2017年陕西省中考试题及参考答案

合集下载

2017年陕西省中考语文试卷含答案

2017年陕西省中考语文试卷含答案

绝密★启用前陕西省2017年初中毕业学业考试语文本试卷满分120分,考试时间150分钟。

一、积累和运用(共6小题,计17分)1.下列各组词语中,加点字的读音全都正确的一组是(2分)()A .粗拙.(zhuō)偏袒.(tǎn)侥.(jiǎo)幸茅塞.(sè)顿开B .雷霆.(tín g )挣.(zhèn g )扎禁.(jìn)锢百废待兴.(xīn g )C .步履.(lǔ)迸.(bèn g )溅疮.(cān g )痍潜.(qián)滋暗长D .喷薄.(bó)哺.(pǔ)育璀璨.(càn)咬文嚼.(jué)字2.下列各组词语中,汉字书写全都正确的一组是(2分)()A .妍丽庸碌好意难确持之以恒B .欣尉倾诉酣然入梦杂乱无章C .筹划精炼饶有兴味仗势欺人D .诸候企盼登峰造及绝处逢生3.请从所给的三个词语中,选出一个最符合语境的填写在横线上。

(2分)(1)真正懂得生活_______(奥秘秘诀真谛)的人往往明了:身在何处并不重要,心在何处则决定了生活的意义有多深远和广阔。

(2)在同样的社会环境下,人们的精神状态是不一样的:有的人虽年富力强,却整日___________(碌碌无为无所事事麻木不仁);有的人虽已至暮年,却依然壮心不已。

4.经典诗文默写。

[在第(1)~(7)题中,任选五题;在第(8)~(10)题中,任选一题](6分)(1)落红不是无情物,______________。

(龚自珍《己亥杂诗》)(2)______________,而无车马喧。

(陶渊明《饮酒》(其五))(3)君问归期未有期,______________。

(李商隐《夜雨寄北》)(4)______________。

风休住,蓬舟吹取三山去!(李清照《渔家傲》)(5)知不足,然后能自反也;知困,______________。

(《礼记•虽有嘉肴》)(6)陛下亦宜自谋,______________,察纳雅言。

2017年陕西省中考数学试卷(含答案解析)

2017年陕西省中考数学试卷(含答案解析)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤/每棚)销售价(元/每斤)成本(元/每棚)项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.B.tan38°15′≈ 2.03.(结果精确到0.01)【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为1.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。

陕西省2017年中考数学真题试题(含解析)

陕西省2017年中考数学真题试题(含解析)

2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.计算:21()12--==( ) A .54-B .14-C .34- D .0 【答案】C . 【解析】 试题分析:原式=14﹣1=34-,故选C . 考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B . 考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8 C .﹣2 D .﹣8 【答案】A . 【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A.55°B.75°C.65°D.85°【答案】C.【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选C.考点:平行线的性质.5.化简:x xx y x y--+,结果正确的是()A.1 B.2222x yx y+-C.x yx y-+D.22x y+【答案】B.【解析】试题分析:原式=2222x xy xy yx y+-+-=2222x yx y+-.故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.B.6 C.32D21【答案】A . 【解析】试题分析:∵∠ACB =∠AC ′B ′=90°,AC =BC =3,∴AB =22AB BC +32,∠CAB =45°,∵△ABC 和△A ′B ′C ′大小、形状完全相同,∴∠C ′AB ′=∠CAB =45°,AB ′=AB =32,∴∠CAB ′=90°,∴B ′C 33A .考点:勾股定理.7.如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2 【答案】D . 【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A.2B.3105C.105D.355【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.532C.52D.53【答案】D.【解析】试题分析:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB 353,∴AP=2PD=53,故选D.考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线224y x mx =--(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20) 【答案】C . 【解析】试题分析:224y x mx =--=22()4x m m ---,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C . 考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣530,π6中,最大的一个数是 . 【答案】π. 【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为 .B tan38°15′≈ .(结果精确到0.01)【答案】A .64°;B .2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A,B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B关于x轴对称,则m的值为.【答案】1.【解析】试题分析:设A(a,b),则B(a,﹣b),依题意得:325mbamba⎧=⎪⎪⎨-⎪-=⎪⎩,所以325m ma+-=0,即5m﹣5=0,解得m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.【答案】18.【解析】∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC 2=AM 2+MC 2,而AC =6; ∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分) 15.计算:11(2)6|32|()2-+-. 【答案】33- 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式=12232-=233-=33-考点:二次根式的混合运算;负整数指数幂. 16.解方程:32133x x x +-=-+. 【答案】x =﹣6. 【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解. 考点:解分式方程.17.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24tan23,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种 项目 香瓜 甜瓜产量(斤/每棚)销售价(元/每斤)成本(元/每棚)2000 450012 38000 5000现假设李师傅今年下半年香瓜种植的大棚数为 x 个,明年上半年 8 个大棚中所产的瓜全部售完后,获得的利 润为 y 元. 根据以上提供的信息,请你解答下列问题: (1)求出 y 与 x 之间的函数关系式; (2)求出李师傅种植的 8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于 10 万元. 【答案】 (1)y=7500x+68000; (2)5. 【解析】 试题分析: (1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论; (2)利用(1)得出的结论大于等于 100000 建立不等式,即可确定出结论. 试题解析: (1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000) (8﹣x)=7500x+68000; (2)由题意得,7500x+6800≥100000,∴x≥ 4 植 5 个大棚. 考点:一次函数的应用;最值问题. 22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是: 红枣粽子(记为 A) ,豆沙粽子(记为 B) ,肉粽子(记为 C) ,这些粽子除了馅不同,其余均相同.粽子煮好 后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个 肉粽子,一个红枣粽子和一个豆沙粽子 . 根据以上情况,请你回答下列问题: (1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少? (2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表 法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率. 【答案】 (1) 【解析】4 ,∵x 为整数,∴李师傅种植的 8 个大棚中,香瓜至少种 151 3 ; (2) . 2 16(A,A) 、 (A,B) 、 (A,C) 、 (A,C) 、 (A,A) 、 (A,B) 、 (A,C) 、 (A,C) 、 (B,A) 、 (B,B) 、 (B,C) 、 (B,C) 、 (C,A) 、 (C,B) 、 (C,C) 、 (C,C) ,∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 . 16考点:列表法与树状图法;概率公式. 23.如图,已知⊙O 的半径为 5,PA 是⊙O 的一条切线,切点为 A,连接 PO 并延长,交⊙O 于点 B,过点 A 作AC⊥PB 交⊙O 于点 C、交 PB 于点 D,连接 BC,当∠P=30°时.(1)求弦 AC 的长; (2)求证:BC∥PA.【答案】 (1) 5 3 ; (2)证明见解析. 【解析】在 Rt△ODA 中,AD=OA•sin60°=5 3 ,∴AC=2AD= 5 3 ; 2(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA, ∴BC∥PA.考点:切线的性质. 24.在同一直角坐标系中,抛物线 y=ax ﹣2x﹣3 与抛物线 y=x +mx+n 关于 y 轴对称,C2 与 x 轴交于 A、B 两点, 其中点 A 在点 B 的左侧. (1)求抛物线 C1,C2 的函数表达式; (2)求 A、B 两点的坐标; (3)在 抛物线 C1 上是否存在一点 P,在抛物线 C2 上是否存在一点 Q,使得以 AB 为边,且以 A、B、P、Q 四点 为顶点的四边形是平行四边形?若存在,求出 P、Q 两点的坐标;若不存在,请说明理由.2 2【答案】 (1)C1 的函数表示式为 y=x ﹣2x﹣3,C2 的函数表达式为 y=x +2x﹣3; (2)A(﹣3,0) ,B(1,0) ; (3)存在满足条件的点 P、Q,其坐标为 P(﹣2,5) ,Q(2,5)或 P(﹣2,﹣3) ,Q(2,﹣3) . 【解析】 试题分析: (1)由对称可求得 a、n 的值,则可求得两函数的对称轴,可求得 m 的值,则可求得两抛物线的函 数表达式; (2)由 C2 的函数表达式可求得 A、B 的坐标; (3)由题意可知 AB 只能为平行四边形的边,利用平行四边形的性质,可设出 P 点坐标,表示出 Q 点坐标, 代入 C2 的函数表达式可求得 P、Q 的坐标. 试题解析:22(t+ 4,t ﹣2t﹣3)或(t﹣4,t ﹣2t﹣3) ,①当 Q(t+4,t ﹣2t﹣3)时,则 t ﹣2t﹣3=(t+4) +2(t+4) ﹣3,解得 t=﹣2,∴t ﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5) ,Q(2,5) ; ②当 Q(t﹣4,t ﹣2t﹣3)时,则 t ﹣2t﹣3=(t﹣4) +2(t﹣4)﹣3,解得 t=2,∴t ﹣2t﹣3=4﹣4﹣3=﹣3, ∴P(﹣2,﹣3) ,Q(2,﹣3) ,综上可知存在满足条件的点 P、Q,其坐标为 P(﹣2,5) ,Q(2,5)或 P(﹣ 2,﹣3) ,Q(2,﹣3) . 考点:二次函数综合题;存在型;分类讨论;轴对称的性质. 25.问题提出 (1)如图①,△ABC 是等边三角形,AB=12,若点 O 是△ABC 的内心,则 OA 的长为 问题探究 (2)如图②,在矩形 ABCD 中,AB=12,AD=18,如果点 P 是 AD 边上一点,且 AP=3,那么 BC 边上是否存在一 点 Q,使得线段 PQ 将矩形 ABCD 的面积平分?若 存在,求出 PQ 的长;若不存在,请说明理由. 问题解决 (3)某城市街角有一草坪,草坪是由△ABM 草地和弦 AB 与其所对的劣弧围成的草地组成,如图③所示.管理 员王师傅在 M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙 头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠ ;2 2 2 2 222222AMB(即每次喷灌时喷灌龙头由 MA 转到 MB,然后再转回,这样往复喷灌. )同时,再合理设计好喷灌龙头喷水的射程就可以了. 如图③,已测出 AB=24m,MB=10m,△AMB 的面积为 96m ;过弦 AB 的中点 D 作 DE⊥AB 交 AB 于点 E,又测得2DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保 留根号或精确到 0.01 米)【答案】 (1) 4 3 ; (2)PQ= 12 2 ; (3)喷灌龙头的射程至少为 19.71 米. 【解析】 试题分析: (1)构建 Rt△AOD 中,利用 cos∠OAD=cos30°=AD ,可得 OA 的长; OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出 PQ,利用勾股 定理进行计算即可; (3)如图 3,作辅助线,先确定圆心和半径,根据勾股定理计算半径: 在 Rt△AOD 中,由勾股定理解得:r=13 根据三角形面积计算高 MN 的长,证明△ADC∽△ANM,列比例式求 DC 的长,确定点 O 在△AMB 内部,利用勾股定理计算 OM,则最大距离 FM 的长可利用相加得出结论. 试题解析: (1)如图 1,过 O 作 OD⊥AC 于 D,则 AD=1 1 AC= ×12=6,∵O 是内心,△ABC 是等边三角形,∴ 2 2∠OAD=1 1 AD 3 ∠BAC= ×60°=30°,在 Rt△AOD 中,cos∠OAD=cos30°= ,∴OA=6÷ = 4 3 ,故答案为: OA 2 2 24 3;1 1 AB•MN=96, ×24 2 2 DC AD DC 12 16  ×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴ ,∴ ,∴DC= ,∴ MN AN 8 18 3(r﹣8) ,解得:r=13,∴OD=5,过点 M 作 MN⊥AB,垂足为 N,∵S△ABM=96,AB=24,∴2OD<CD, ∴点 O 在△AMB 内部, ∴连接 MO 并延长交 AB 于点 F, 则 MF 为草坪上的点到 M 点的最大距离, ∵在 AB上任取一点异于点 F 的点 G,连接 GO,GM,∴MF=OM+OF=OM+OG>MG,即 MF>MG,过 O 作 OH⊥MN,垂足为 H,则 OH=DN=6,MH=3,∴OM= MH 2  OH 2 = 32  62 = 3 5 ,∴MF=OM+r= 3 5 +13≈19.71(米) . 答:喷灌龙头的射程至少为 19.71 米.考 题.点 :圆的 综合 题 ;最 值问 题 ;存 在型 ; 阅读 型; 压 轴。

陕西省2017中考试题化学卷(word版含解析)

陕西省2017中考试题化学卷(word版含解析)

9.化学与生产、生活关系亲密,以下说法不正确的选项是A .食用加碘食盐,可预防甲状腺肿大B.合成使用农药、化肥,可提升农作物产量C.加高炼铁厂烟囱,可减少空气污染D.综台利用化石燃料,可提升其利用率【答案】 C【分析】 A 缺碘易患甲状腺大,食用加碘食盐,可预防甲状腺肿大;B.使用农药、化肥,可提升农作物产量,但过度施用会致使水或土壤被污染,因此应合理使用;C.加高炼铁厂烟囱,不减少空气污染,反而能增大污染物的扩散范围,造成更大面的污染; D .综台利用化石燃料,可提升其利用率,节俭能源。

选C10.具备基本的实验技术是进行科学研究的保证。

以下实验操作正确的选项是A .闻气味B.加固体药品C.过滤D.加热液体【答案】 B11.对以下生活中的现象或做法解说不合理的是选项现象或做法解说A湿衣服在阳光下比在阴凉处更易晾干温度越高,分子运动越快B油锅着火用锅盖盖灭使可燃物与空气隔断C铝制品比铁制品更耐腐化铝表面易形成致密氧化膜D用洗洁精洗去餐盘上的油渍洗洁精能溶解油渍【答案】 D【分析】 A 、宏观物质是由微观粒子构成,微粒是不停运动的C,温度高升,微粒运动加速;B、焚烧需要同时具备的三个条件:物质有可燃性、温度达可燃物的着火点、与氧气充分接触;灭火时只需要损坏一个条件即可。

油锅着火用锅盖盖灭,是因为使可燃物与空气隔断; C 铝制品比铁制品更耐腐化,是因为铝常温下与空气中的氧气反响,在铝表面易形成致密氧化膜,阻挡铝的进一步锈蚀; D 洗洁精对油污有乳化作用,在清洗剂的作用下将油污分别成很小的油滴而被洗掉。

选D12.陶瓷、玻璃、水泥到电子芯片,硅元素的用途特别宽泛。

工业制取高纯硅的部分反响原理的微观表示图以下,有关说法不正确的选项是色 l ,乙A.该反响为置换反响B.反响后硅元素的化合价高升C.X 的化学式是HClD.图甲所示物质中硅、氯元素的质量比是14:71【答案】 B13.推理是常用的学习方法。

以下推理正确的选项是A.化合物中含不一样种元素,因此含不一样中元素的物质都是化合物B.木炭、活性炭可用于净化空气,因此碳单质都能净化空气C.CO2、 SO2均可与碱溶液反响,因此非金属氧化物必定能与碱溶液反响D.点燃可燃性气体前要验纯,因此点燃甲烷前必定要验纯【答案】 D【分析】 A 、由不一样元素构成的纯净物叫化合物; B 木炭、活性炭构造松散多孔,有吸附性,可吸附色素异味,可用于净化空气,金刚石也是碳的单质,可是因为没有松散多孔的结构,不可以用于净化空气;C、碱的溶液能与某些非金属氧化物反响生成盐和水;一氧化碳等难溶于水的非金属氧化物反响。

陕西省2017年中考语文真题试题(含答案)【中考真题】

陕西省2017年中考语文真题试题(含答案)【中考真题】

2017年陕西省初中毕业学业考试语文试卷一、积累和运用(共6小题,计17分)1.下列各组词语中,加点字的读音全都正确的一组是(2分) ( )A.粗拙.(zhuō) 偏袒.(tǎn) 侥.幸(jiǎo) 茅塞.顿开(sè)B.雷霆.(tíng) 挣.扎(zhèng) 禁.锢(jìn) 百废待兴.(xīng)C.步履.(lǔ) 迸.溅(bèng) 疮.痍(cāng) 潜.滋暗长(qián)D.喷薄.(bó) 哺.育(pǔ) 璀璨.(càn) 咬文嚼.字(jué)2.下列各组词语中,汉字书写全都正确的一组是(2分) ( )A.妍丽 庸碌 好意难确 持之以恒B.欣尉 倾诉 酣然入梦 杂乱无章C.筹划 精炼 饶有兴味 仗势欺人D.诸候 企盼 登峰造及 绝处逢生3.请从所给的三个词语中,选出一个最符合语境的填写在横线上。

(2分)(1)真正懂得生活 (奥秘 秘诀 真谛)的人往往明了:身在何处并不重要,心在何处则决定了生活的意义有多深远和广阔。

(2)在同样的环境下,人们的精神状态是不一样的:有的人虽年富力强,却整日 (碌碌无为 无所事事 麻木不仁);有的人虽已至暮年,却依然壮心不已。

4.经典诗文默写〔在第(1)~(7)题中,任选五题....〕(6....;在第(8)~(10)题中,任选一题分)(1)落红不是无情物, 。

(龚自珍《己亥杂诗》)(2) ,而无车马喧。

(陶渊明《饮酒》(其五))(3)问君归期未有期, 。

(李商隐《夜雨寄北》)(4) 。

风休住,蓬舟吹取三山去!(李清照《渔家傲》)(5)知不足,然后能自反也;知困 。

(《礼记•虽有嘉肴》)(6)陛下亦宜自谋, ,察纳雅言。

(诸葛亮《出师表》)(7)学而不思则罔, 。

(《论语•为政》)(8)山舞银蛇,原驰蜡象, 。

(毛泽东《沁园春•雪》)(9) ,轻轻摇着归泊的小桨!(何其芳《秋天》)(10)寻梦?撑一支长蒿, ……(徐志摩《再别康桥》)5.阅读语段,按要求完成下面的题目。

2017年陕西省中考英语试题及答案

2017年陕西省中考英语试题及答案

2017年陕西省中考英语试题及答案本文为了满足字数限制,将会按照小节论述的方式来介绍2017年陕西省中考英语试题及答案,旨在提供对该年份中考英语试题的了解。

试题及答案的表达方式将根据具体内容情况选择合适的格式。

请阅读下文获取更多信息。

第一节听力理解(共20小题,每题1分,满分20分)本节包含了听力材料及对应的选择题。

学生们需要仔细听录音材料,并根据听到的内容选择正确的答案。

以下为试题及答案的示例:1. What does the woman want to be?A. A doctor.B. A teacher.C. A singer.2. How will the woman go to Shanghai?A. By plane.B. By train.C. By car.第二节笔试部分(满分80分)该部分包含了选择题和非选择题两个部分,学生们需要根据题目要求完成相应的任务。

以下为试题及答案的示例:选择题3. Bill never goes to bed ______ he finishes his homework.A. ifB. soC. until4. — How long have you been studying English?— _______ I started school.A. SinceB. ForC. During非选择题请在空白处填入一个适当的单词或短语,使句子完整、正确。

5. My mother is busy cooking dinner, ______ I am doing my homework in my room.第三节阅读理解(共15小题,每题2分,满分30分)这一部分提供了一段段的阅读材料,学生们需要仔细阅读并回答相关的问题。

以下为试题及答案的示例:阅读短文,判断正(T)误(F)。

My name is Lisa and I am 12 years old. I like playing musical instruments. My favorite instrument is the piano. I have been playing it for three years. My parents bought a piano for me on my tenth birthday. I started learning to play it after school and on weekends. Now, I can play many songs. My friends often ask me to play the piano for them during the lunch break. I like making music with my friends.6. Lisa likes playing the guitar.A. TrueB. False7. Lisa has been playing the piano for four years.A. TrueB. False总结通过本文对2017年陕西省中考英语试题及答案的介绍,相信读者对该年份中考英语试题有了更深入的了解。

2017年陕西省中考历史试卷-答案

陕西省2017年初中毕业学业考试历史答案解析第I卷13.【答案】C【解析】唐太宗统治时期重视科举制,增加科举取士的人数,同时严格录取程序,许多出身低微但是知识渊博的读书人得以入朝为官。

“天下英雄人吾彀中矣”,这句话充分表达了唐太宗对于人才的态度,那就是要将人才都纳入官僚体制中来,为朝廷所用。

唐玄宗时期,高僧鉴真应日本僧人邀请,先后6次东渡,历尽千辛万苦,终于到达日本。

这两位统治者分别为唐太宗和唐玄宗,故选C项。

14.【答案】D【解析】根据题目中的信息“1895年”“日本”“中日战争”“清政府”可知,该战争为1894—1895年的甲午中日战争,清政府战败,签订《马关条约》,列强掀起了瓜分中国的狂潮,而且条约允许列强在华开设工厂,使得列强对中国的侵略开始从以商品输出为主转为以资本输出为主,中国社会半殖民地化程度大大加深,故选D项。

A项反映的是洋务运动,B项是《辛丑条约》的影响,C项是辛亥革命的结果。

15.【答案】A【解析】1931年日本发动九一八事变,侵略中国,经过14年艰苦卓绝的抗战,直到1945年中国人民取得了最终的胜利。

日本在侵华战争中大肆烧杀抢掠,尤其是在南京大屠杀中杀害中国军民达30万人以上,这些暴行启迪国人要牢记历史,①正确。

中国之所以能够取得抗战胜利,根本原因在于国共两党结成抗日民族统一战线,领导了全民族抗战,②正确。

中国的抗日战争是世界反法西斯战争的重要组成部分,在世界反法西斯战争中,面对共同的敌人,社会制度不同的国家能亲密合作,③正确。

④表述正确,当前日本右翼势力确实在美化侵华战争史,应该引起亚洲各国人民的警惕,但是它不属于这场战争应该铭记的历史教训,与题意无关。

16.【答案】B【解析】根据表格提供的信息可知,这一阶段,中国对外贸易和引进外资的数额总体增长,联系所学知识可知,十一届三中全会后,中国开始了对外开放的步伐,而且对外开放持续深入扩大,使得对外贸易和引进外资的数额总体增长,因此答案为B项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年陕西省中考试题及参考答案2017年陕西省中考试题及参考答案数 学第Ⅰ卷(选择题 共30分)A 卷一、 选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.A 为数轴上表示-1的点,将点A 沿数轴向右平移3个单位到点B ,则点为 (B A.3 B.2 C.-4 D.22.如图,P 为正三角形ABC 外接圆上一点,则∠APB =( D )A.150° B.135° C.115° D.120°3.化简22142x x x ---的结果是( A ) A.12x + B.12x - C.2324x x -- D.2324x x +-4.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品 的成本价为x 元,根据题意,下面所列第2的方程正确的是 ( B )A.x ·40%×80%=240B. x (1+40%)×80%=240C. 240×40%×80%=xD. x ·40%=240×80%5.如图,在一个由4×4方形网格中,ABCD 的面积比是 ( B )A.3:4B.5:8C.9: 2 6.若双曲线6y x =-经过点A (m ,-2m ),则 m 的值为( C ) A.B.3C.D.3±7.⊙O 和⊙O ’的半径分别为R 和R ’,圆心距 OO ’=5,R =3,当0<R ’<2时,⊙O 和⊙O ’的位置关系是( D )A.内含B.外切C.相交D.外离 8.已知圆锥的底面周长为58cm ,母线长为30cm ,求得圆锥的侧面积为( A ) A.870cm 2 B.908 cm 2 C.1125 cm 2B C 第5题相遇后,甲的速度小于乙的速度; (1) 甲、乙两人同时到达目的地。

其中,符合图象描述的说法有A.2个B.3个C.4个D.5个B 卷一、 选择题(共10小题,每小题3分,计30分)第Ⅱ卷(非选择题 共90分)二.填空题(共6小题,每小题3分,计18分)11.5×(-4.8)+ 2.3 =__-21.7_______。

12.分解因式:a 3-2a 2b +ab 2=__a(a -b)2________。

13,垂足是E ,DE =6,sinA =35,则菱形ABCD 的周长是__40_______。

14.根据图中所给的数据,求得避雷针CD 的长约为__4.86______m (结果精确的到0.01m )。

(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)B CE 第1315.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_2____ 16.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是1:2。

三、解答题(共9小题,计72分。

解答应写出过程)17.(本题满分5分)计算:(a 2+3)(a -2)-a (a 2-2a -2)。

解:(a 2+3)(a -2)-a (a 2-2a -2) =a 3-2a 2+3a -6-a 3+2a 2+2a ………………………………………(3分)=5a -6…………………………………………………………………(5分) 18.(本题满分6分)C AB D O 第18第16如图,四边形ABCD中,AC垂直平分BD于点O。

(1)图中有多少对全等三角形?请把它们都写出来;(2)任选(1)中的一对全等三角形加以证明。

解:(1)图中有三对全等三角形:△AOB≌△AOD,△COB≌△COD,△ABC≌△ADC。

………………(3分)(2)证明△ABC≌△ADC。

证明:∵AC垂直平分BD,∴AB=AD,CB=CD。

……………………………………(5分)又∵AC=AC,∴△ABC≌△ADC。

……………(6分)19.(本题满分7分)已知:x1、x2是关于x的方程x2+(2a-1)x +a2=0的两个实数根且(x1+2)(x2+2)=11,求a的值。

解:∵x1、x2是方程x2+(2a-1)x+a2=0的两个实数根,∴x1+x2=1-2a,x1﹒x2=a2………………………………………(2分)∵(x1+2)(x2+2)=11,∴x1x2+2(x1+x2)+4=11……………………………………(3分)∴a2+2(1-2a)-7=0,即a2-4a-5=0。

解得a=-1,或a=5。

…………………………………………(5分)又∵Δ=(2a-1)2-4a2=1-4a≥0,∴a≤1。

(4)…………(6分)∴a=5不合题意,舍去。

∴a=-1…………………………………………………………(7分)20(本题满分8分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表:根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少? (3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受。

解:(1)该班学生每周做家务劳动的平均时间为0212 1.5628 2.512313 3.5443⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=2.44(小50时)。

答:该班学生每周做家务劳动的平均时间为2.44小时。

……………(5分)(2)这组数据的中位数是2.5(小时),众数是3(小时)。

………(7分)(4)评分说明:只要叙述内容与上述数据有关或与做家务劳动有关,并且态度积极即可。

………………………………………………(8分)21.(本题满分8分)某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:(1)经过对上表中数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);(2) 如果出版社投入成本48000元,那么能印该读物多少册?解:(1)设所求一次函数的解析式为y =kx +b ,……………………(1分) 则500028500,800036000.k b k b +=⎧⎨+=⎩………………………………………………(2分) 解得k=52,b =16000。

………………………………………………(4分)∴所求的函数关系式为y =52x +16000。

…………………………(5分) (2)∵48000=52x +16000。

………………………………………(6分) ∴x =12800。

……………………………………………………(7分) 答:能印该读物12800册。

………………………………………(8分) 22.(本题满分8分)阅读:我们知道,在数轴上,x =1表示一个点,而在平面直角坐标系中,x =1表示一条直线;我们还知道,以二元一次方程2x -y +1=0的所有解为坐标的点组成的图形就是一次函数y =2x +1的图象,它也是一条直线,如图①. 观察图①可以得出:直线=1与直线y =2x+1的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩在直角坐标系中,x ≤1表示一个平面区域,即直线x =1以及它左侧的部分,如图②;y ≤2x +1也表示一个平面区域,即直线y =2x +1以及它下方的部分,如图③。

回答下列问题:(1)方法求出方程组⎧⎨⎩(2) 用阴影表示y y x ⎧⎪⎨⎪⎩所围成的区域。

解:(1)如图所示,在坐标系中分别作出直线x =-2和直线y =-2x +2,……(2分)第22这两条直线的交点是P (-2,6)。

(4分)则26x y =-⎧⎨=⎩是方程组222x y x =-⎧⎨=-+⎩的解。

……(5分) (3) 如阴影所示。

……………………………………………………(8分) 23.(本题满分8分)如图,PC 切⊙O 于点C ,过圆心的割线PAB 交⊙O 于A 、B 两点,BE ⊥PE ,垂足为E ,BE 交⊙O 于点D ,F 是PC 上一点,且PF =AF ,FA 的延长线交⊙O 于点G 。

求证:(1)∠FGD =2∠PBC ;(2)PC PO AG AB=。

证明:(1)连结OC 。

……………………………………………………(1分) ∵PC 切⊙O 于点C , ∴OC ⊥PC 。

∵BE ⊥PE ,∴OC ∥BE 。

……………………………………………………(2分)∴∠POC =∠PBE 。

又∵∠PBE =∠FGD ,∴∠POC =∠FGD3分) ∵∠POC =2∠PBC , ∴∠FGD =2∠PBC 4分) (3) 连结BG 。

∵AB 是的直径, ∴∠AGB =90°。

又∵OC ⊥PC ,∴∠PCO =90°,∴∠AGB =∠PCO 。

……………(5分) ∵FP =FA , ∴∠FPA=∠PAF=∠BAG 。

……………………(6分)B 第23∴△PCO∽△AGB。

……………………(7分)∴PC PO……………………(8分)AG AB24.(本题满分10分)如图,在直角坐标系中,⊙C过原点O,交x 轴于点A(2,0),交y轴于点B(0,。

(2)抛物线y=ax2+bx+c过O、A两点,且顶点在正比例函数y的图象上,求抛物线的解析式;(3)过圆心C作平行于x轴的直线DE,交⊙C于D、E两点,试判断D、E两点是否在(2)中的抛物线上;(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围。

解:(1)∵⊙C经过原点O,∴AB为⊙C的直径。

∴C为AB的中点。

过点C作CH垂直x轴于点H,则有CH=12OBOH=12OA=1。

∴圆心C的坐标为(1,。

……………………(2分)(2)∵抛物线过O、A两点,∴抛物线的对称轴为x=1。

∵抛物线的顶点在直线y=-3x上,∴顶点坐标为(1,-3)……………………(3分)把这三点的坐标代入抛物线抛物线y =ax2+bx+c,得4203ca b ca b c⎧⎪=⎪⎪++=⎨⎪⎪++=-⎪⎩解得330a b c ⎧=⎪⎪⎪⎪=-⎨⎪=⎪⎪⎪⎩……………(5分)∴抛物线的解析式为2y x x =。

………(6分)(3)∵OA =2,OB =∴4AB ==.即⊙C 的半径r =2。

∴D (3,E(-1)…(7分)代入233y x x =-检验,知点D 、E 均在抛物线上…(8分)(4)∵AB 为直径,∴当抛物线上的点P 在⊙C 的内部时,满足∠APB 为钝角。

相关文档
最新文档