4.生物制氢2
发酵法生物制氢技术..

三、厌氧折流板反应器(ABR)
ABR反应器是美国 Stanford大学 的Bachmann教授等在厌氧生物转盘反 应器的基础上改进开发出来的一种新 型高效厌氧反应器。通过废水的上下 折流及降解过程中的产气作用,使得 基质与污泥的接触机会及接触时间增 多,提高了反应器的处理效率。
三、厌氧折流板反应器(ABR)
b、处理高浓度废水时,其产气对促进泥水混合的作用占主导地位, 因而对上升流速的控制范围较宽,且可在很低的Vs下运行。故对高 浓度废水,建议采用较长的HRT,以防止因产气作用而造成的污泥流 失,否则须加装填料以减少污泥流失。
三、厌氧折流板反应器(ABR)
3、ABR工艺操作条件的选择 水 力 停 留 时 间 回 流 分 段 进 水 PH 值
(4)
(1)
(2)
(3)
2018/9/27
三、厌氧折流板反应器(ABR)
水力停留时间是控制ABR反应器运行的主要参数, 它直接影响了ABR中的COD去除率。
a、对于低浓度废水,建议采用较短的HRT,以增强传质效果,促进水 流混合,缓解反应器后部污泥基质不足的问题。但HRT不宜过短,过 短的HRT容易造成沟流现象,不仅影响处理效果,而且会使污泥流失。
1、工作原理
在反应器内设置一系列垂直的折流挡板使废水 在反应器内沿折流板上下折流运动,依次通过每个 格室的污泥床直至出口。在此过程中,废水中的有 机物与厌氧活性污泥充分接触而逐步得到去除。虽 然在构造上ABR可以看作是多个UASB反应器的简单 串联,但工艺上与单个UASB有显著不同。
三、厌氧折流板反应器(ABR)
三、厌氧折流板反应器(ABR)
当进水COD浓度、进水流量发生变化时,都会对发酵产氢系统造成 冲击.由于CSTR的混合液是均匀的,其抵抗能力基本来自混合液对进 水的稀释作用,很容易引起系统内环境条件的变化,因而会造成产氢 速率的变化。而ABR系统第一格室的污泥床中聚集了悬浮的高密度微 生物絮体,它们与格室内环境相互作用,当水质变化时,该系统可 以通过内平衡机制维持其稳定性,并且第1格室的缓冲作用,保障了 第2、3格室的稳定运行。
探索生物质新能源之微生物制氢技术

微生物课程论文
探索生物质新能源之微生物制氢技术
子产生的甲酸可以通过铁氧还原蛋白和氢酶生成二氧化碳和氢气。
而辅酶Ⅰ的氧化与还原平衡调节产氢则是在碳水化合物发酵过程中,经EM P途径产生的 NADPH 和氢离子可以通过与一定比例的丙酸、丁酸、乙醇和乳酸 等发酵过程相偶联而氧化为 NADPˉ,以保证代谢过程中的 NADPH/NADP+的 平衡,因而可以分为丁酸型发酵和乙醇型发酵。发酵细菌可以通过释放氢气的形 式实现 NADPH 与 NADP+之间转化,这种转化在标准状况下不会自发进行,但 在NADP-铁氧还原蛋白及铁氧还原蛋白酶作用下能够进行,反应式是: NADPH+H+→H2+NADP+。
许多光合细菌在黑暗条件下可以通过厌氧发酵产氢。 4.1.2厌氧发酵产氢机理
发酵产氢微生物可以在发酵过程中分解有机物产生氢气,包括梭菌属、固氮 菌属、肠杆菌属、鱼腥蓝细菌属、甲烷球菌属等。发酵产氢分为直接产氢的丙酮 酸脱羧产氢和辅酶Ⅰ的氧化与还原平衡调节产氢两类。
丙酮酸脱羧作用分为两种方式:第一种是丙酮酸首先在丙酮酸脱羧酶的作用 下脱羧形成硫胺素焦磷酸-酶的复合物,同时将电子转移给还原态的铁氧还原蛋 白然后在氢酶的作用下重新氧化成氧化态的铁氧还原蛋白,产生分子氢;第二种 是通过甲酸裂解的途径产氢,丙酮酸脱羧后的甲酸及厌氧环境中二氧化碳和氢离
2 关于生物质能源
生物质指所有的动、植物和微生物,是通过光合作用而形成的各种生命有机 体。生物质能源,就是贮存在生物质中的以其为载体的能量。它直接或间接来源 于植物的光合作用,可转化为固态、液态 和气态燃料,取之不尽、用之不竭、 可再生。生物质能来源于太阳,所以, 从广义上讲,生物质能是太阳能的一种 存在形式。
生物制氢题目

生物制氢有良好的发展前景,[H]在产氢酶的作用下可以产生H2,产氢酶对O2敏感。
下面是利用生物制H2的两种方法。
(1)绿藻在光照条件下产生[H]的场所是__________________________________,有氧呼吸产生的
[H]的功能是______________________________________。
绿藻产H2会导致其生长不良,请从光合作用物质转化的角度分析其原因:__________________________________________________ _。
(2)与绿藻在光照条件下产生H2相比,一些厌氧微生物在黑暗环境下,能将多种有机物发酵成各种有机酸,同时产生大量的H2。
与绿藻制氢方法相比,这种方法制H2的优点是:___ ________________________________(答两点)。
厌氧微生物的无氧呼吸过程也会影响产氢酶的活性,使氢产量降低,其原因可能是:____________
答案:
细胞质基质、线粒体、叶绿体还原氧气,生产水,并释放大量的能量绿藻光反应产生的[H]转变成H2,使参与暗反应[H]的减少,有机物生产量减少不受光照条件限制、避免了氧气的干扰、产气量大厌氧菌无氧呼吸产生有机酸,导致溶液PH降低,影响产氢酶的活性。
简谈生物发酵制氢法

(3)氧化还原电位
(4)金属离子
金属离子能对氢酶的结构
和功能产生影响,从而影响产氢 发酵细菌的产氢能力。也是影
任南琪教授等人经过系统 的研究提出,pH值和氧化还原电
位对产氢发酵微生物的发酵产
物组成有重要影响,是影响产酸 发酵类型的限制性生态因子。
响产酸发酵菌生长与发育的重
要的生态因子。
金属离子影响因子的研究:
实验装置:主体设备为生物制氢模型反应器,反应器的有效容积9.6L, 沉淀区为5.4L,采用将电热丝缠绕在反应器外壁上的方式加热保温, 温度控制在35℃左右,上下浮动不超过1 ℃。
实验用底物:采用甜菜制糖厂的废糖蜜,反应器进水配置中添 加少量的N、P肥料,COD:N:P=500:5:1.
乙醇型发酵菌群的产氢能力 本实验中,乙醇型发酵菌群发生并达到稳定的pH值在4.0~4.5之间,稳定
如图是对丁酸型发酵 菌群产气能力和产氢 能力的测试结果。实 验结果表明,在实验条 件下,丁酸型发酵菌群 的产气能力和产氢能 力要比乙醇型发酵菌 群低,平均为2.19 mol/kg vss· d,最高产 气能力为2.74 mol/kg vss· d。而产氢能力平 均为0.57mol/kg vss· d,最高产氢能力 达到0.77mol/kg vss· d。
人们利用一些微生物载体,对产氢细菌的细胞固定化技术进
行了一系列的研究。
限制因素 细胞固定化技术的使用,使反应系统的产氢速率和运行稳定性 有了很大提高。但是,固定化技术的复杂性、巨大的工作量以及高
昂的制氢成本决定了该技术的应用只能局限于小型的实验室研究,
无法实现大规模的工业化生产,而且作为固定化载体的基质会占据 反应器内大量的有效空间,反应器产氢率的进一步提高会由于生物
生物制氢技术研究现状及进展1

生物制氢技术研究现状及其进展氢能-简介氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的二次能源。
它是一种极为优越的新能源,其主要优点有:燃烧热值高,每千克氢燃烧后的热量,约为汽油的3倍,酒精的3.9倍,焦炭的4.5倍。
氢能-氢特点氢位于元素周期表之首,它的原子序数为1,在常温常压下为气态,在超低温高压下又可成为液态。
作为能源,氢有以下特点:(l)所有元素中,氢重量最轻。
在标准状态下,它的密度为0.0899g/l;在-252.7°C时,可成为液体,若将压力增大到数百个大气压,液氢就可变为金属氢。
(2)所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体。
(3)氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。
据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大90O0倍。
(4)除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为142,351k J/kg,是汽油发热值的3倍。
(5)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。
(6)氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境巨,而且燃烧生成的水还可继续制氢,反复循环使用。
(7)氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。
用氢代替煤和石油,不需对现有的技术装备作重大的改造现在的内燃机稍加改装即可使用。
(8)氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。
氢的制法:1矿物燃料制氢2电解水制氢3太阳能光解水制氢4生物制氢生物制氢过程可以分为5类:(1)利用藻类或者青蓝菌的生物光解水法;(2)有机化合物的光合细菌(PSB)光分解法;(3)有机化合物的发酵制氢;(4)光合细菌和发酵细菌的耦合法制氢;(5)酶催化法制氢。
第十章 生物质制氢PPT课件

1. 基本理论 2. 主要的生物制氢技术及其发展现状 3. 生物制氢存在的问题及展望
第一节 基本理论
一、氢能的特点 作为能源,氢有以下特点: (1)所有元素中,氢重量最轻。 (2)氢是极好的传热载体。 (3)存储量大。 (4)氢的发热值高。 (5)氢燃烧性能好。
(6)氢本身无毒。 (7)氢循环使用性好。 (8)氢能利用形式多。 (9)氢能适应储运及各种应用环境的不同要
• 虽然在标准状况下NADH+H+转化为H2的过 程不能自发进行,但在NADH铁氧还蛋白和 铁氧还蛋白酶和铁氧还蛋白氢酶作用下, 该反应能进行。
• 可溶性碳水化合物(如葡萄糖、蔗糖、乳 糖和淀粉等)的发酵以丁酸型发酵为主。
• 含氮有机化合物的酸性发酵,难降解碳水 化物得厌氧发酵表现为丙酸型发酵途径。
①预处理环节
木质纤维素结构复杂,需要对原料进行预 处理,以去除部分或全部木质素,溶解半 纤维素,或破坏纤维素的晶体结构,从而 减少聚合度,增加孔隙度和表面积等,以 促进酶与底物相互接触并反应,提高酶解 速率和糖得率。
理想的预处理方法应满足: ① 有利于酶水解过程的糖化; ② 避免碳水化合物的降解或损失; ③ 避免生成对后续水解或发酵有害的副产品; ④ 经济可行。
(一)光合制氢技术 1、原料特点
光合微生物制氢是指利用光合细菌或微藻 将太阳能转化为氢能。
光合细菌的优点:
① 容易培养并且可以利用多种有机废弃物为产氢 原料,具有较高的理论转化率;
② 可利用的太阳光谱范围较宽,比蓝细菌和绿藻 的吸收光谱范围更广泛,具有较高的光合转化 潜力
③ 产氢需要克服的自由能较小,乙酸光合细菌产 氢的自由能只有+8.5KJ/mol;
(二)产氢途径 1、光合产氢途径
生物质制氢原理、工艺和技术
氢的化学性质
➢ ①化学性质比较活泼,一般不存在单原子的氢,都是以双 原子构成气体氢分子或与其他元素结合的形式存在。
➢ ②分子能级较高,还原性强。
➢ ③易燃易爆。 氢气在氧气或空气中着火范围宽,燃烧时若不含杂质可产 生无色的火焰; 火焰的传播速度很快(2. 75 m/s); 着火能很低(0.2MJ)。 常温常压下在大气中燃烧体积分数范围是4%~75%(以 体积计),爆炸极限为18%~65%。
液体原料制氢
甲醇制氢 乙醇制氢 石油制氢等
生产成本主要取决于原料价格,制气成本高,应用受到限制。
生物质制氢
生物质制氢方法
生物质热化学 转化制氢
生物质气化 生物质热裂解 生物质超临界转化 生物质热解油重整 其他热化学转化
生物质微生物 转化制氢
厌氧微生物发酵 光合微生物发酵
厌氧细菌和光合细菌联合 发酵
➢ 目前氢的储存方式主要有: 常压储氢、 高压储氢、 液态储氢、 金属氢化物储氢、 非金属氢化物储氢
氢的利用
➢ (1)用做内燃机燃料
氢内燃机与汽油内燃机相比,系统效率高,发动机寿命长,环境 友好,使用经济。目前氢内燃机汽车还在示范阶段,困难在于没 有适宜的车载储氢技术; 氢内燃机飞机和氢燃料火箭前景更好。
优点:清洁,节能,不消耗矿物资源,可再生等。 利用太阳能通过生物质制氢是最有前景的制氢途径。
生物质为可再生资源,通过光合作用进行能量和物质转换,在常温常压下通过酶的催 化作用得到氢气;太阳能可以作为产氢的一次能源,降低生物质制氢成本。
氢的储存
➢ 氢的储存比固态煤、液态石油、天然气更困难。 一般,氢可以以气体、液体、化合物等形式储存。
1.2 生物质制氢的基本原理
➢ 1.2.1热化学转化法制氢 ➢ 生物质气化制氢
《生物质制氢技术》PPT课件
第四章 生物质制氢技术
完整版课件ppt
1
第四章 生物质制氢技术
• §4.1 概述 • §4.2 生物质热化学转换法制氢 • §4.3 微生物法制氢
完整版课件ppt
2
§4.1 概述
以值量计在宇宙中最普通的10种元素
• 氢的性质 • 含量为最丰富的元素
元素 氢
百万分比 750,000
• 最环保、洁净的能源
完整版课件ppt
4
氢的存在形式及制取途径
• 地球上的氢主要以其化合物,如水和碳氢化合物、ห้องสมุดไป่ตู้油、天然气 等形式存在
用水制氢
化石能源制氢
生物质制氢
水电解制氢:产品纯度高, 煤制氢:生产投资大,易 操作简便,但电能消耗高 排放温室气体,新型技术
正在研发
热化学转化技术:有生物 质热解制氢、气化制氢超 临界气化制氢等方法。产 氢率和经济性是选择工艺 的关键
液体石化能源制氢:甲醇、 的培养技术有待开发
乙醇、轻质油及重油制氢
过程各完有整利版弊课件ppt
5
• 氢是一种理想的新能源,具有资源丰富,燃烧热值高,清洁无污染, 适用范围广的特点。
• 制氢的方法有很多,电解水是大规模生产氢的一种途径,然而,水分 子中的氢原子结合得十分紧密,电解时要耗用大量电力,比燃烧氢气 本身所产生的热量还要多,因此若直接利用火电厂供应的电力来电解 水,在经济上是不可取的。
3、氢气分离、净化
• (1)金属氢化物分离法 氢同金属反应生成金属氢化物的反应是可逆反
述分析可知,CFBG的热解反应处于高温区,并且CFBG的传热条件好,加热速率高,可操作性强,
产品气的质量也较高,其中H2的含量也较高。
生物制氢技术的原理和发展现状
可再生能源实验设计论文题目生物制氢技术的原理和发展现状学院机电工程学院专业农业生物环境与能源工程学生姓名××学号×××××指导老师××××撰写时间: 20××年×月×日生物制氢技术的原理和发展现状摘要:介绍了生物制氢的基本原理、三种生物制氢的基本方法,并对这三种方法进行了比较;简要介绍了生物制氢技术的国内外发展历程;最后总结了生物制氢技术研究方向,指出了光合生物制氢是最具发展前景的生物制氢方法。
关键词:氢气、生物制氢、光合生物、实验设计1.前言随着能源短缺以及能源使用过程产生的环境污染问题的日益严重,人类面临着寻求绿色、新能源的巨大难题。
氢能具有清洁、高效、可再生的特点,是一种最具发展潜力的化石燃料替代能源。
与传统的热化学和电化学制氢技术相比,生物制氢具有低能耗、少污染等优势。
生物制氢技术的发展在新能源的研究利用中日趋受到人们的关注。
本文主要介绍了生物制氢的基本原理、生物制氢的三种方法和此技术的研究发展现状及实验设计。
2.生物制氢技术的基本原理与方法制氢的方法包括化石能源制氢、电解水制氢、生物制氢、热解制氢等[1]。
其中,生物制氢具有节能、清洁、原料来源丰富、反应条件温和、能耗低和不消耗矿物资源等优点[2,3]。
广义地讲,生物制氢是指所有利用生物产生氢气的方法,包括微生物产氢和生物质气化热解产氢等[4,5]。
狭义地讲,生物制氢仅指微生物产氢,包括光合细菌(或藻类)产氢和厌氧细菌发酵产氢等[2,6,7,8,9]。
本文只讨论狭义上理解的生物制氢,这也是利用生物制氢的主要研究方向[3,6]。
迄今为止一般采用的方法有:光合生物产氢,发酵细菌产氢,光合生物与发酵细菌的混合培养产氢。
各种生物制氢方法有不同的特点[10]。
2.1下面简要介绍下生物制氢的三种方法1)光合生物产氢利用光合细菌或微藻将太阳能转化为氢能[8,11]。