 页 共 5 页
由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否
命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.
同理,由命题B为真可得a>c>b或b>a>c.
故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,
c最小.
答案:c,a,b

相关文档
最新文档