北师大版数学九年级上册第1章2_矩形的性质与判定_教案5
北师大版九年级数学上册1.2.1矩形的性质与判定课件(共23张PPT)

矩形的定义:
有一个角是直角的平行四边形是矩形
平行四边形
有一个角 是直角
矩形
矩形是特殊的平行四边形
生活中的实例
分组讨论 探究新知
问题1: 既然矩形是平行四边形,那么它具有平行四 边形的哪些性质?
性质
边
角
对角线 对称性
矩形
对边平行 且相等
对角相等
对角线互相 中心对称 平分 图形
问题2
例1:如图,在矩形ABCD中,两条对角线相交于点O, ∠AOD=120°,AB=2.5cm,求矩形对角线的长。
A
D
O
B
C
你还有其他解法吗?
反馈练习二
1. 下面性质中,矩形不一定具有的是 [ D ]
A.对角线相等 C.是轴对称图形
B.四个角都相等 D.对角线垂直
2. 如图,在矩形ABCD中,两条对角线AC与 BD相交于点O,AB=6,OA=4.求BD与AD的长.
矩形是特殊的平行四边形
公平,因为OA=OC=OB=OD
当矩形的大小不断变化时,发现的结论是否仍然成立?
(2)AC = BD
公平,因为OA=OC=OB=OD (2)在运动过程中四边形不变的是什么?
这是矩形所
矩形的四个角都是直角.
O
特有的性质
生活链接---投圈游戏
四个学生正在做投圈游戏,他们分别站在一
B
C
O
B
C
直角三角形斜边上的中线等于斜边的一半。这个结 论对于所有直角三角形都成立。
反馈练习一
已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线. (1)若BD=3㎝,则AC=_6____㎝; (2)若∠C=30°,AB=5㎝,则AC=__1_0__㎝,BD=__5___ ㎝.
北师大版九年级数学第一章特殊平行四边形矩形的性质与判定

矩形【学习目标】1. 理解矩形的概念.2. 掌握矩形的性质定理与判定定理.【要点梳理】要点一、矩形的定义有一个角是直角的平行四边形叫做矩形.要点进阶:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.要点二、矩形的性质矩形的性质包括四个方面:1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.要点进阶:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.要点三、矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点进阶:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.要点四、直角三角形斜边上的中线的性质直角三角形斜边上的中线等于斜边的一半.推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.要点进阶:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.【典型例题】类型一、矩形的性质例1、如图所示,已知四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q 在矩形内.求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.举一反三:【变式】如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B'处,点A落在点A'处.'=;(1)求证:B E BF、、之间有何等量关系,并给予证明.(2)设AE=a,AB=b,BF=c,试猜想a b c例2、如图所示,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,∠CAE=15°,求∠BOE的度数.类型二、矩形的判定例3、如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.【变式】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO中,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?类型三、直角三角形斜边上的中线的性质例4、如图所示,BD、CE是△ABC两边上的高,G、F分别是BC、DE的中点.求证:FG⊥DE.【变式】如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =2,BC =1,运动过程中,点D 到点O 的最大距离为( ) A.21 B.5 C.1455 D.52【巩固练习】一.选择题1. 如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB ,添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .DE ⊥DC C .∠ADB=90°D .CE ⊥DE2. 矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则它的面积为( )A.32cmB. 42cmC. 122cmD. 42cm 或122cm3. 如图,矩形ABCG(AB <BC)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是( )A.0B.1C.2D.34. 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B′M 或B′M 的延长线上,那么∠EMF 的度数是( )A.85°B.90°C.95°D.100°5.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( )A.2B.3C.22D.326. 如图,在矩形ABCD 中(AD >AB ),点E 是BC 上一点,且DE=DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF=ADC .AB=AFD .BE=AD ﹣DF二.填空题7.如图,在平行四边形ABCD 中,延长AD 到点E ,使DE=AD ,连接EB ,EC ,DB 请你添加一个条件 ,使四边形DBCE 是矩形.8.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连结CE,则CE的长______.9. 如图所示,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=4cm,则矩形对角线AC长为________cm.10.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为_______.11.如图,矩形ABCD中,AB=3,BC=4,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为_________.12.矩形ABCD的∠A的平分线AE分BC成两部分的比为1:3,若矩形ABCD的面积为36,则其周长为.三.解答题13.已知在矩形ABCD中,点E为边AD上一点,点A关于BE的对称点G位于对角线BD上,EG的延长线交边BC于点F.(1)求证:AE≠ED;(2)求证:△BEF是等腰三角形;(3)若△BEF是正三角形,且AB=1,求EF的长.14.已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=12BD,则四边形ABCD是什么特殊四边形?说明理由.15.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.。
第2讲 矩形的性质和判定

数学辅导教案教学课题北师大版初三数学九年级上册第一章特殊的平行四边形预习教案教学目标知识目标:掌握矩形的定义,矩形的性质及其判定方法;能力目标:能灵活运用矩形的性质和判定解决简单问题,能区分矩形和平行四边形的异同点;情感态度价值观:从已有的知识学习出发,体会数学学习的乐趣.教学重点与难点重点:矩形的性质和判定定理难点:矩形性质的灵活运用教学过程第2讲矩形的性质和判定【知识梳理】一、定义:有一个是直角的平行四边形是矩形.二、性质:①矩形的四个角都是直角②矩形的对角线相互平分且相等③矩形既是中心对称图形又是轴对称图形,有两条对称轴④矩形的面积S=长×宽三、判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形;④对角线相等且互相平分的四边形是矩形.四、矩形与平行四边形的区别与联系:① 相同点1、两组对边分别平行2、两组对边分别相等3、两组对角分别相等4、对角线相互平分②区别1、 有一个角是直角的平行四边形矩形2、对角线相互平分且相等【例题精讲】考点1 矩形的性质【例1】 已知:如图,在矩形ABCD 中,BE=CF ,求证:AF=DE .【例2】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.【例3】如图,矩形ABCD 的两条对角线相交于点O ,60AOB ∠=︒,2AB =,则矩形的对角线AC 的长是( )A .2B .4C .23D .43【变式1】下列性质中,矩形具有而平行四边形不一定具有的是( )A 、对边相等B 、对角相等C 、对角线相等D 、对边平行【变式2】矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 .【变式3】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=考点2 矩形的判定【例4】如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.【例5】如图,在平行四边形ABCD 中,E 是CD 的中点,△ABE 是等边三角形,求证:四边形ABCD 是矩形.【例6】如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【变式4】如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF .⑴、求证:BD CD =.⑵、如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.【变式5】已知,如图,在ABC ∆中,AB AC =,AD 是BC 边上的高,AF 是BAC ∠的外角平分线, DE ∥AB 交AF 于E ,试说明四边形ADCE 是矩形.Y中BC边的中点,连接AE并延长AE交DG的延长线于点F.【变式6】如图11,已知E是ABCD(1)求证:△ABE△△FCE.(2)连接AC、BF,若△AEC=2△ABC,求证:四边形ABFC为矩形.【课堂训练】1、矩形具有而一般平行四边形不具有的性质是()A、对角线相等B、对边相等C、对角相等D、对角线互相平分2、下列对矩形的判定:“(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边是矩形;(6)对角线相等,且有一个直角的四边形是矩形;(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(8)对角线相等且互相垂直的四边形是矩形”中,正确的个数有()A、3 个B、4个C、5个D、6个3、已知四边形ABCD 是平行四边形,下列结论中不一定正确的是( ) A 、 A 、AB=CD B 、AC=BD C 、当AC ⊥BD 时,它是菱形 D 、当∠ABC=90°时,它是矩形4、矩形的两条对角线所成的钝角是120°,若一条对角线的长为2,那么矩形的周长为( )A 、6B 、5.8C 、2(1+ 3 )D 、5.5、如图,矩形内有两个相邻的正方形,面积分别为4和9,则阴影部分的面积为______________.6、已知:如图,在□ABCD 中,O 为边AB 的中点,且∠AOD=∠BOC .求证:□ABCD 是矩形.第5题图 9 47、如图所示,矩形ABCD中,M是BC的中点,且MA⊥MD,若矩形的周长为36cm,求此矩形的面积.8、折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=2,BC=1,求AG.A.等边三角形B.等腰三角形C.不等边三角形D.等腰直角三角形2.如上右图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD的周长为30 cm,则AB的长为()A.5 cmB.10 cmC.15 cmD.7.5 cm3.下列命题中正确的是()A.有一个角是直角的四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形4.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE等于()A.30°B.22.5°C.15°D.以上答案都不对5. 顺次连结矩形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形6. 若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A. 矩形B. 菱形C. 对角线互相垂直的四边形D. 对角线相等的四边形四、简答题1、如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:△ADC△ECD;(2)若BD=CD,求证四边形ADCE是矩形.3、2、如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相较于点O ,与BC 相较于N ,连接MN DN ,.(1)求证:四边形BMDN 是菱形;(2) 若 4 , 8 ,AB AD ==求MD 的长.。
北师大版九年级数学上册.2矩形的性质与判定课件

自我诊断
1、能够判断一个四边形是矩形的条件是(C)
A 对角线相等
B 对角线垂直
C对角线互相平分且相等 D对角线垂直且相等
2、矩形的一组邻边长分别是3cm和4cm,则它的对角线长是 5
cm
3、如图,直线EF∥MN,PQ交EF、MN于A、C两点,AB、CB、CD、AD
分别是∠ EAC、 ∠ MCA、 ∠ ACN、 ∠ CAF的角平分线,则四边形
九年级上册
1.2.2 矩形的性质与判定
复习回顾
四边形
两组对边 分别平行
平行 四边形
一个角 是直角
∟
矩形
定义:有一个角是直角的平行四边形叫做矩形。
四边形集合
平行四边形集合
矩形集合
边 矩形对边平行且相等;
A
D
O
角 矩形的四个角都是直角;
B
C
对角线 矩形的对角线相等且平分;
直角三角形的性质定理:
直角三角形斜边上的中线等于斜边的一半.
情境一:工人师傅为了检验两组对 边相等的四边形窗框是否成矩形, 一种方法是量一量这个四边形的两 条对角线长度,如果对角线长相等, 则窗框一定是矩形,你知道为什么 吗?
猜想:对角线相等的平行四边形是矩形 。
情境一:李芳同学有“边——直角、 边——直角、边——直角、边”这 样四步,画出了一个四边形,她说 这就是一个矩形,她的判断对吗? 为什么?
ABCD是( C ) E
A 菱形 B 平行四边形 C 矩形 D 不能确定
AP F
B
D
M
C
N
Q
能说出你这节课的收获和体验让大家与你分享吗?
作业
完成教材和 练习册中的练习 题。
1.2矩形的性质与判定+课件-2023-2024学年北师大版数学九年级上册

2.(2023·呼和浩特市中考)如图,矩形ABCD中,对角线BD的垂直
平分线MN分别交AD,BC于点M,N.若AM=1,BN=2,则BD的长为
( A )
A.2 3
B.3
C.2 5
D.3 2
3.如图,在矩形ABCD中,AB=6,AD=8.有一点P从点B沿着
BD往点D移动,若过点P作AB的垂线交AB于点E,过点P作AD的垂线交
证 明 : ∵∠ABO = ∠DCO = 90° , OB =
OC,∠AOB=∠DOC,
∴△AOB≌△DOC.
∴OA=OD.
∵点E,F分别是AO,DO的中点,
1
1
∴OE= OA,OF= OD.
2
2
∴OE=OF.
2.如图,AD和BC相交于点O,∠ABO
=∠DCO=90°,OB=OC,点E,F分别是
AO,DO的中点.
2.如图,公路AC,BC互相垂直,点M为公路AB的中点,为测量
湖泊两侧C,M两点间的距离,若测得AM的长为2.5 km,则M,C两点
间的距离为
( A )
A.2.5 km
B.3 km
C.4.5 km
D.5 km
3.若直角三角形斜边上的高是3,斜边上的中线是6,则这个直角
18
三角形的面积是______.
下列结论一定正确的是
( C )
A.AC平分∠BAD
B.AB=BC
C.AC=BD
D.AC⊥BD
【变式1】矩形的两边长分别为6 cm和8 cm,则它的对角线长为
10
_____cm.
知识点2 直角三角形斜边上的中线性质
【例2】如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中
九年级上册数学(北师大版)第一章1.2矩形的性质与判定公开课PPT课件

知识小结
两组对边 四边形 分别平行
平行
一个角
四边形 是直角
矩形
四边形集合
平行四边形集合
矩形集合
深入探究
如果四边形ABCD的对角线AC=BD,
这样的四边形是不是矩形?
A
D
B
AC=BD C
都 不
A
D
是 矩
AC=BD
形
B
C
7
知识探究
如果一个平行四边形的对角线变成相等呢?
A
D
A
D
O
O
B
C
B
C
将AC同时向两边拉长,使AC=BD
∴AD∥BC,AB∥CD.
B
C
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形的判定方法:
有三个角是直角的四边形是矩形 。
A
几何语言:
∵ ∠A=∠B=∠C=90° ∴四边形ABCD是矩形
B
D C
16
知识小结
四边形
三个角 是直角
四边形集合 平行四边形集合
矩形集合
矩形
归纳小结 矩形的三种判定方法
有两个角是直角 的 四边形是矩形吗?
有三个角是直角
C
C
D
C
D
D
A
B
A
B
A
B
(有一个角是直角) (有二个角是直角) (有三个角是直角)
13
情境一:李芳同学用“边—
—直角、边——直角、边—— 直角、边”这样四步,画出了 一个四边形,她说这就是一个 矩形,她的判断对吗?为什么?
猜想:有三个角是直角的四边形是矩形 。
随堂练习
2022年九年级数学上册第一章特殊平行四边形1.2矩形的性质与判定第2课时矩形的判定教案新版北师大版
1.2矩形的性质与判定第2课时矩形的判定教学目标【知识与能力】熟练运用矩形的定义和判定定理判定四边形是矩形.【过程与方法】经历探索、猜想、证明的过程,进一步发展推理论证的能力.【情感态度价值观】通过学生独立完成证明的过程,体会数学是严谨的科学,增强学生严谨的治学态度,从而养成良好的习惯.教学重难点【教学重点】能够用综合法证明矩形的判定定理并利用定义和定理进行证明.【教学难点】灵活运用矩形的性质和判定定理及其相关结论解决问题.课前准备多媒体课件、三角板.教学过程学生:定义,符合定义就是,不符合就不是.教师:说得非常好,我们来看一看下面的四边形是否符合矩形的定义.(课件展示)图1-2-441.已知:如图1-2-44,在ABCD中,AC=BD.求证:四边形ABCD是矩形,注意:学生思考、交流后,教师可以适当地引导:给出的条件与矩形的定义相比,少了哪个条件?怎么办?教师:分析后课件展示过程.证明:∵AB=DC,CA=BD,BC=CB,∴△ABC≌△DCB(SSS),∴∠ABC=∠DCB.在ABCD中,∵AB∥CD,∴∠ABC+∠DCB=180°,∴2∠ABC=180°,即∠ABC=90°,∴四边形ABCD是矩形.教师:在菱形中,对角线互相垂直,而对角线互相垂直的平行四边形是菱形.类似地,在矩形中,对角线相等,反过来,对角线相等的平行四边形是矩形.我们判定的着手点就是看看图形“特殊”的地方,比如菱形的边也比较特殊,四条边都相等,所以四条边都相等的四边形是菱形.那么矩形有没有比较特殊的地方呢?学生:矩形的角特殊,四个角都是直角.教师:如果一个四边形的四个角都是直角,那么这个四边形是不是矩形呢?我们来试一试(课件展示):2. 如图1-2-45,已知∠A=∠B=∠C=∠D=90°,则四边形ABCD是矩形吗?图1-2-45学生:思考、交流后尝试给出证明过程.教师:学生展示过程后点评、规范相应的步骤.证明:在四边形ABCD中,∵∠A=∠B=∠C=90°,∴∠A+∠B=180°,∠B+∠C=180°,∴AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.又∵∠A=90°,∴四边形ABCD是矩形.教师:我怎么感觉有一个条件没有用到呢?学生:∠D=90°.。
北师大课标版初中数学九年级上册1.2矩形的性质与判定(共15张PPT)
∠ABC=∠BCD=∠CDA=∠DAB=90°
对角线的性质:
AO=CO,BO=DO AC=BD
▪9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/52021/9/5Sunday, September 05, 2021 ▪10、阅读一切好书如同和过去最杰出的人谈话。2021/9/52021/9/52021/9/59/5/2021 2:07:36 AM ▪11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/52021/9/52021/9/5Sep-215-Sep-21 ▪12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/52021/9/52021/9/5Sunday, September 05, 2021
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/52021/9/52021/9/52021/9/59/5/2021 ▪14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月5日星期日2021/9/52021/9/52021/9/5 ▪15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/52021/9/52021/9/59/5/2021 ▪16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/52021/9/5September 5, 2021 ▪17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/52021/9/52021/9/52021/9/5
九年级数学上册第一章特殊平行四边形1.2.1矩形的性质与判定教案新版北师大版
5.矩形性质的应用
例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长。
证明:∵四边形ABCD是矩形,
∴AC=BD(矩形的对角线相等)
OA=OC= AC,OB=OD= BD,
∴OA=OD。
∵∠AOD=120°,
∴∠ODA=∠OAD= (180°-120°)= 30°。
C.对角线相等D.对角线互相平分
环
节
三
4.在矩形内探究直角三角形斜边中线的性质.
(1)如图,矩形ABCD的对角线AC与BD交于点O,那么
(1)BO是直角三角形ABC中一条怎样的特殊线段?
(2)BO与AC有什么大小关系?
(3)你能得到什么结论呢?
(2)教师板书推论及推理语言:直角三角形斜边上的中线等于斜边的一半。
矩形的四个角都是直角(角)
矩形的对角线相等
矩形既是轴对称图形又是中心对称图形
教学反思:
本节课依据新课标的要求,设计的每个环节都是以学生为主体,在学生已有的知识经验的基础上,让学生自己动手探究完成,以便提高学生的探索创新思维和创造能力。首先,从矩形的定义和平行四边形的性质引入,提出问题,让学生猜想矩形应具有的性质,调动学生的思维积极性,激发探究欲望;教学过程中充分利用学生手中的矩形实物:如书本,课桌等,让学生通过观察、测量和思考讨论等活动,得出矩形性质,在解决问题的过程中发展了学生的合情推理意识;再引导学生进行推理证明及应用,通过探索证明,开拓学生的思路,发展了学生的思维能力,帮助他们在自主探索和合作交流过程中真正理解和掌握矩形性质定理,体验数学学习过程中的探索性和挑战性以及推理的严谨性。
有一个角是直角的平行四边形叫做矩形(板书)
矩形的性质公开课教案+说课稿
《矩形的性质》教学设计对角线:对角线互相平分对称性:中心对称图形2.但矩形是特殊的平行四边形,它还具有一些特殊性质。
下面我们来进一步研究矩形的其他性质。
活动:(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;(2)根据测量的结果,猜想结论。
当矩形的大小不断变化时,发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等.活动:请同学们拿出准备好的矩形纸片,折一折,观察并思考。
①矩形是不是中心对称图形? 如果是,那么对称中心是什么?②矩形是不是轴对称图形?如果是,那么对称轴有几条?结论:矩形是轴对称图形,它有两条对称轴。
3.请你总结一下矩形有哪些性质?归纳概括矩形的性质:从边来说,矩形的对边平行且相等;从角来说,矩形的四个角都是直角;从对角线来说,矩形的对角线相等且互相平分;从对称性来说,矩形既是轴对称图形,又是中心对称图形。
4.问题:矩形具有而一般平行四边形不具有的性质是 ( C )A.对角相等B.对边相等C.对角线相等D.对角线互相平分形的特性,还可提醒学生,这种探索的基础是矩形“有一个角是直角”,学生通过动手测量,动脑思考,动口讨论,自主发现矩形的性质。
学生完全可以通过自己的操作、观察、猜想,最终得到矩形的对称特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。
第三环节:层层递进,推理论证提问:怎样证明你的猜想?已知:如图,四边形ABCD是矩形,∠ABC=90°对角线AC与DB相交于点O。
求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90°教师写出定理1、2的已知、求证,请同学分析思路,写出证明过程后互相订正交流。
该环节重在训练学生规范写出推理过程。
(2) AC=BD (答案参考课本例题)第四环节:建构新知,发展问题1、提出问题:(1)由矩形的四个角都是直角可得几个直角三角形?(2)在Rt△ABC中,点O是AC的中点,线段BO是AC边上的中线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共3页
第一章 特殊平行四边形
1.2 矩形的性质与判定(二)
教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学
生的分析能力。
重点、难点:
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
3.难点的突破方法:
矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形时,首先看这个四
边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基
本的判定方法(这体现了定义作用的双重性、性质和判定).而其它判定都是以 “定义”为
基础推导出来的.因此本节课要从复习矩形定义下手,并指出由平行四边形.....得到矩形只需要
添加一个独立条件,然后让学生思考讨论,如果小华做出的是一个平行四边形,再加一个什
么条件可以说明它是一个矩形呢?从而导出矩形判定方法.
对于判定方法1,要着重说明这个性质包括两个条件:(1)是平行四边形;(2)两条对
角线相等.对于判定2,只要求是四边形即可,因为有三个角是直角,可以推出四边形是平
行四边形,而由对角线相等却推不出四边形是平行四边形.为了加深印象,我们安排了例1,
在教学中可以适当地再增加一些判断的题目.
要让学生知道(1)矩形的判定方法有以下三种:①一个角是直角的平行四边形;②对
角线相等的平行四边形;③有三个角是直角的四边形.(2)而由矩形和平行四边形及四边形
的从属关系将矩形的判定方法又可分为两类:①从四边形出发必须增加三个特定的独立条
件;②从平行四边形出发只需再增加一个特定的独立条件.(3)特别地:①如果所给四边形
添加的条件不满足三个的肯定不是矩形;②所给四边形添加的条件是三个独立条件,但若与
判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
在教学中,除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形
的实用价值.
三、例题的意图分析
本节课的三个例题都是补充题,例1的一组判断题是为了让学生加深理解判定矩形的条
件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;
例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识
的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短
木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的
方法可行?
第2页 共3页
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角
和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; (×)
(2)有四个角是直角的四边形是矩形; (√)
(3)四个角都相等的四边形是矩形; (√)
(4)对角线相等的四边形是矩形; (×)
(5)对角线相等且互相垂直的四边形是矩形; (×)
(6)对角线互相平分且相等的四边形是矩形; (√)
(7)对角线相等,且有一个角是直角的四边形是矩形; (×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形. (√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和
判定方法证明或举反例,才能下结论.
例2 (补充)已知平行四边形ABCD的对角线AC、BD相交于点O,△AOB是等边
三角形,AB=4 cm,求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互
相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,
从而得到面积值.
解:∵ 四边形ABCD是平行四边形,
∴ AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴ BC=344822(cm).
例3 (补充) 已知:如图(1),ABCD的四个内
角的平分线分别相交于点E,F,G,H.求证:四边形EFGH
是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解
出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,
第3页 共3页
∴ AD∥BC.
∴ ∠DAB+∠ABC=180°.
又 AE平分∠DAB,BG平分∠ABC ,
∴ ∠EAB+∠ABG=×180°=90°.
∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是( ).
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点
E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=
GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框
无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.