专题01 集合与常用逻辑用语-2018年高考题和高考模拟题数学(文)分项版汇编 Word版含解析
2018届高考数学(文)一轮复习精编配套试题第一章《集合与常用逻辑用语》(含答案精细解析)

其中正确的个数是(
)
A .4
B .3 C .2
D .1
11、 ( 2013 年高考陕西卷(文 6)) 设 z 是复数 , 则下列命题中的假命题是(
)
A .若 z 2 0 , 则 z 是实数
B.若 z2 0 , 则 z 是虚数
C.若 z 是虚数 , 则 z 2 0
D.若 z 是纯虚数 , 则 z2 0
B.有的实数的平方是正数 D.至少有一个实数的平方是正数
2
7、 ( 2013 年 高考课标 Ⅰ 卷(文)) ( 1)已知集合 A { 1 , 2, 3, 4} , B { x | x n , n A} ,来自则A B ()
(A ){ 1, 4} (B ){ 2, 3} (C) {9 ,16} (D){ 1, 2}
A { x | log 1 (2 x 1) 0}, 则 C R A =
2
1
A. ( , )
2
B . (1 , )
1
1
C . [0, ] [1 , ) D . ( , ] [1 , )
2
2
6. .【云南师大附中 2013 届高三高考适应性月考卷(四)文】命题“所有实数的平方都是
正数”的否定为 A.所有实数的平方都不是正数 C.至少有一个实数的平方不是正数
l : x y 1 0 上”的(
)
A .充分而不必要条件 C.充分必要条件 C.充要条件 10、【贵州省六校联盟 2013 届高三第一次联考
B.必要而不充分条件 D .既不充分也不必要条件 D .既不充分也不必要条件 文】 给出下列四个命题:
(1)命题 “若
,则 tan
4
1 ”的逆否命题为假命题;
(2)命题 p : x
2018年高考理科数学通用版三维二轮专题复习专题检测:(一) 集合与常用逻辑用语 Word版含解析

专题检测(一) 集合与常用逻辑用语一、选择题1.(2016·全国卷Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)·(x -2)<0,x ∈Z},则A ∪B =( ) A .{1} B .{1,2} C .{0,1,2,3}D .{-1,0,1,2,3}解析:选C 因为B ={x |(x +1)(x -2)<0,x ∈Z}={x |-1<x <2,x ∈Z}={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.2.(2017·成都一诊)命题“若a >b ,则a +c >b +c ”的否命题是( ) A .若a ≤b ,则a +c ≤b +c B .若a +c ≤b +c ,则a ≤b C .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b ,则a +c ≤b +c ”.3.(2017·广西三市第一次联考)设集合A ={x |8+2x -x 2>0},集合B ={x |x =2n -1,n ∈N *},则A ∩B 等于( )A .{-1,1}B .{-1,3}C .{1,3}D .{3,1,-1}解析:选C ∵A ={x |-2<x <4},B ={1,3,5,…}, ∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确.∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p 是真命题,在△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,所以命题q 是假命题,所以①③正确.答案:①③16.a ,b ,c 为三个人,命题A :“如果b 的年龄不是最大,那么a 的年龄最小”和命题B :“如果c 不是年龄最小,那么a 的年龄最大”都是真命题,则a ,b ,c 的年龄由小到大依次是________.解析:显然命题A 和B 的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A 可知,当b 不是最大时,则a 是最小,所以c 最大,即c >b >a ;而它的逆否命题也为真,即“若a 的年龄不是最小,则b 的年龄是最大”为真,即b >a >c .同理,由命题B 为真可得a >c >b 或b >a >c .故由A 与B 均为真可知b >a >c ,所以a ,b ,c 三人的年龄大小顺序是:b 最大,a 次之,c 最小.答案:c ,a ,b。
2018年高考数学试题分类汇编——集合与逻辑 精品

2018年高考数学试题分类汇编——集合与逻辑一、选择题部分(2018上海文数)16.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ____________条件(2018湖南文数)2. 下列命题中的假命题...是 A. ,lg 0x R x ∃∈= B. ,tan 1x R x ∃∈=C. 3,0x R x ∀∈>D. ,20x x R ∀∈>(2018浙江理数)(1)设P={x ︱x <4},Q={x ︱2x <4},则(A )p Q ⊆ (B )Q P ⊆(C )R p Q C ⊆ (D )R Q P C ⊆ (2018陕西文数)6.“a >0”是“a >0”的(A)充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(2018陕西文数)1.集合A ={x -1≤x ≤2},B ={xx <1},则A ∩B = (A){x x <1}(B ){x -1≤x ≤2} (C) {x-1≤x ≤1} (D) {x-1≤x <1} (2018辽宁文数)(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A =(A ){}1,3 (B ){}3,7,9 (C ){}3,5,9 (D ){}3,9(2018辽宁理数)1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}(2018全国卷2文数)(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5(2018江西理数)2.若集合{}A=|1x x x R ≤∈,,{}2B=|y y x x R =∈,,则A B ⋂=A. {}|11x x -≤≤B. {}|0x x ≥C. {}|01x x ≤≤D. ∅(2018安徽文数)(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)(2018浙江文数)(6)设0<x <2π,则“x sin 2x <1”是“x sinx <1”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(2018浙江文数)(1)设2{|1},{|4},P x x Q x x =<=<则P Q =(A){|12}x x -<<(B){|31}x x -<<- (C){|14}x x <<- (D){|21}x x -<<(2018山东文数)(7)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(2018山东文数)(1)已知全集U R =,集合{}240M x x =-≤,则U C M = A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或(2018北京文数)⑴ 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I =(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}(2018北京理数)(6)a 、b 为非零向量。
最新-2018届高考数学模拟题集合与常用逻辑用语分类汇编文新人教版 精品

【数学文】2018届高考模拟题(课标)分类汇编:集合与常用逻辑用语1.(2018·朝阳期末)设全集U R =,A =(){}20x x x -<,{}10B x x =->,则A B I =( D ) (A )(2, 1)-(B )[1, 2)(C )(2, 1]-(D )(1, 2)2.(2018·丰台期末)已知命题p :1x ∃>,210x ->,那么p ⌝是( B )A .1x ∀>,210x -> B .1x ∀>,210x -≤ C .1x ∃>,210x -≤ D .1x ∃≤,210x -≤3.(2018·丰台期末)若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={,,}a b c ,对于下面给出的四个集合τ:①{{}{}{}}a c a b c τ=∅,,,,,; ②{{}{}{}{}}b c b c a b c τ=∅,,,,,,,; ③{{}{}{}}a a b a c τ=∅,,,,,; ④{{}{}{}{}}a c b c c a b c τ=∅,,,,,,,,. 其中是集合X 上的拓扑的集合τ的序号是 ②④ .4. (2018·东莞期末)已知集合}3,2,1{=M ,}4,3,2{=N ,则( C )A.N M ⊆B. M N ⊆C. }3,2{=N MD. }4,1{=N M5. (2018·东莞期末)已知命题:p R x ∈∃,022≤++a x x .若命题p 是假命题,则实数a 的取值范围是 (1,+∞) .(用区间表示) 6.(2018·佛山一检)已知集合{}{}1,0,1,1,2A B =-=,则AB 等于(C )A .{}1,0,1-B .{}0,1C .{}1D .{}1,27.(2018·广东四校一月联考)设全集{1,3,5,7,9}U =,集合{1,|5|,9}A a =-,{5,7}U A =ð,则实数a 的值是( D ) A .2 B .8C .2-或8D .2或88. (2018·广州期末)函数()g x =( A )A .{3x x ≥-}B .{3x x >-}C .{3x x ≤-} D .{3x x <-}9.(2018·广州期末)“2>x ”是“0232>+-x x ”成立的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件10.(2018·哈九中高三期末)已知全集{}1,2,3,4,5,6,7U =,{}3,4,5M =,{}1,3,6N =,则集合{}2,7等于( )A .MNB .()()U UC M C NC .()()U U C M C ND .MN【答案】B【分析】根据元素与集合的关系和集合的运算规律进行,2,7即不在结合M 中,也不在集合N 中,所以2,7在集合U C M 且在U C N 中,根据并集的意义即可。
2018高考数学文人教新课标大一轮复习配套文档:第一章

第一章集合与常用逻辑用语1.集合(1)集合的含义与表示①了解集合的含义,体会元素与集合的属于关系.②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集.②在具体情境中,了解全集与空集的含义.(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③能使用Venn图表达集合间的基本关系及集合的基本运算.2.常用逻辑用语(1)理解命题的概念.(2)了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的含义.(4)了解逻辑联结词“或”“且”“非”的含义.(5)理解全称量词和存在量词的意义.(6)能正确地对含一个量词的命题进行否定.1.1 集合及其运算1.集合的基本概念(1)我们把研究对象统称为________,把一些元素组成的总体叫做________. (2)集合中元素的三个特性:______,______, _______. (3)集合常用的表示方法:________和________. 2.常用数集的符号(1)元素与集合之间存在两种关系:如果a 是集合A 中的元素,就说a ________集合A ,记作________;如果a 不是集合A 中的元素,就说a ________集合A ,记作________.(2)集合与集合之间的关系:⊆A ,B≠12n 有________个.4.两个集合A 与B 之间的运算5.(1)①A∩B________A;②A∩B________B;③A∩A=________;④A∩=________;⑤A∩B________B∩A.(2)①A∪B________A;②A∪B________B;③A∪A=________;④A∪=________;⑤A∪B________B∪A.(3)①∁U(∁U A)=________;②∁U U=________;③∁U=________;④A∩(∁U A)=____________;⑤A∪(∁U A)=____________.(4)①A∩B=A⇔________⇔A∪B=B;②A∩B=A∪B⇔____________.(5)记有限集合A,B的元素个数为card(A),card(B),则:card(A∪B)=____________________________;card=________________________.自查自纠1.(1)元素集合(2)确定性互异性无序性(3)列举法描述法2.N N*(N+) Z Q R C3.(1)属于a∈A不属于a∉A(2)A⊆B且B⊆A A⊆B B⊇A A B B A非空集合2n2n-1 2n-24.A∪B A∩B∁U A{x|x∈A或x∈B}{x|x∈A且x∈B} {x|x∈U且x∉A}5.(1)①⊆②⊆③A④⑤=(2)①⊇②⊇③A④A⑤=(3)①A②③U④⑤U(4)①A⊆B②A=B(5)card(A)+card(B)-card(A∩B)card(U)-card(A)-card(B)+card(A∩B)(2016·北京)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=( ) A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}解:易知A∩B=(2,3).故选C.(2015·陕西)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( ) A.B.(0,1]C.解:因为M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},所以M∪N=.故选A.(2016·山东)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( ) A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解:易知A=(0,+∞),B={x|-1<x<1},所以A∪B=(-1,+∞).故选C.设A={1,4,2x},B={1,x2},若B⊆A,则x的值为________.解:当x2=4时,x=±2,若x=2,则不满足集合中的元素的互异性,所以x≠2;若x =-2,则A={1,4,-4},B={1,4},满足题意.当x2=2x时,x=0或2(舍去),x=0满足题意,所以x=0或-2.故填0或-2.已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是________.解:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A⊆B,如图所示,则a>4.故填(4,+∞).类型一 集合的概念(1)若集合A ={-1,1},B ={0,2},则集合M ={z |z =x +y ,x ∈A ,y ∈B }中的元素的个数为( )A .5B .4C .3D .2解:当x =-1,y =0时,z =-1;当x =-1,y =2时,z =1;当x =1,y =0时,z =1;当x =1,y =2时,z =3.故z 的值为-1,1,3,所以所求集合M ={-1,1,3},共有3个元素.故选C .(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3,2m 2+m=3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,2m 2+m =3,综上知,m =-32.故填-32.【点拨】(1)用描述法表示集合,首先要弄清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.(1)已知集合S ={x |3x +a =0,a ∈R },如果1∈S ,那么a 的值为( )A .-3B .-1C .1D .3解:因为1∈S ,所以3+a =0,a =-3.故选A .(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b ,0},则a 2 017+b 2 017=________.解:由已知得ba=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =-1,所以a2 017+b2 017=-1.故填-1.类型二 集合间的关系已知集合A ={x |x 2-3x -10≤0}.(1)若B ={x |m +1≤x ≤2m -1},B ⊆A ,求实数m 的取值范围; (2)若B ={x |m -6≤x ≤2m -1},A =B ,求实数m 的取值范围; (3)若B ={x |m -6≤x ≤2m -1},A ⊆B ,求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)若B ⊆A ,则①当B =,有m +1>2m -1,即m <2,此时满足B ⊆A ;②当B ≠,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈,即不存在实数m 使得A =B .(3)若A ⊆B ,则⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5,解得3≤m ≤4.所以m 的取值范围为.【点拨】本例主要考查了集合间的关系,“当B ⊆A 时,B 可能为空集”很容易被忽视,要注意这一“陷阱”.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集的个数;(3)当x ∈R 时,若A ∩B =,求实数m 的取值范围. 解:(1)①当m +1>2m -1,即m <2时,B =,满足B ⊆A . ②当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,可得2≤m ≤3.综上,m 的取值范围是(-∞,3].(2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, 所以A 的非空真子集个数为28-2=254. (3)因为x ∈R ,且A ∩B =,所以当B =时,即m +1>2m -1,得m <2,满足条件;当B ≠时,有⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5,或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得m >4.综上,m 的取值范围是(-∞,2)∪(4,+∞).类型三 集合的运算(1)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )等于( ) A .{x |x ≥0} B .{x |x ≤1} C .{x |0≤x ≤1}D .{x |0<x <1}解:易知A ∪B ={x |x ≤0或x ≥1}, 所以∁U (A ∪B )={x |0<x <1}.故选D .(2)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.解:因为U ={1,2,3,4},∁U (A ∪B )={4},所以A ∪B ={1,2,3}.又因为B ={1,2},所以{3}⊆A ⊆{1,2,3}.又∁U B ={3,4},所以A ∩(∁U B )={3}.故填{3}.(3)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.故填-1,1.【点拨】在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.另外要注意分类讨论和数形结合思想的应用.(1)设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|⎝ ⎛⎭⎪⎫121-x >1,N ={x |-1≤x ≤3},则N ∩(∁R M )=( )A .(1,+∞)B .(-∞,-1)C .D .(1,3)解:因为M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|⎝ ⎛⎭⎪⎫121-x >1={x |x >1},则∁R M ={x |x ≤1},且N ={x |-1≤x ≤3},所以N∩(∁R M)=.故选C.(2)(2015·唐山模拟)集合M={2,log3a},N={a,b},若M∩N={1},则M∪N=( )A.{0,1,2} B.{0,1,3}C.{0,2,3} D.{1,2,3}解:因为M∩N={1},所以log3a=1,即a=3,所以b=1.所以M={2,1},N={3,1},M∪N={1,2,3}.故选D.(3)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=,则m的值是________.解:A={-2,-1}.由(∁U A)∩B=,得B⊆A.x2+(m+1)x+m=(x+m)(x+1),所以当m=1时,B={-1},合要求,当m≠-1时,B={-1,-m},故只能有m=2.所以m=1或2.故填1或2.类型四Venn图及其应用设M,P是两个非空集合,定义M与P的差集为:M-P={x|x∈M,且x∉P},则M-(M-P)等于( )A.P B.M∩P C.M∪P D.M解:作出Venn图.当M∩P≠时,由图知,M-P为图中的阴影部分,则M-(M-P)显然是M∩P.当M∩P=时,M-(M-P)=M-M={x|x∈M,且x∉M}==M∩P.故选B.【点拨】这是一道信息迁移题,属于应用性开放问题.“M-P”是我们不曾学过的集合运算关系,根据其元素的属性,借助Venn图将问题简单化.已知集合A={-1,0,4},集合B={x|x2-2x-3≤0,x∈N},全集为U,则图中阴影部分表示的集合是________.解:B={x|x2-2x-3≤0,x∈N}={x|-1≤x≤3,x∈N}={0,1,2,3},图中阴影部分表示的为属于A 且不属于B 的元素构成的集合,该集合为{-1,4}.故填{-1,4}.类型五 和集合有关的创新试题在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为,即={5n +k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 017∈;②-3∈;③Z =∪∪∪∪;④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈”.其中正确命题的个数是( )A .1B .2C .3D .4解:因为2 017=403×5+2,所以2 017∈,结论①正确;-3=-1×5+2,所以-3∈,-3∉,结论②不正确;整数可以分为五“类”,这五“类”的并集就是整数集,即Z =∪∪∪∪,结论③正确;若整数a ,b 属于同一“类”,则a =5n +k ,b =5m +k ,a -b =5(n -m )+0∈,反之,若a -b ∈,则a ,b 被5除有相同的余数,故a ,b 属于同一“类”,结论④正确,综上知,①③④正确.故选C .【点拨】(1)以集合语言为背景的新信息题,常见的类型有定义新概念型、定义新运算型及开放型,解决此类信息迁移题的关键是在理解新信息并把它纳入已有的知识体系中,用原来的知识和方法来解决新情境下的问题.(2)正确理解创新定义,分析新定义的表述意义,把新定义所表达的数学本质弄清楚,转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.对任意两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“○×”为:(a ,b ) ○× (c ,d )=(ac -bd ,bc +ad );运算“⊕”为:(a ,b ) ⊕(c ,d )=(a +c ,b +d ).设p ,q ∈R ,若(1,2) ○× (p ,q )=(5,0),则(1,2)⊕(p ,q )=( ) A .(0,-4) B .(0,2) C .(4,0)D .(2,0)解:因为(1,2) ○× (p ,q )=(p -2q ,2p +q )=(5,0),所以⎩⎪⎨⎪⎧p -2q =5,2p +q =0, 解得⎩⎪⎨⎪⎧p =1,q =-2,所以(1,2) ⊕(p ,q )=(1+p ,2+q )=(2,0).故选D .1. 首先要弄清构成集合的元素是什么,如是数集还是点集,要明了集合{x |y =f (x )}、{y |y =f (x )}、{(x ,y )|y =f (x )}三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施;对连续的数集间的运算,常利用数轴进行;对点集间的运算,则往往通过坐标平面内的图形求解.这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.5.五个关系式A ⊆B ,A ∩B =A ,A ∪B =B ,∁U B ⊆∁U A 以及A ∩(∁U B )=是两两等价的.对这五个式子的等价转换,常使较复杂的集合运算变得简单.6.正难则反原则对于一些比较复杂、比较抽象、条件和结论不明确、难以从正面入手的涉及集合的数学问题,在解题时要调整思路,考虑问题的反面,探求已知与未知的关系,化难为易、化隐为显,从而解决问题.例如:已知A ={x |x 2+x +a ≤0},B ={x |x 2-x +2a -1<0},C ={x |a ≤x ≤4a -9},且A ,B ,C 中至少有一个不是空集,求a 的取值范围.这个问题的反面即是三个集合全为空集, 即⎩⎪⎨⎪⎧1-4a <0,1-4(2a -1)≤0,a >4a -9,解得58≤a <3,从而所求a 的取值范围为⎩⎨⎧⎭⎬⎫a|a <58或a ≥3.1.(2016·四川)设集合A ={x |-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( )A .3B .4C .5D .6解:由题意,A ∩Z ={-2,-1,0,1,2},则元素的个数为5.故选C . 2.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( ) A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}解:因为N ={x |0≤x ≤1},M ={-1,0,1}, 所以M ∩N ={0,1}.故选B .3.(2015·浙江)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =( )A .C .(1,2)D .解:由题意得∁R P =(0,2),所以(∁R P )∩Q =(1,2).故选C .4.设集合A =⎩⎨⎧⎭⎬⎫x ∈R|1x <1,B ={x ∈R |2x <1},则( ) A .A ⊇BB .A =BC .A ⊆BD .A ∩B =解:易知A ={x |x >1或x <0},B ={x |x <0},所以B ⊆A .故选A .5.设全集U 为整数集,集合A ={x ∈N |y =7x -x 2-6},B ={x ∈Z |-1<x ≤3},则图中阴影部分表示的集合的真子集的个数为( )A .3B .4C .7D .8 解:A ={x ∈N |y =7x -x 2-6}={x ∈N |7x -x 2-6≥0}={x ∈N |1≤x ≤6},由题意知,图中阴影部分表示的集合为A ∩B ={1,2,3},其真子集有:,{1},{2},{3},{1,2},{1,3},{2,3},共7个.故选C .6.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的个数是( )A .0B .1C .2D .3解:①(-4)+(-2)=-6∉A ,不正确;②设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,k 1,k 2∈Z ,则n 1+n 2∈A ,n 1-n 2∈A ,正确;③令A 1={n |n =5k ,k ∈Z },A 2={n |n =2k ,k ∈Z },则A 1,A 2为闭集合,但A 1∪A 2不是闭集合,不正确.故选B .7.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________. 解:由题意得a +2=3,则a =1.此时A ={-1,1,3},B ={3,5},A ∩B ={3},满足题意.故填1.8.(2016·天津)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A }, 则A ∩B =________. 解:因为A ={1,2,3,4},所以B ={1,4,7,10},则A ∩B ={1,4}.故填{1,4}.9.(2014·天津)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n },当q =2,n =3时,用列举法表示集合A .解:当q =2,n =3时,M ={0,1},A ={x |x =x 1+2x 2+4x 3,x i ∈M ,i =1,2,3}={0,1,2,3,4,5,6,7}.10.设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解:(1)A =⎩⎨⎧⎭⎬⎫x|12≤x ≤3, 当a =-4时,B ={x |-2<x <2},A ∩B =⎩⎨⎧⎭⎬⎫x|12≤x <2,A ∪B ={x |-2<x ≤3}. (2)∁R A =⎩⎨⎧⎭⎬⎫x|x <12或x >3, 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =.①当B =,即a ≥0时,满足B ⊆∁R A ;②当B ≠,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,只须-a ≤12,解得-14≤a <0. 综上可得,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a|a ≥-14. 11.已知集合A ={x ∈R |ax 2-3x +2=0,a ∈R }.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围.解:(1)A 是空集,即方程ax 2-3x +2=0无解,得⎩⎪⎨⎪⎧a ≠0,Δ=(-3)2-8a <0, 所以a >98, 即实数a 的取值范围是⎝ ⎛⎭⎪⎫98,+∞. (2)当a =0时,A 中只有一个元素23; 当a ≠0时,Δ=0,得a =98,此时方程有两个相等的实数根,A 中只有一个元素43, 所以当a =0或a =98时,A 中只有一个元素,分别是23和43. (3)A 中至多有一个元素,包括A 是空集和A 中只有一个元素两种情况,根据(1),(2)的结果,得a =0或a ≥98,即a 的取值范围是⎩⎨⎧⎭⎬⎫a|a =0或a ≥98.已知集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R ,x∈R }.若A ∪B =A ,试求实数a 的取值范围.解:由题意得A ={0,-4},因为A ∪B =A ,所以B ⊆A ,又A 的子集为,{0},{-4},{0,-4}.①若B =,则Δ<0,即4(a +1)2-4(a 2-1)<0,解得a <-1;②若B ={0},则⎩⎪⎨⎪⎧a 2-1=0,2(a +1)=0, 解得a =-1; ③若B ={-4},则⎩⎪⎨⎪⎧a 2-1=16,2(a +1)=8, 此时a 不存在; ④若B ={0,-4},则⎩⎪⎨⎪⎧a 2-1=0,2(a +1)=4, 解得a =1, 综上所述,实数a 的取值范围为(-∞,-1]∪{1}.。
2018高考数学文人教新课标大一轮复习配套文档:第一章

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅱ)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( )A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3} 解:集合B ={x |-1<x <2,x ∈Z }={0,1},而A ={1,2,3},所以A ∪B ={0,1,2,3}.故选C .2.命题“若p 则q ”的逆命题是( ) A .若q 则pB .若p 则qC .若q 则pD .若p 则q解:根据原命题与逆命题的关系可得“若p 则q ”的逆命题是“若q 则p ”.故选A .3.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 3∈Q B .∃x 0∈∁R Q ,x 30∉Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q解:该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.故选D .4.已知p :⊆{0},q :{1}∈{1,2},由它们构成的新命题“p ∧q ”“p ∨q ”“p ”中,真命题有( )A .0个B .1个C .2个D .3个解:因为空集是任何集合的子集,{1}⊆{1,2},所以p 真q 假.所以“p ∨q ”为真,“p ∧q ”“p ”为假.故选B .5.已知集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z 且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5解:因为32-x ∈Z 且x ∈Z ,所以2-x 的取值有-3,-1,1,3,x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.故选C .6.已知集合M ={x ||x -1|<1},集合N ={x |-1<x <3},则M ∩(∁R N )=( )A .{x |0<x <2}B .{x |-1<x ≤0或2≤x <3}C .{x |-1<x <2}D.解:因为M ={x ||x -1|<1}={x |0<x <2},N ={x |-1<x <3},所以∁R N =(-∞,-1]∪B .C .(-∞,1)D .(0,1)解:易知M =,当a <0时,N =;当a ≥0时,N ={x |1-a ≤x ≤1+a },若N ⊆M ,则a <0或⎩⎪⎨⎪⎧1-a ≥-2,1+a ≤2,a ≥0,得a ≤1.故选A .11.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为()A .B .(-1,0)C .(-∞,-1)∪∪(0,1)解:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},B ={y |y =f (x )}={y |y ≤0},所以A ∪B =(-∞,1),A ∩B =(-1,0],图中阴影部分表示的集合为(-∞,-1]∪(0,1).故选D .12.(2015·荆州模拟)给出下列四个命题: ①∃x 0∈R ,sin x 0+cos x 0=3;②∃x 0∈(-∞,0),2x 0<3x 0;③∀x ∈R ,e x≥x +1;④∀(x ,y )∈{(x ,(1)p时,p (2)所以;。
北京专用2018年高考数学总复习专题01集合与常用逻辑用语分项练习含解析文
专题01 集合与常用逻辑用语1. 【2008高考北京文第1题】若集合{|23}A x x =-≤≤,{|14}B x x x =<->或,则集合A B 等于( )A .{}|34x x x ≤>或B .{}|13x x -<≤C .{}|34x x ≤<D .{}|21x x -≤-<【答案】D 【解析】{}|21AB x x =-≤-<2. 【2009高考北京文第1题】设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤ C .{|2}x x <D .{|12}x x ≤<【答案】A3. 【2010高考北京文第1题】集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{1,2,3} D .{0,1,2,3} 【答案】B 【解析】试题分析:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},故P ∩M ={0,1,2}.4. 【2012高考北京文第1题】已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( )A .(-∞,-1)B .{-1,23-} C .(23-,3) D .(3,+∞) 【答案】D 【解析】试题分析:由题意得,A ={x |x >23-},B ={x |x <-1或x >3},所以A ∩B =(3,+∞). 5. 【2013高考北京文第1题】已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 【答案】B6. 【2014高考北京文第1题】若集合A={}0,1,2,4,B={}1,2,3,则A B ⋂=( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 【答案】C【解析】因为{}1,2A B ⋂=,所以选C.考点:本小题主要考查集合的基本运算,属容易题,熟练集合的基础知识是解答好集合题目的关键.7. 【2014高考北京文第5题】设、是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分也不必要条件 【答案】D【解析】若0,2a b ==-,则22a b <,故不充分;若2,0a b =-=,则22a b >,而a b <,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.8. 【2011高考北京文第1题】已知全集U=R ,集合{}21P xx =∣≤,那么UP =(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞【答案】D【解析】2111x x ≤⇒-≤≤,()(),11,U C P =-∞-+∞ ,故选D.9. 【2011高考北京文第4题】若p 是真命题,是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题 (C)p ⌝是真命题 (D)q ⌝是真命题【答案】D【解析】根据真值表可知,“或”一真必真,“且”一假必假,“非”真假相反,故选D. 10. 【2006高考北京文第1题】设集合A ={x |2x +1<3},B ={x |-3<x <2},则A ∩B 等于A.{x |-3<x <1}B.{x |1<x <2}C.{x |x >-3}D.{x |x <1}【答案】A【解析】A ={x |x <1},则A ∩B ={x |x <1}∩{x |-3<x <2}={x |-3<x <1}.11. 【2006高考北京文第3题】若a 与b -c 都是非零向量,则“a ·b =a ·c ”是“a ⊥(b -c )”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C12. 【2005高考北京文第1题】设集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是( ) (A )M =P (B )P M ⊂ (C )M P ⊂ ( D )M P R =【答案】C【解析】()()211101x x x x >⇒+->⇒<-或1x >.所以{}|11P x x x =<->或,则M P ⊂.故C 正确.13【2005高考北京文第3题】“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 【答案】B14. 【2015高考北京,文1】若集合{}52x x A =-<<,{}33x x B =-<<,则AB =( )A .{}32x x -<< B .{}52x x -<< C .{}33x x -<< D .{}53x x -<< 【答案】A【解析】在数轴上将集合A ,B 表示出来,如图所示,由交集的定义可得,AB 为图中阴影部分,即{}32x x -<<,故选A.【考点定位】集合的交集运算.15.【2016高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =()A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x >【答案】C 【解析】试题分析:由题意得,(2,3)A B =,故选C.考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.16.【2017高考北京文数第1题】已知全集U =R ,集合{|22}A x x x =<->或,则UA =(A )(2,2)- (B )(,2)(2,)-∞-+∞(C )[2,2]-(D )(,2][2,)-∞-+∞【答案】C【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.。
2018年高考数学文一轮复习文档:第一章 集合与常用逻
第1讲 集合及其运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法AB 或B A1.辨明三个易误点(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定要先考虑∅是否成立,以防漏解.2.活用几组结论(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B . (2)A ∩A =A ,A ∩∅=∅. (3)A ∪A =A ,A ∪∅=A .(4)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A .(5)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.(6)若集合A 中含有n 个元素,则它的子集个数为2n ,真子集个数为2n-1,非空真子集个数为2n-2.1.教材习题改编 已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆DB2.已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3C 集合A 表示的是圆心在原点的单位圆,集合B 表示的是直线y =x ,据此画出图象,可得图象有两个交点,即A ∩B 的元素个数为2.3.教材习题改编 已知集合A ={1,2},集合B 满足A ∪B ={1,2},则满足条件的集合B 的个数为( )A .1B .2C .3D .4D 因为A ={1,2},B ∪A ={1,2},所以B ⊆A ,故满足条件的集合B 的个数为22=4个.4.教材习题改编 已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =________.由题意得∁U B ={2,5,8},所以A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}. {2,5}5.教材习题改编 已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则(∁R A )∪B =________.由已知可得集合A ={x |1<x <3},又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3}, 所以(∁R A )∪B ={x |x ≤1或x >2}. {x |x ≤1或x >2}集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.(3)已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________. 【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.(2)由题意得m +2=3或2m 2+m =3, 则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.(3)因为P 中恰有3个元素, 所以P ={3,4,5}, 故k 的取值范围为5<k ≤6.【答案】 (1)C (2)-32(3)(5,6]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.1.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5D .9C 因为A ={0,1,2},所以B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素.2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0D .0或98D 当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.3.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =______.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,a ≠0,所以a +b =0,则b a=-1,所以a =-1,b =1.所以b -a =2.2集合的基本关系(1)(2017·郑州模拟)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( )A .AB B .B AC .A ⊆BD .B =A(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由题意知A ={x |y =1-x 2,x ∈R }, 所以A ={x |-1≤x ≤1}.所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以BA ,故选B.(2)由x 2-3x +2=0得x =1或x =2, 所以A ={1,2}.由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(3)因为B ⊆A , 所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)B (2)D (3)(-∞,3]1.在本例(3)中,若A ⊆B ,如何求解? 若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3. 所以m 的取值范围为∅.2.若将本例(3)中的集合A 改为A ={x |x <-2或x >5},如何求解? 因为B ⊆A , 所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.设P ={y |y =-x 2+1,x ∈R },Q ={y |y =2x,x ∈R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R PC 因为P={y|y=-x2+1,x∈R}={y|y≤1},Q={y|y=2x,x∈R}={y|y>0},所以∁R P={y|y>1},所以∁R P⊆Q,选C.2.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.4集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题多为低档题.高考对集合运算的考查主要有以下三个命题角度:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求集合;(3)已知集合的运算结果求参数的值(范围).(1)(2016·高考全国卷甲)已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}(2)(2015·高考全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2(3)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q =( )A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}【解析】(1)易知B={x|-3<x<3},又A={1,2,3},所以A∩B={1,2}.(2)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.故选D.(3)因为U={1,2,3,4,5,6},P={1,3,5},所以∁U P={2,4,6},因为Q={1,2,4},所以(∁U P)∪Q={1,2,4,6}.【答案】(1)D (2)D (3)C集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.角度一求集合间的交、并、补运算1.(2016·高考全国卷丙)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.B.(-∞,2]∪∪ 集合S=(-∞,2]∪∪ 因为M∪N={1,2,3,4},排除A;M∩N=∅,排除B;(∁U M)∪(∁U N)=∁U(M∩N)={1,2,3,4,5,6},排除C;(∁U M)∩(∁U N)=∁U(M∪N)={5,6},D正确,故选D.角度三已知集合的运算结果求参数的值(范围)3.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得m=1×4=4.4,)——集合中的创新问题与集合有关的创新题是近几年高考命题的一个新趋势,试题通过给出新的数学概念或新的运算法则,在新的情境下完成关于集合的相关问题,考查学生的知识迁移能力.题型多为选择题或填空题,属于能力题.(1)对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.(2)设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.【解析】 (1)依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.因此,符合题意的集合是{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.(2)在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.【答案】 (1)6 (2)112解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.1.设U ={1,2,3},M ,N 是U 的子集,若M ∩N ={1,3},则称(M ,N )为一个“理想配集”,则符合此条件的“理想配集”的个数(规定(M ,N )与(N ,M )不同)为________.符合条件的理想配集有①M={1,3},N={1,3};②M={1,3},N={1,2,3};③M ={1,2,3},N={1,3}.共3个.32.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A ={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.{0,6},)1.设集合P={x|x2-2x≤0},m=30.5,则下列关系正确的是( )A.m P B.m∈PC.m∉P D.m⊆PC 易知P={x|0≤x≤2},而m=30.5=3>2,所以m∉P,故选C.2.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}A 由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.3.已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=( )A.1 B.0C.-2 D.-3C 因为A⊆B,所以a+3=1,解得a=-2.故选C.4.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.B.D.由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.5.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}D 因为A∪B={x|x≤0}∪{x|x≥1}={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.6.已知全集为整数集Z .若集合A ={x |y =1-x ,x ∈Z },B ={x |x 2+2x >0,x ∈Z },则A ∩(∁Z B )=( )A .{-2}B .{-1}C .D .{-2,-1,0}D 由题可知,集合A ={x |x ≤1,x ∈Z },B ={x |x >0或x <-2,x ∈Z },故A ∩(∁Z B )={-2,-1,0},故选D.7.设集合A =⎩⎨⎧⎭⎬⎫5,ba,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}D 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.8.设全集U =R ,A ={x |0<x <2},B ={x |x <1},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}B 法一:题图中阴影部分表示集合(∁U B )∩A ,所以(∁U B )∩A ={x |x ≥1}∩{x |0<x <2}={x |1≤x <2}.选B.法二:图中空白表示集合B ∪∁U A ={x |x <1}∪{x |x ≤0或x ≥2}={x |x <1或x ≥2},所以图中阴影部分表示的集合为{x |1≤x <2}.9.(2017·贵州省七校第一次联考)已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( )A .5B .6C .7D .8C 由题意,得B ={0,1,2,3,2},所以A ∩B ={0,1,2},所以A ∩B 的真子集个数为23-1=7,故选C.10.已知全集U ={x ∈Z |0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩NC 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},选C.11.设集合A ={x |y =lg(-x 2+x +2)},B ={x |x -a >0},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .(-∞,-2)D .(-∞,-2]B 因为集合A ={x |y =lg(-x 2+x +2)}={x |-1<x <2},B ={x |x >a },因为A ⊆B ,所以a ≤-1.12.(2017·沈阳模拟)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21D 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.13.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 因为1∉{x |x 2-2x +a >0},所以1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,所以a ≤1. (-∞,1]14.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 因为集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},所以∁I B ={0,1},则A ∩(∁I B )={1}.{1}15.设集合P ={a 2,log 2a },Q ={2a,b },若P ∩Q ={0},则P ∪Q =________. 因为P ∩Q ={0},所以0∈P ,只能log 2a =0,所以a =1,a 2=1,又0∈Q ,因为2a=21=2≠0,所以b =0,所以,P ={0,1},Q ={2,0},所以P ∪Q ={0,1,2}.{0,1,2}16.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.表示不大于x 的最大整数,集合A ={x |x 2-2=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,则A ∩B =________.由集合A 中的等式x 2-2=3变形得x 2=2+3,由题意可知x 2为整数,而x 2-2x -3=0的解为x =-1或x =3,则=-1,=3,所以x 2=2+3=-2+3=1或x 2=2×3+3=9,解得x =±1或x =±3,经检验x =1,x =-3不合题意舍去,所以x =-1或x =3,所以A ={-1,3},由B 中不等式变形得2-3<2x <23,即-3<x <3, 所以B ={x |-3<x <3},则A ∩B ={-1}. {-1}18.已知非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}. (1)当a =10时,求A ∩B ,A ∪B ;(2)求能使A ⊆(A ∩B )成立的a 的取值范围.(1)当a =10时,A ={x |21≤x ≤25}.又B ={x |3≤x ≤22}, 所以A ∩B ={x |21≤x ≤22},A ∪B ={x |3≤x ≤25}. (2)由A ⊆(A ∩B ),可知A ⊆B , 又因为A 为非空集合,所以⎩⎪⎨⎪⎧2a +1≥3,3a -5≤22,2a +1≤3a -5,解得6≤a ≤9.19.若集合A ={x |x 2+ax +1=0,x ∈R },集合B ={1,2},且A ⊆B ,求实数a 的取值范围.①若A =∅,则Δ=a 2-4<0,解得-2<a <2; ②若1∈A ,则a =-2,此时A ={1},符合题意;③若2∈A ,则a =-52,此时A =⎩⎨⎧⎭⎬⎫2,12,不合题意;④若A =B ={1,2},此时不存在满足题意的a 的值. 综上所述,实数a 的取值范围为[-2,2).。
专题01 集合与常用逻辑用语仿真押题-2018年高考数学文
1.集合A ={x ∈N |-1<x <4}的真子集个数为( ) A .7 B .8 C .15D .162.已知集合A ={x |2x 2-5x -3≤0},B ={x ∈Z |x ≤2},则A ∩B 中的元素个数为( ) A .2 B .3 C .4D .5解析:选B.A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12≤x ≤3,∴A ∩B ={0,1,2},A ∩B 中有3个元素,故选B. 3.设集合M ={-1,1},N ={x |x 2-x <6},则下列结论正确的是( ) A .N ⊆M B .N ∩M =∅ C .M ⊆ND .M ∩N =R解析:选C.集合M ={-1,1},N ={x |x 2-x <6}={x |-2<x <3},则M ⊆N ,故选C. 4.已知p :a <0,q :a 2>a ,则﹁p 是﹁q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.因为﹁p :a ≥0,﹁q :0≤a ≤1,所以﹁q ⇒﹁p 且﹁p ⇒﹁q ,所以﹁p 是﹁q 的必要不充分条件.5.下列命题正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“a >0,b >0”是“b a +ab≥2”的充要条件C .命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1或x ≠2,则x 2-3x +2≠0” D .命题p :∃x ∈R ,x 2+x -1<0,则﹁p :∀x ∈R ,x 2+x -1≥06.设集合A ={x |x >-1},B ={x ||x |≥1},则“x ∈A 且x ∉B ”成立的充要条件是( ) A .-1<x ≤1 B .x ≤1 C .x >-1D .-1<x <1解析:选D.由题意可知,x ∈A ⇔x >-1,x ∉B ⇔-1<x <1,所以“x ∈A 且x ∉B ”成立的充要条件是-1<x <1.故选D.7.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知命题p :“∃x ∈R ,e x-x -1≤0”,则﹁p 为( ) A .∃x ∈R ,e x-x -1≥0 B .∃x ∈R ,e x -x -1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0解析:选C.特称命题的否定是全称命题,所以﹁p :∀x ∈R ,e x-x -1>0.故选C. 9.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x>x +1 C .∀x >0,5x>3xD .∃x 0∈(0,+∞),x 0<sin x 0解析:选D.令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.10.命题p :存在x 0∈⎣⎢⎡⎦⎥⎤0,π2,使sin x 0+cos x 0>2;命题 q :命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是∀x ∈(0,+∞),ln x ≠x -1,则四个命题(﹁p )∨(﹁q )、p ∧q 、(﹁p )∧q 、p ∨(﹁q )中,正确命题的个数为( )A .1B .2C .3D .4解析:选B.因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,故命题p 为假命题;特称命题的否定为全称命题,易知命题q 为真命题,故(﹁p )∨(﹁q )真,p ∧q 假,(﹁p )∧q 真,p ∨(﹁q )假.11.若x ∈R,则“x >1”是“1x<1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:当x >1时,1x <1成立,而当x <0时,1x <1也成立,所以“x >1”是 “1x<1”的充分不必要条件,故选A.答案:A12.命题“正数a 的平方等于0”的否命题为( ) A .正数a 的平方不等于0B .若a 不是正数,则它的平方等于0C .若a 不是正数,则它的平方不等于0D .非正数a 的平方等于0解析:依题意,命题可以写成:若a 是正数,则它的平方等于0,所以由否命题的概念可知,其否命题为:若a 不是正数,则它的平方不等于0,故选C.答案:C13.若集合M ={y |y =2 017x},S ={x |y =log 2 017(x -1)},则下列结论正确的是( ) A .M =S B .M ∪S =M C .M ∪S =SD .M ∩S =∅解析:因为M ={y |y =2 017x }={y |y >0},S ={x |y =log 2 017(x -1)}={x |x >1},所以M ∪S =M ,故选B. 答案:B14.已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( ) A .(-∞,-2) B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)解析:因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,解得m ≥2或m ≤-2,故选D. 答案:D15.对于原命题:“已知a 、b 、c ∈R,若ac 2>bc 2,则a >b ”,以及它的逆命题、否命题、逆否命题,真命题的个数为( )A .0B .1C .2D .4答案:C16.已知命题p :“φ=π2”是“函数y =sin(x +φ)为偶函数”的充分不必要条件;命题q :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x =12的否定为:“∃x 0∈⎝⎛⎭⎪⎫0,π2,sin x 0≠12”,则下列命题为真命题的是( )A .p ∧(綈q )B .(綈p )∧qC .(綈p )∨(綈q )D .p ∧q答案:D17.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C A -C B ,C A C B C B -C A ,C BC A,若A ={x |x 2-ax -1=0,a ∈R},B ={x ||x 2+bx +1|=1,b ∈R},设S ={b |A *B =1},则C (S )等于( )A .4B .3C .2D .1解析:因为二次方程x 2-ax -1=0满足Δ=a 2+4>0,所以C (A )=2,要使A *B =1,则C (B )=1或C (B )=3,函数f (x )=x 2+bx +1的图象与直线y =1或y =-1相切,所以b 2=0或b 2-8=0,可得b =0或b =±22,故C (S )=3.答案:B18.以下有关命题的说法错误的是( )A .命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若p ∨q 为假命题,则p 、q 均为假命题D .对于命题p :∃x ∈R,使得x 2+x +1<0,则綈p :∀x ∈R,均有x 2+x +1>0 解析:选项D 中綈p 应为:∀x ∈R,均有x 2+x +1≥0.故选D. 答案:D19.已知命题p :∃x 0∈R,x 0-2>0,命题q :∀x ∈R,2x >x 2,则下列说法中正确的是( ) A .命题p ∨q 是假命题 B .命题p ∧q 是真命题 C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题解析:显然命题p 是真命题,又因为当x =4时,24=42,所以命题q 是假命题,所以命题p ∧(綈q )是真命题.答案:C20.若命题“p 且q ”是假命题,“綈p ”也是假命题,则( ) A .命题“綈p 或q ”是假命题B .命题“p 或q ”是假命题C .命题“綈p 且q ”是真命题D .命题“p 且綈q ”是假命题解析:由“綈p ”是假命题,可得p 为真命题.因为“p 且q ”是假命题,所以q 为假命题,所以命题“綈p 或q ”是假命题,即选项A 正确;“p 或q ”是真命题,即选项B 错误;“綈p 且q ”是假命题,即选项C 错误;“p 且綈q ”是真命题,即选项D 错误,故选A.答案:A21.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B },若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =( )A .{x |2<x ≤4}B .{x |3≤x ≤4}C .{x |2<x <3}D .{x |2≤x ≤4}解析:∵A ={x |1<x <3},B ={x |2≤x ≤4},∴B △A ={x |3≤x ≤4}. 答案:B22.下列说法中正确的是( )A .“f (0)=0”是“函数f (x )是奇函数”的充要条件B .若p :∃x 0∈R,x 20-x 0-1>0,则綈p :∀x ∈R,x 2-x -1<0 C .若p ∧q 为假命题,则p ,q 均为假命题D .命题“若α=π6,则sin α=12”的否命题是“若α≠π6,则sin α≠12”答案:D23.已知命题p :∀x ∈R,2x>0;命题q :在曲线y =cos x 上存在斜率为2的切线,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .p ∧(綈q )是真命题D .(綈p )∧q 是真命题解析:易知,命题p 是真命题,对于命题q ,y ′=-sin x ∈[-1,1],而2∉[-1,1],故命题q 为假命题,所以綈q 为真命题,p ∧(綈q )是真命题.故选C.答案:C24.命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,使得函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝ ⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( )A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )答案:D25.若a ,b ∈R,则1a 3>1b3成立的一个充分不必要条件是( )A .a <b <0B .b >aC .ab >0D .ab (a -b )<0解析:1a 3-1b 3=b 3-a 3ab3=b -ab 2+ab +a 2ab 3,选项A 可以推出1a 3>1b3.故选A. 答案:A 26.不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4D .p 1,p 3解析:不等式组表示的区域D 如图中阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.故选B.答案:B27.已知集合A ={x |2x 2+3x -2<0},集合B ={x |x >a },如果“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是( )A .a ≤-2B .a <-2C .a >-2D .a ≥-2解析:由2x 2+3x -2<0,解得-2<x <12,即A ={x |-2<x <12},因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A ⊆B ,所以a ≤-2,即实数a 的取值范围是a ≤-2.答案:A28.设[x ]表示不大于x 的最大整数,集合A ={x |[x ]2-2[x ]=3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪18<2x<8,则A ∩B =________.解析:因为A ={x |[x ]2-2[x ]=3},所以[x ]=-1或3,所以-1≤x <0或3≤x <4,由B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪18<2x<8得B ={x |-3<x <3},则A ∩B ={x |-1≤x <0}.答案:{x |-1≤x <0}29.已知∀x ∈R,不等式ax 2+ax +1>0恒成立,则实数a 的取值范围是________.解析:因为不等式ax 2+ax +1>0对一切x ∈R 恒成立,当a =0时,不等式即1>0,显然满足对一切x ∈R 恒成立;当a >0时,应有Δ=a 2-4a <0,解得0<a <4.综上,0≤a <4.即实数a 的取值范围是[0,4).答案:[0,4)30.用C (A )表示非空集合A 中的元素个数,定义|A -B |=⎩⎪⎨⎪⎧CA -CB ,C A C B ,C B -C A ,C AC B若A={1,2},B ={x ||x 2+2x -3|=a },且|A -B |=1,则a =________.解析:由于|x 2+2x -3|=a 的根可能是2个,3个,4个,而|A -B |=1,故|x 2+2x -3|=a 只能有3个根,故a =4.答案:431.设集合S ,T 满足∅≠S ⊆T ,若S 满足下面的条件:(i)对于∀a ,b ∈S ,都有a -b ∈S 且ab ∈S ;(ⅱ)对于∀r ∈S ,n ∈T ,都有nr ∈S ,则称S 是T 的一个理想,记作S ⊲T .现给出下列集合对:①S ={0},T =R ;②S ={偶数},T =Z ;③S =R ,T =C(C 为复数集),其中满足S ⊲T 的集合对的序号是________.答案:①②32.已知f (x )=m (x -2m )(x +m +3),g (x )=2x-2.若同时满足条件: ①∀x ∈R,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0,则m 的取值范围是________.。
最新-2018版高考数学总复习 第1篇 集合与常用逻辑用语
解得a=1;②4′
(2)当∅≠BA时,B={0}或B={-4},③6′
并且Δ=4(a+1)2-4(a2-1)=0,解得a=-1,④8′
此时B={0}满足题意;
(3)当B=∅时,Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
⑤10′
综上所述,所求实数a的取值范围是a≤-1或a=1.
⑥12′
第一步 读题
根据子集的概念,确定分类讨论的情况.
第二步 分类讨论
(①③⑤)
通过求方程的根,求出集合的元素.
第三步等式(组)求解a的取值范围.
第四步 作出总结
(⑥)
根据上面的解答过程进行总结作答.
通性通法
集合的运算问题是高考中常见题型,对于子集,如B⊆A(其中集合B不确定),则应有B=∅和B=/∅两种情况,分类进行解答.对于数集之间的子集问题,避免出错的一个有效手段是合理利用数轴或韦恩图帮助分析与求解.
(本题满分12分)设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,a∈R,x∈R},若B⊆A,求实数a的取值范围.
规范解答
解题程序
解:∵A={0,-4},∴B⊆A分以下三种情况:
(1)当B=A时,B={0,-4},①2′
由此知0和-4是方程x2+2(a+1)x+a2-1=0的两个根,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.集合与常用逻辑用语 1.【2018年浙江卷】已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】A 【解析】
点睛:充分、必要条件的三种判断方法: (1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件. (2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法. (3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.
2.【2018年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则 A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 【答案】C 【解析】 试题分析:分析:根据补集的定义可得结果.
详解:因为全集,,所以根据补集的定义得,故选C. 点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.
3.【2018年文北京卷】能说明“若a﹥b,则”为假命题的一组a,b的值依次为_________. 【答案】(答案不唯一)
【解析】分析:根据原命题与命题的否定的真假关系,可将问题转化为找到使“若,则”成立的,根据不等式的性质,去特值即可.
详解:使“若,则”为假命题,则使“若,则”为真命题即可, 只需取即可满足,所以满足条件的一组的值为(答案不唯一) 点睛:此题考查不等式的运算,解决本题的核心关键在于对原命题与命题的否定真假关系的灵活转换,对不等式性质及其等价变形的充分理解,只要多取几组数值,解决本题并不困难. 4.【2018年江苏卷】已知集合,,那么________. 【答案】{1,8}
点睛:本题考查交集及其运算,考查基础知识,难度较小. 5.【2018年天津卷文】设,则“”是“” 的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】A 【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.
详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件.本题选择A选项. 点睛:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力. 6.【2018年天津卷文】设集合,,,则
A. B. C. D. 【答案】C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:,结合交集的定义可知:.本题选择C选项. 点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 7.【2018年北京卷文】设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 【答案】B 点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题. 8.【2018年北京卷文】已知集合A={( || |<2)},B={−2,0,1,2},则 A. {0,1} B. {−1,0,1} C. {−2,0,1,2} D. {−1,0,1,2} 【答案】A 【解析】分析:将集合化成最简形式,再进行求交集运算. 详解:, ,,故选A. 点睛:此题考查集合的运算,属于送分题.
9.【2018年新课标I卷文】已知集合,,则 A. B. C. D. 【答案】A 【解析】分析:利用集合的交集中元素的特征,结合题中所给的集合中的元素,求得集合中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得,故选A. 点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果. 10.【2018年全国卷Ⅲ文】已知集合,,则 A. B. C. D. 【答案】C 【解析】分析:由题意先解出集合A,进而得到结果。 详解:由集合A得,所以,故答案选C. 点睛:本题主要考查交集的运算,属于基础题。 11.【2018年全国卷II文】已知集合,,则 A. B. C. D. 【答案】C
点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算. 优质模拟试题
12.【福建省厦门市2018届二质检文】已知集合,则( ) A. B. C. D. 【答案】B 【解析】分析:将集合中的元素,逐一验证是否属于集合即可. 详解:因为集合,所以,故选B. 点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合. 本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.
13.【山东省威海市2018届二模文】已知命题: “”,命题:“”,则下列为真命题的是( ) A. B. C. D. 【答案】C
点睛:(1)本题主要考查全称命题和特称命题的真假,考查复合命题的真假判断,意在考查学生对这些基础知识的能力.(2) 复合命题的真假口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.
14.【江西省重点中学2018届二联文】已知数列是等差数列,,,为正整数,则“”是“”的( ) A. 充要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分也不必要条件 【答案】C
【解析】分析:有等差数列的通项公式代入,经合充分必要条件的定义可得. 详解:∵是等差数列,∴, ,若,则,但若时,由并不能得出,∴是的充分不必要条件,故选C. 点睛:本题考查充分必要条件的推导,推理时只要按照充分必要条件的定义证明相应的命题是否为真即可. 15.【湖南省湘潭市2018届四模文】设有下面四个命题:
:若,则;:若,则; :若,则;:若,则. 其中的真命题为( )
A. , B. , C. , D. , 【答案】C
由①②解得sinαcosβ=,正确;对于命题:若x<﹣1,则x2+1>2, ∴(x2+1)<﹣1,∴正确;对于命题:若2sin(α﹣β)=3sin(α+β)=1, 则2sinαcosβ﹣2cosαsinβ=1…①,3sinαcosβ+3cosαsinβ=1 …②, 由①②解得sinαcosβ=,错误.综上,正确的命题是,.故选:C. 点睛:本题考查了命题真假的判断问题,考查了对数函数的单调性及两角和与差的正弦函数公式,属于基础题. 16.【山西省两市2018届二联考文】下列语句中正确的个数是( ) ①,函数都不是偶函数;②命题“若,则”的否命题是真命题; ③若或为真,则,非均为真;④已知向量,则“”的充分不必要条件是“与夹角为锐角”. A. 0 B. 1 C. 2 D. 3 【答案】B
【解析】分析:对于①, 时可得其错误;对于②, 令,可得其错误; 对于③,假且为真时,可得其错误;对于④,由平面向量数量积的几何意义可得其正确.
点睛:本题通过判断命题的真假综合考查四种命题及其关系以及充分条件与必要条件、全称命题与特称命题,判断命题的真假应注意以下几个方面:(l)首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系;(2)要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应地确定了它的“逆命题”“否命题”“逆否命题”,注意利用“原命题”与“逆否命题”同真假;(3)判断命题真假时,可直接依据定义、定理、性质直接判断,也可使用特值进行排除.
17.【山东省烟台市2018届二模文】已知命题:在中,是的充要条件,命题:若为等差数列的前项和,则成等差数列.下列命题为真命题的是( ) A. B. C. D. 【答案】A
【解析】分析:命题p:在△ABC中,A>B⇔a>b,又由正弦定理可得:⇔sinA>sin B,即可判断出关系.命题q:不妨取等差数列{an}满足:an=n,则S1=1,S2=3,S3=6,不成等差数列,即可判断出真假.
详解:命题p:在△ABC中,A>B⇔a>b,又由正弦定理可得:,可得a>b⇔sinA>sin B, 因此在△ABC中,A>B是sinA>sin B的充要条件.因此p为真命题.命题q:不妨取等差数列满足:,则S1=1,S2=3,S3=6,不成等差数列,因此q为假命题.所以为真命题.故选:A. 点睛:本题主要考查了三角形的性质,大边对大角,由正弦定理可得,边大正弦大;等差数列的求和公式及其性质、简易逻辑的判定方法,属于中档题. 18.【河南省洛阳市2018届三模文】下列叙述中正确的个数是( ) ①将一组样本数据中的每个数据都加上同一个常数后,方差不变;
②命题,,命题,,则为真命题;
③“”是“的必要而不充分条件; ④将函数的图象向左平移个单位长度得到函数的图象. A. 1 B. 2 C. 3 D. 4
【答案】B
详解:对于①,因为有结论将一组样本数据中的每个数据都加上同一个常数后,方差不变,所以①正确;对于②,结合指数函数的性质,可知p是真命题,根据二次函数的性质,可知很成立,所以q是假命题,所
以是假命题,所以②错误;对于③,因为当时,一定有,但是当,时,有,所以不一定成立,所以应该是充分不必要条件,所以③错误;对于④,将函数的图象向左平移个单位长度得到函数解析式为 ,故④正确,所以正确命题的个数为2,故选B. 点睛:该题考查的是有关真命题的个数问题,在解题的过程中,需要对命题逐一分析,得到结果,在判断的过程中,用到方差的性质、复合命题真值表、余弦函数的性质、图像的平移变换以及诱导公式,需要认真审题. 19.【重庆市2018届三模文】设集合,若,则实数的取值范围是( ) A. B. C. D.