小学数学速算技巧汇总

合集下载

小学数学8个乘法速算技巧方法口诀!太实用了,掌握做题快一半

小学数学8个乘法速算技巧方法口诀!太实用了,掌握做题快一半

乘法No.1十位数相同,个位数互补的乘法运算方法:在一个两位数的乘式里,凡是十位数相同,个位数互补时,在前面因数的十位数上加上一个1,再和另一个因数的十位数相乘,所得的积写在乘积的前两位。

然后个位和个位相乘的积,写在后两位,即为乘式的最终积。

口诀:前面数十位加个1,和另一个数十位乘得积,后写两个个位积,即为所求最终积。

例:67×63=6×(6+1)……7×3=42……21=4221No.2十位数互补,个位数相同的乘法运算方法:在一个两位数的乘式里,如果前面因数和后面因数的十位数互补,它们的个位数相同时计算方法:首先十位数与十位数相乘的积再加上个位数写前边,后写它们两个数个位相乘之积,即为所求最终积。

口诀:十位相乘加个位,个位相乘写后边。

十位数没有要添个0(例2)。

例1:76×36=(7×3+6)……6×6=27……36+2736例2:83×23=(8×2+3)……3×3=19……(0)9=1909No.3一个数十位与个位互补另一个数相同的乘法运算方法:在互补的十位数上加个1,和另一数十位乘得积,后面写上两个数个位相乘的积,即为所求的最终积。

注意:(1)补数在上面还是在下面,必须在互补数十位加个1,上下相乘,即可。

(2)对于多位数都相同的数,中间有几个数(除首尾两个),直接写在积得中间即可。

口诀:互补数十位加个1,和另一数十位乘得积,后续两个个位积,即为所求最终积。

No.411的乘法运算方法:凡任何一个数乘以11时,最高位是几,就向前位进几。

最高位数和第二位数相加写在第二位,第二位数和第三位数相加写在第三位。

相加超10前面加1,个位是几还写几,依此类推,就是11的乘积。

口诀:高位是几则进几,两两相加挨次写。

相加超十前加1,个位是几还是几。

No.5十位数是1的乘法运算方法:在一个两位数的乘式里,如果两个数十位都是1,个位是任意数,可将个位与个位相乘,得数写后面;个位与个位相加之和写中间;十位与十位相乘得积,写前边(有进位的加进位),即为这个乘式之积。

小学1-6年级数学速算技巧归纳

小学1-6年级数学速算技巧归纳

小学1-6年级数学速算技巧归纳☞1.加数“凑整”几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。

例:14+5+6=14+6+5=25☞2.运用减法性质“凑整”从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。

这种口算比较简便。

例:50-13-7=50-(13+7)=50-20=30☞3.近十、近百、近千的数计算时可以把接近整十、整百、整千……的数看作整十、整百、整千……的数进行解答。

例:1)497+136497可以近似的看成500,原式=(500-3)+136=500+136-3=6332)760+102将102看成100+2原式=760+100+2=860+2=862☞4.补数法利用“补数法”,将每个加数加1后凑成20000、2000、200、20进行计算。

例:19999+1999+199+19可以看成:(20000-1)+(2000-1)+(200-1)+(20-1)=20000+2000+200+20-4=22220-4=22216☞5.利用加减法交换律:先加再减的题目也可以做成先减再加。

例:562+316-62=562-62+316=500+316=816☞6.整百数和“零头数”在计算时可以先把题中的数看成两部分:整百数和“零头数”,然后把整百数与整百数相加减,“零头数”与“零头数”相加减。

例:598+31-296-103=500+98+31-200-96-100-3=500-200-100+98-96+31-3=200+2+28=230【中年级组】☞1. 带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

例如:23-11+7=23+7-114×14×5=4×5×1410÷8×4=10×4÷8☞2. 结合律法加括号法(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

小学数学速算方法与技巧

小学数学速算方法与技巧

小学数学速算方法与技巧小学数学速算方法与技巧1、头差1尾合10的两个两位数相乘的乘法速算,即用较大的因数十位数的平方减去它的个位数的平方。

例如“48x52=2500-4=2496。

2、首同尾合10的两个两位数相乘的乘法速算,即其中有一个十位数上的数加1, 再乘以另一个数的十位数,得到的积做两个数相乘的积的百位、十位,再用两个数个位上的数的积作为两个数相乘的积的个位、十位。

例如“14x16=224” ,其中“4x6=24”,24分别作为个位、十位,(1+1) x1=2”,2作为百位,即可得到答案224。

假如两个个位数相乘的积缺乏两位数,那么需要在十位上补0。

3、利用“估算平均数”速算。

例如“712+694+709+688=? ”,观察算式得到平均数7。

0,将每个数与平均数的差累计,可得12-6+9-12=3,最后计算为“700 x 4+3=2803”。

4、最后,还需要熟记一些常用的数据,例如乘法口诀表、圆周率、1至20的平方数、20以内的质数表等等。

当孩子掌握这些知识后,最主要的还是要做多种多样的速算练习。

拓展阅读:小学数学不好怎么提升对于刚入门的小学生来说,数学是个很模糊的概念;或者,数学在他们看来,只不过是口袋里的零花钱罢了,所以数学学得再好似乎都不影响正常生活。

久而久之,这门功课就被淡忘,因此就学不好了。

所以应当从培养兴趣开场。

一、诱发学生的学习兴趣。

“兴趣是最好的老师”,“没有兴趣的学习,无异于一种苦役;没有兴趣的地方,就没有智慧和灵感。

”入迷才能叩开思维的大门,智力和才能才能得到开展。

作为老师,要擅长诱发孩子的学习兴趣。

1、以生动的实例,描绘枯燥的概念,使比拟抽数学知识,利用数学知识,来进步孩子学习的兴趣。

2、利用思辨问题或实验结论作引导。

这样既可激发孩子的学习兴趣又可启发孩子的考虑。

3、提出矛盾的问题,引起学生的疑惑。

学消费生疑惑,探求真理的愿望,也是激发学习兴趣的手段之一。

4、诱发求知欲。

28种速算技巧范文

28种速算技巧范文

28种速算技巧范文速算技巧是在计算过程中,利用一些简单的技巧来快速完成计算的方法。

下面将介绍28种常用的速算技巧。

一、整数加减法1.相邻数相加:当两个数相邻时,可以直接将它们的个位数相加,例如:37+38=752.乘以1、10、100等:将一个整数乘以1、10、100等,只需要将该数末尾加上相应个数个0。

3.整数相加:如果两个整数相加时,个位数相加的和大于9,则合并十位数时要进位,例如:25+38=634.十位数的加减:在一个整数加或减一个以0结尾的数时,只需将个位数保持不变,十位数加或减15.加9减1:一个整数加9等于该整数加10再减1,例如:24+9=34,等同于24+10-16.转化成加减法:当一个整数减去另一个整数时,可以将减法转化为加法,例如:35-13=35+(-13)。

二、乘法技巧7.末尾为5的数乘法:将5乘以任意一个数字,除了个位为5以外,其他位数是通过原数乘以10再加上个位的5得到。

8.平方尾数:一个数的末两位是25,它的平方等于百位数是下一个整数、末两位是259.乘以11:一个两位数乘以11,只需将十位数和个位数相加得到的个位数插入两个原数的中间。

10.乘以9:将一个整数乘以9等于将该整数乘以10再减去该整数本身。

11.副位数交叉相乘:当两个数都有个位和十位时,先将个位相乘,再将十位相乘,最后相加。

12.乘法交换律:两个数相乘,交换两数的位置,结果不变。

三、除法技巧13.除以5:一个整数除以5,只需将该整数的个位数除以5得到的商作为商的十位数,商的个位数加上214.除以9:一个整数除以9,只需将该整数的个位数除以9得到的商作为商的十位数,商的个位数等于1减去百位数。

15.除以11:一个整数除以11,将该数的个位数减去十位数,得到的差就是商的个位数,商十位数为被除数的十位数。

16.除法中的乘法:如16÷4,可以转化为4的2倍是8,4的4倍是16,所以16除以4等于4四、分数技巧17.分数的加减:分数的加减运算可以通过找到它们的最小公倍数来消除分母,然后进行数值的加减。

超实用的小学数学速算方法

超实用的小学数学速算方法

一、两位数乘两位数。

1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?解:1×1= 1 2+4=62×4=812×14=168 注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?解:2+1=32×3=63×7=2 1 23×27=62 1注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?解:3+1= 4 4×4=1 6 7×4=28 37×44=1628 注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:口诀:头乘头,头加头,尾乘尾。

例:21×41=?解:2×4=8 2+4= 6 1×1= 121×41=86 15.11乘任意数:口诀:首尾不动下落,中间之和下拉。

例:11×23125=?解:2+3= 5 3+1= 4 1+2= 3 2+5=7 2和5分别在首尾11×23125=25437 5 注:和满十要进一。

6.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?解:13个位是 3 3×3+2=1 1 3×2+6=1 2 3×6=18 13×326=4238 注:和满十要进一。

数学中关于两位数乘法的“首同末和十”和“末同首和十”速算法。

所谓“首同末和十”,就是指两个数字相乘,十位数相同,个位数相加之和为10,举个例子,67×63,十位数都是6,个位7+3之和刚好等于10,我告诉他,象这样的数字相乘,其实是有规律的。

数学巧算速算方法

数学巧算速算方法

数学巧算速算方法
以下是一些常见的数学巧算速算方法:
1. 乘法速算:
- 相邻两位数相乘:如72 × 74 = 5376,先计算7 × 7 = 49,再计算2 × 4 = 8,最后将结果连接起来,得到5376。

- 一位数乘以11的倍数:如4 × 44 = 176,将原数首尾加起来得到第一位数(4 + 4 = 8),再将原数的个位数放在中间,得到结果176。

2. 除法速算:
- 除以10的倍数:如240 ÷ 30 = 8,将被除数末尾的0去掉,再将结果与被除数的个位数相乘,得到最终结果8。

- 除以2的倍数:如468 ÷ 12 = 39,将被除数每一位数相加得到和(4 + 6 + 8 = 18),再判断和是否能被12整除,如果可以,则商为和除以12,否则商加1。

3. 平方速算:
- 以5为基准的平方:如65² = 4225,将原数去掉个位数后乘以(原数加1),再在末尾加上25,得到结果4225。

- 以50为基准的平方:如57² = 3249,将原数去掉个位数后乘以(原数加1),再在末尾加上49,得到结果3249。

这些巧算速算方法可以帮助简化数学运算,提高计算速度。

但需要注意的是,速算方法适用于简单的计算,对于复杂的计算仍然需要使用正常的计算方法。

数学技巧揭秘:十大速算法则

数学技巧揭秘:十大速算法则介绍数学是我们日常生活中不可或缺的一部分,而速算技巧能够帮助我们更快、更准确地进行数学计算。

本文将揭秘十大常用的速算法则,帮助您提高数学计算的效率。

一、加法法则1. 同号相加法则:两个正数相加,结果为正数;两个负数相加,结果为负数。

2. 异号相加法则:正数与负数相加,结果的符号取决于绝对值较大的数,绝对值较大的数的符号保留。

二、减法法则1. 正数减正数:结果为正数。

2. 正数减负数:结果为正数加上负数的绝对值。

3. 负数减正数:结果为负数加上正数的绝对值。

4. 负数减负数:结果的符号取决于绝对值较大的数,绝对值较大的数的符号保留。

三、乘法法则1. 同号相乘法则:两个正数相乘,结果为正数;两个负数相乘,结果为正数。

2. 异号相乘法则:两个数相乘,结果为负数。

四、除法法则1. 正数除以正数:结果为正数。

2. 正数除以负数:结果为负数。

3. 负数除以正数:结果为负数。

4. 负数除以负数:结果为正数。

五、平方法则1. 正数的平方为正数。

2. 负数的平方为正数。

六、立方法则1. 正数的立方为正数。

2. 负数的立方为负数。

七、乘方法则1. 正数的任意次幂为正数。

2. 负数的奇次幂为负数,负数的偶次幂为正数。

八、开方法则1. 正数的平方根为正数。

2. 负数没有实数平方根。

九、百分比法则1. 将百分数转换为小数:将百分数除以100。

2. 将小数转换为百分数:将小数乘以100。

十、约数法则1. 一个数的约数是能够整除该数的整数。

2. 一个数的因数是能够被该数整除的整数。

结论掌握这十大速算法则,能够让我们在数学计算过程中更加得心应手。

通过熟练运用这些速算法则,我们可以更快地进行数学运算,提高计算的准确性和效率。

掌握数学:十大速算技巧解析

掌握数学:十大速算技巧解析1. 快速乘法快速乘法是一种能够快速计算两个数字相乘的技巧。

其中一个常见的方法是使用交叉相乘法。

例如,计算37乘以25,可以将37分解为30和7,将25分解为20和5,然后进行交叉相乘得到600和35,最后将结果相加得到635。

2. 近似除法近似除法是一种用来估算除法结果的技巧。

例如,计算96除以7,可以先将96近似为100,然后将7近似为10,接着进行简单的除法计算得到10,最后将结果乘以10得到近似的商为100。

3. 平方技巧平方技巧是一种用来快速计算一个数字的平方的方法。

例如,计算13的平方,可以将13分解为10和3,然后使用公式(10+3)^2= 10^2 + 2*10*3 + 3^2 = 100 + 60 + 9 = 169,得到13的平方为169。

4. 百分比转换百分比转换是一种将一个数转换为百分数的技巧。

例如,将0.75转换为百分数,可以将0.75乘以100得到75%。

5. 整数除法整数除法是一种用来计算两个整数相除得到整数商和余数的方法。

例如,计算47除以6,可以得到商为7和余数为5。

6. 近似开方近似开方是一种用来估算一个数的平方根的技巧。

例如,要估算√38,可以找到最接近38的完全平方数,即36,然后将38近似为36,接着计算√36 = 6,得到近似的平方根为6。

7. 十进制转换十进制转换是一种将一个数转换为不同进制的方法。

例如,将10转换为二进制,可以使用除以2取余数的方法,得到10的二进制表示为1010。

8. 快速乘方快速乘方是一种用来快速计算一个数的幂的方法。

例如,计算2的10次方,可以使用二进制的方法,将10表示为1010,然后按照相应的位数进行计算,得到结果为1024。

9. 等差数列求和等差数列求和是一种用来计算一个等差数列的和的方法。

例如,计算1到100的和,可以使用等差数列求和公式(首项 + 末项) * 项数 / 2,得到结果为5050。

小学数学速算的五种技巧方法

小学数学速算的五种技巧方法在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?在熟练掌握计算法则和运算顺序的前提下,可以根据题目本身的特点,运用速算和巧算,化繁为简,化难为易,算得又快又准确。

一、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。

(2)53+36+47=53+47+36 =(53+47)+36=100+36=136因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。

2.计算:(1)96+15 (2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111把15分拆成15=4+11,这是因为96+4=100,可凑整先算。

(2)52+69=(21+31)+69 =21+(31+69)=21+100=121因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。

3.计算:(1)63+18+19 (2)28+28+28解:(1)63+18+19 =60+2+1+18+19 =60+(2+18)+(1+19)=60+20+20=100将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。

(2)28+28+28 =(28+2)+(28+2)+(28+2)-6 =30+30+30-6=90-6=84因为28+2=30可凑整,但最后要把多加的三个2减去。

二、改变运算顺序在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19 (2)45+18-19解:(1)45-18+19=45+19-18 =45+(19-18)=45+1=46把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44加18减19的结果就等于减1。

小学数学速算技巧顺口溜都在这里了

01 简便计算三字经做简算,是享受。

细观察,找特点。

连续加,结对子。

连续乘,找朋友。

连续减,减去和。

连续除,除以积。

减去和,可连减。

除以积,可连除。

乘和差,分别乘。

积加减,莫慌张,同因数,提出来,异因数,括号放。

同级算,可交换。

特殊数,巧拆分。

合理算,我能行。

02 常用的七种简便运算方法方法一:带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

a+b+c=a+c+b a+b-c=a-c+b a-b+c=a+c-b a-b-c=a-c-ba×b×c=a×c×ba÷b÷c=a÷c÷ba×b÷c=a÷c×ba÷b×c=a×c÷b)方法二:结合律法(一)加括号法1.在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

2.在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

(二)去括号法1.在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。

)。

2.在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。

)。

方法三:乘法分配律法1.分配法括号里是加或减运算,与另一个数相乘,注意分配例:8×(3+7)=8×3+8×7=24+56=802.提取公因式注意相同因数的提取。

例:9×8+9×2=9×(8+2)=9×10 =903.注意构造,让算式满足乘法分配律的条件。

例:8×99=8×(100-1)=8×100-8×1=800-8 =792方法四:凑整法看到名字,就知道这个方法的含义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学速算技巧汇总11. 加数“凑整”几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。

例:14+5+6=14+6+5=252. 运用减法性质“凑整”从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。

这种口算比较简便。

例:50-13-7=50-(13+7)=50-20=303. 近十、近百、近千的数计算时可以把接近整十、整百、整千……的数看作整十、整百、整千……的数进行解答。

例:(1)497+136497可以近似的看成500,原式=(500-3)+136=500+136-3=633(2)760+102将102看成100+2原式=760+100+2=860+2=8624. 补数法利用"补数法",将每个加数加1后凑成20000、2000、200、20进行计算。

例:19999+1999+199+19可以看成:(20000-1)+(2000-1)+(200-1)+(20-1)=20000+2000+200+20-4=22220-4=222165. 利用加减法交换律:先加再减的题目也可以做成先减再加。

例:562+316-62=562-62+316=500+316=8166. 整百数和“零头数”在计算时可以先把题中的数看成两部分:整百数和"零头数",然后把整百数与整百数相加减,"零头数"与"零头数"相加减。

例:598+31-296-103=500+98+31-200-96-100-3=500-200-100+98-96+31-3=200+2+28=23021. 带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。

例如:23-11+7=23+7-114×14×5=4×5×1410÷8×4=10×4÷82. 结合律法加括号法(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。

例如:23+19-9=23+(19-9)33-6-4=33-(6+4)(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。

例如:2×6÷3=2×(6÷3)10÷2÷5=10÷(2×5)去括号法(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。

例如:17+(13-7)=17+13-723-(13-9)=23-13+923-(13+5)=23-13-5(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。

)例如:1×(6÷2)=1×6÷224÷(3×2)=24÷3÷224÷(6÷3)=24÷6×33. 乘法分配律法分配法括号里是加或减运算,与另一个数相乘,注意分配。

例如:8×(5+11)=8×5+8×11提取公因式法注意相同因数的提取。

例如:9×8+9×2=9×(8+2)4. 凑整法看到名字,就知道这个方法的含义。

用此方法时,需要注意观察,发现规律。

还要注意还哦,有借有还,再借不难嘛。

例如:99+9=(100-1)+(10-1)5. 拆分法拆分法就是为了方便计算,把一个数拆成几个数。

这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。

分拆还要注意不要改变数的大小哦。

例如:32×125×25=4×8×125×25=(4×25)×(8×125)=100×100031. 速算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是"凑整",根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=13002. 速算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。

特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?3. 速算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:73.15×9.9【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】:原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.1854. 速算之等值变化【点拨】:等值变化是小学数学中重要的思想方法。

做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。

而减法中,是被减数和减数同时增加或减少相同的数,差才不变。

例:1234-798【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.【解答】:原式=1234-800+2=436。

5. 速算之去括号法【点拨】:在加减混合运算中,括号前面是"加号或乘号",则去括号时,括号里的运算符号不变;如果括号前面是"减号或除号",则去括号时,括号里的运算符号都要改变。

例:(4.8×7.5×8.1)÷(2.4×2.5×2.7)【分析】:首先根据"去括号原则"把括号去掉,然后根据"在同级运算中每个数可带着它前边的符号‘搬家’"进行简算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)=2×3×3=186. 速算之同尾先减【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。

【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减2567. 速算之提取公因数【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。

(1)直接提取例3.65×23+3.65×77【分析】:这道题比较简单,利用乘法分配律的反向应用,直接提取公因数3.65就行了。

【解答】:原式=3.65×(23+77)=3.65×100=365(2)省略×1的题目例:6.3×101-6.3【分析】:把算式补充完整,6.3×101-6.3×1,学生就很容易看出两个乘法算式中有相同的因数6.3【解答】:原式=6.3×(101-1)=6.3×100=630(3)积不变规律(主要是小数点的变化)例:6.3×2.57+25.7×0.37【分析】:可根据“乘法积不变性质,一个因数扩大,一个因数缩小相同的倍数,积不变”把25.7×0.37转化成2.57×3.7,两部分就有了相同的因数2.57,创造出了可以用乘法分配律的条件。

【解答】:原式=6.3×2.57+2.57×3.7=2.57×(6.3+3.7)=25.7特殊数的速算技巧1. 不管是几个1的平方,都是有规律的。

2. 乘数固定为8,加数递增,就会变成有规律的金字塔型。

3. 不管是什么样的二位数乘以11,乘积的百位和个位数字会是被乘数的两个数字,而十位数字则是被乘数的数字相加。

4. 若乘数是11,不管被乘数是多少,只要把头尾数字写好,中间的数字按照下图相加,就能轻松得出答案。

5. 九九乘法表里,9x3=27,9x8=72,乘积刚好是颠倒的数字!只有9的乘积是这样。

6. 被乘数为9的乘积是有规律的。

7. 面对数字超大的平方数,可以按照下面的公式计算。

不过只有靠近100的平方数比较好算。

8. 分子为一,分母不同的数字相加时,只要找出分母的最小公倍数,把分母变成一样的数字就可以了。

9. 被乘数和乘数都很大的话,把被乘数十位数以上的数字以下面的公式运算:十位数以上x(十位数以上+1)为乘积的「头」,被乘积与乘积的个位数字互乘为「尾」,就能算出答案,不过尾数要相加等于10才行。

相关文档
最新文档