二级杆组和三级杆组的类型和组成原理的基本思路

合集下载

机械原理

机械原理
i=1 j=1
5
p
末杆自由度: 末杆自由度:λ
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (3)具有公共约束的单闭环机构自由度计算
F = ∑i ⋅ pi − 6 −m) = ∑fj − λ (
5
p
λ = λr + λtt + λtr
i=1
j=1
基本转动(移动)自由度: 基本转动(移动)自由度: 各轴线都平行于某一个方向:其值=1 1)各轴线都平行于某一个方向:其值=1 分别平行于两个不同方向: 其值=2 2)分别平行于两个不同方向: 其值=2 有不与前两个方向共面的第三个方向, 3)有不与前两个方向共面的第三个方向, 其值=3 其值=3
2.2.1 运动副
构成运动副的点、 构成运动副的点、线、面称为运动副的元素。 面称为运动副的元素。 (1)低副:两构件通过面接触构成的运动副. 低副:两构件通过面接触构成的运动副. (2)高副:两构件通过点或线接触构成的运动副. 高副:两构件通过点或线接触构成的运动副. 点或线接触构成的运动副
2.2.1 运动副
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
公共约束: 公共约束: 是指在机构中由于运动副的特性及布 置的特殊性, 置的特殊性,使得机构中所有的活动构件共同失 去了某些自由度, 去了某些自由度,即对ห้องสมุดไป่ตู้构中所有活动构件同时 施加的约束,公共约束记为m 施加的约束,公共约束记为m 。

第二章 平面机构的结构分析

第二章 平面机构的结构分析

同一运动链可以生成的不同机构
B
1
2
3
A
4
C
B
1
2
3
A 4
B
1
C 2
3
A
4
B
C
2
1 A
曲柄滑块机构 摇块机构 导杆机构
4
3
运动链的生成是创造、获取新机构的重要手段。运动链的设计只关
注构件数和联接这些构件的运动副的数量和类型,所以又称为机构的型
数综合(Type and number synthesis)。
球面高副
柱面高副
齿轮副
凸轮副
★ 运动副元素以面接触的运动副称为低副(lower pair)。
球面低副 回转副
移动副
3. 根据组成运动副两个构件的相对运动形式分类 ★ 空间运动副
球销副
螺旋副
圆柱套筒副
★ 平面运动副 A. 低副
B. 高副
移动副
凸轮副
转动副 齿轮副
三、运动链(Kinematical Chain)与机构 构件通过运动副的连接而构成的可相对运动的系统称为运动链。
4. 运动简图绘制举例
1) 绘制牛头刨床主运动机构的运动简图
选取比例尺l = m/mm
2) 绘制破碎机的机构运动简图
选取比例尺l
3) 绘制图示机构的运动简图
§2-3 机构自由度(Degrees of Freedom)的计算
一、平面机构自由度的计算公式 1. 构件的自由度与约束
构件具有确定运动时所必须给定的独立运动参 数的数目称为机构的自由度。F
由两个以上构件(包括活动构件与机架)在同一处 构成的重合转动副称为复合铰链。
7
46

平面机构结构分析思考题与习题

平面机构结构分析思考题与习题

平⾯机构结构分析思考题与习题
平⾯机构结构分析思考题与习题
1、⾼副低代的特殊形式
试画出⾼副低代后的低副机构。

图中N1为凸轮廓线在C点接触时的曲率中⼼。

平底摆动从动件凸轮机构尖端移动从动件凸轮机构
2、思考题
机构究竟是怎样组成的?按照该组成原理为什么机构的运动⼀定是确定的?
什么是杆组?如何确定杆组的级别?III级杆组有何特点?III级杆组能分解成两个Ⅱ级杆组吗?试举例说明。

试叙述在进⾏机构组成分析时拆杆组的原则和步骤。

如何确定机构的级别?当图⽰的机构选择不同的构件(分别为AB和DE)作原动件时,对机构的级别有何影响?
⾼副低代必须满⾜的条件是什么?
怎样保证⾼副低代前后机构瞬时速度和加速度不变?
为何说⾼副低代具有瞬时性?⾼副低代的⽬的和意义何在?
3、习题
计算下列各题中机构的⾃由度,并在⾼副低代后进⾏机构组成分析,拆出(画出)各杆组,确定杆组和机构的级别。

(A)(B)
4、答案
1)⾼副低代
平底摆动从动件凸轮机构尖端移动从动件凸轮机构
3)
(A)⾃由度:n=4, P L=5, P H=1,F=3n-2P L-P H=3×4-2×5-1×1=1。

⾼副低代拆出1个Ⅲ级组,故机构为Ⅲ级机构(B)n=3, PL=3, PH=2, F=3n-2PL-PH=3×3-2×3-1×2=1。

⾼副低代拆出2个Ⅱ级组,故机构为Ⅱ级机构。

机械原理平面机构的结构分析主要内容:

机械原理平面机构的结构分析主要内容:

第一章平面机构的结构分析本章主要内容:1)平面机构运动简图的绘制2)平面机构自由度的计算及机构具有确定运动的条件3)机构的组成原理及结构分析1-1. 研究机构结构的目的(1) 探讨机构运动的可能性及其具有确定运动的条件(2) 将各种机构按结构加以分类,并按分类建立运动分析和动力分析的一般方法(3) 了解机构的组成原理(4) 绘制机构运动简图1-2. 运动副、运动链和机构一、运动副基本概念:1运动副:两构件直接接触形成的可动联接运动副1 运动副2 运动副2运动副元素:参与接触而构成运动副的点、线、面。

3自由度:构件所具有的独立运动的数目4约束:对独立运动所加的限制运动副的分类:1根据运动副的接触形式,运动副归为两类:1)低副:面接触的运动副。

如转动副、移动副。

2)高副:点或线接触的运动副。

如齿轮副、凸轮副。

2根据两构件的空间运动形式,可将运动副分为平面运动副和空间运动副。

1)平面运动副:组成运动副两构件间作相对平面运动,如转动副、移动副、凸轮副、齿轮副。

2)空间运动副:组成运动副两构件间作相对空间运动。

如螺旋副,球面副运动副的约束特点:具有两个约束而相对自由度等于一的平面运动副:转动副和移动副。

具有一个约束而相对自由度等于二的运动副:高副约束一个相对转动而保留两个相对移动的运动副是不可能存在的。

二、运动链•运动链:两个以上构件以运动副联接而成的系统。

•闭链:组成运动链的每个构件至少包括两个运动副元素,该运动链为封闭系统。

•开链:运动链中有的构件只包含一个运动副元素。

三、机构从运动链的角度,机构需具有下列特点:•1) 运动链中有机架•2) 各构件间有确定的运动1-3.平面机构运动简图一、机构运动简图的定义及作用说明机构各构件间相对运动关系的简单图形.机构运动简图是用规定的运动副符号及代表构件的线条来表示构件和运动副,并按一定比例表示各运动副的相对位置.•组成:线条和符号•符号:表示运动副二、机构运动简图的绘制1.运动副的表示符号:1)两构件构成转动副2)两构件构成移动副3)两构件组成平面高副用两构件接触点(线)附近的两段轮廓表示2.构件的表示方法将该构件上的运动副元素按其位置表示出来,再用简单的线条将这些运动副联接起来,就可表示这个构件。

机械原理与机械设计:机构的组成原理

机械原理与机械设计:机构的组成原理

两个含有外接副的构 件直接用运动副联接。
(e)
(2) Ⅲ级组(n=4,PL=6) 中心构件
Ⅲ级组基本型
Ⅲ级组其它型举例
Ⅲ级组的结构特征: 三个含有外接副的构件与同一构件(用运动副)联接。
Ⅲ级组基本型
Ⅲ级组其它型举例
第四种形式称为IV级组。 结构特点:有两个三副杆,且4个构件构成四边形结构
内端副━━杆组内部相联。 外端副━━与组外构件相联。
J
H
I
G
F
D
C B
AP
Ⅲ级机构
【解】 以GH为原动件进行 结构分析:
H G
J I
Ⅱ级机构
F
D
C B
AP
本章重点小结
机架 一、构件 + 运动副 运动链 机构 原动件
从动件
基本杆组
二、运动链成为机构的条件:F > 0, 原动件数目等于自由度数目 平面运动链自由度计算方法和注意事项
三、机构运动简图的绘制
不能存在只有一个构件的运动副 或只有一个运动副的构件。
每个杆组拆分后自由度不变
每个构件和运动副都只能属于一 个杆组
机构的级别取决于机构中的基本杆组的最高级别
另一种说法:机构的级别与机构中最高级别基本杆组 的级别一致
3.平面机构的结构分析
结构分析的目的 1)了解机构的组成 2) 确定机构的级别 3)为机构受力分析提供简化方法
机构按所含最高杆组级别命名,如Ⅱ级机构,Ⅲ 级机构等。
杆组:自由度为零的不可再分的运动链。 机构可视为由原动件和若干个杆组构成。
组成原理
任何机构都可以看作是若干个自由度为零的基本杆组依次 联接到原动机和机架上而构成的,机构的自由度等于原动件的

机械原理习题答案

机械原理习题答案

pR12 M A
1ω O
ω 21
2
ω 23
3 pR32
B
P
4
2)确定ω21、ω23 的方向(如图)
pR12
A
ω 21
ω
M 1O
ω 23
2
3
B 4
P PR32
3)判断总反力应切于 A、B 处摩擦圆的上方还是下方(如图)
O
ω
1M
PR1
A
ω 21
2
ω 23
3 P
B 4 PR32
2.在图示曲柄滑块机构中 ,曲柄 1 在驱动力矩 M1 作用下等速转动。设已知各转动副的轴颈半径 r=10mm,当量摩擦系数 fv = 0.15 ,移动副中的滑块摩擦系数 f = 0.15 ,lAB = 100 mm,lBC = 350 mm。 各构件的质量和转动惯量忽略不计。当 M1 = 20 Nm 时,试求机构在图示位置所能克服的有效阻力 F3 及
uuur aBt 1 = 1× 55×102 = 5.5 m s2
uuuuur
ak B 2 B1
=
2
×10
×
0.55
=
11m
s2
uur a3
=
µα
.l p 'b2 '
=
0.2 ×
60
=
12
m
s2
4.已 知 图 所 示 的 机 构 的 尺 寸 及 ω 1=
1rad/s,试用图解法求ω3,a3,vD和 aD。
FR 21 Q
=
sin(π + ϕ ) 2
sin(π − α − 2ϕ )
2
FR 21
=
sin 98.53° sin 12.94°

机械原理教案

机械原理教案平面机构的组成原理分析 1.平面机构的组成原理任何机构中都包含原动件、机架和从动件系统三部分。

由于机架的自由度为零,每个原动件的自由度为1,而机构的自由度等于原动件数,所以,从动件系统的自由度必然为零。

杆组:自由度为零的从动件系统。

基本杆组:不可再分的自由度为零的构件组合称为基本杆组,简称基本组。

杆组的结构式为:l p n 23机构的组成原理:把若干个自由度为零的基本杆组依次联接到原动件和机架上,就可组成新的机构,其自由度数目与原动件的数目相等。

在进行新机械方案设计时,可以按设计要求根据机构的组成原理,创新设计新机构。

在设计中必须遵循的原则:在满足相同工作要求的前提下,机构的结构越简单、杆组的级别越低、构件数和运动副的数目越少越好。

2.平面机构的结构分析对已有机构或已设计完的机构进行运动分析和力分析时,首先需要对机构进行结构分析,即将机构分解为基本杆组、原动件和机架,结构分析的过程与由杆组依次组成机构的过程正好相反。

通常称此过程为拆杆组。

拆杆组时应遵循的原则:从传动关系离原动件最远的部分开始试拆;每拆除一个杆组后,机构的剩余部分仍应是一个完整的机构;试拆时,按二级组试拆,若无法拆除,再试拆高一级别的杆组。

3.平面机构的高副低代法目的:为了使平面低副机构结构分析和运动分析的方法适用于含有高副的平面机构。

概念:用低副代替高副方法:用含两个低副的虚拟构件代替高副 高副低代必须满足的条件: 1.替代前后机构自由度不变 2.替代瞬时速度加速度不变对于一般的高副机构,在不同位置有不同的瞬时替代机构。

经高副低代后的平面机构,可视为平面低副机构。

第三章平面机构的运动分析和力分析基本要求:1.掌握速度瞬心的概念,平面机构速度瞬心的数目及确定方法,学会用速度瞬心法对现有机构进行速度分析;2.掌握用相对运动图解法对机构进行速度分析的方法;3.掌握机构运动分析的复数矢量法,了解矩陈法;4.掌握平面机构力分析中的动态静力分析法,能够对给出机构用解析法建模并进行机构运动分析和力分析。

机构的结构分析


2
§2-2运动副及其分类
一、基本概念
1.运动副 (1)运动副定义:由两个构件组成的可动联接。 (2)运动副元素:两个构件上能够参加接触而构
成运动副的表面。
编辑ppt
3
(3)运动 副的自由度: 构成运动副 的两构件相 对运动独立 参数的数目。
编辑ppt
4
编辑ppt
5
(4)运动副约束:两个构件组成运动副后对独立 的相对运动的限制。
F=3n-( 2pL+pH) =3*3-(2*4+0) =1 正确
编辑ppt
36
判断机构中虚约束的方法:
(1)在机构中,如 果用转动副联接的是 两构件运动轨迹相重 合的点,则该联接将 带入一个虚约束。
F=3n-( 2pL +pH ) =3*3-(2*4+0) =1
编辑ppt
37
(2)在机构中,如 果两构件上某两点 的距离始终保持不 变,用双转动副杆 将此两点联接,则 该联接将带入一个 虚约束。
三、平面机构的结构分析 1.机构结构分析的内容
(1)拆分基本杆组 (2)确定机构级别
编辑ppt
53
2.机构结构分析的步骤
(1)除去虚约束和局部自由度,计算机构的自由度,并确 定原动件;
(2)从远离原动件的构件开始拆组。先试拆n=2的杆组 (Ⅱ级组),如不可能,再依次试拆n=4或n=6的杆组。当 分出一个杆组后,第二次仍须从最简单(n=2)的杆组开始 试拆,直到剩下机架和原动件为止。
44
(3)直线与曲线轮廓组成的高副
编辑ppt
45
(4)两接触轮廓之一为一点
编辑ppt
46
§2-7平面机构的组成原理、结构分类及结构分析

机械原理——第2章 机构的的组成及结构分析


2
1 1 2
2
1
2 1 2
1
1 1
2
1
2
1
2
1
2
1
2
2 1
1 2
3. 运动链
运动链-两个以上的构件通过运动副的联接 而构成的系统。 工业 机器人
闭式链、
开式链
4. 机构能够用来传递运动和动力的可动装置。 机架-作为参考系的构件,如机床床身、车辆 底盘、飞机机身。
原(主)动件-按给定运动规律运动的构件。 从动件-其余可动构件。
⑦已知:AB=CD=EF,计算图示平行四边形 机构的自由度。 B C 2 E 解:n= 4, PL= 6, PH=0 1 F=3n - 2PL - PH 4 3 =3×4 -2×6 F D A =0 3.虚约束 --对机构的运动实际不起作用的约束。 计算自由度时应去掉虚约束。 ∵ FE=AB =CD ,故增加构件4前后E 点的轨迹都是圆弧,。 增加的约束不起作用,应去掉构件4。
1.杆组的各个外端副不可以同时加在同
一个构件上,否则将成为刚体。如:
2.机构的级别与原动件的选择有关。
§2-8 平面机构中的高副低代
高副低代:为了使平面低副机构的结构分析和运动
分析的方法能适用于含有高副的平面机构,根据一 定条件将机构中的高副虚拟地以低副代替的方法。 高副低代条件:
1、代替前后机构的自由度不变
一般构件的表示方法
杆、轴构件
固定构件
同一构件
一般构件的表示方法
两副构件
三副构件
注意事项:
画构件时应撇开构件的实际外形,而只考虑运动副的性质。
常用机构运动简图符号
在 机 架 上 的 电 机 带 传 动 齿 轮 齿 条 传 动 圆 锥 齿 轮 传 动

机构的结构分析 李玉光-2


运动简图要求:
1、机构运动简图与原机械具有完全相同运 动特性。 2、为了表示机构的运动情况,不严格按比 例绘制的机构简图,称为机构示意图。
二. 机构运动简图的绘制
1、运动副的表示方法:
低副:圆圈表示转动副,直线表示移动副
h,i尽量不用
高副:画出实际接触轮廓
2、构件的表示方法:
轴、杆
固定件 (有转动副)构件
P m 1 L
例:计算机构的自由度
解: F=3n-2PL-PH
=3×5-2×7-0
=1 书上15页图2-13
2、局部自由度
对整个机构运动无关的自由度(只影响自身局 部运动)称为局部自由度。 **在计算自由度时,局部自由度应当舍弃不计。
C 3 4 B A 1 自由度: 2
问题:4的转动与整个机构运 动无关,属于局部自由度。去 掉构件4和1个低副
实际尺寸m l 图上尺寸(mm)
5)用规定的符号和线条绘制成简图。 (从原动件开始画)
例1:绘制小型压力机运动简图(后面介绍)
编号原则:注意区分不同构件和同轴刚性联接的多个零件。 前者分别编号,后者采用一个编号,加`以示区别。
1.
分析整个机构的工作原理
偏心轮1 杆件2 齿轮1` 齿轮6`
C
例2,五杆机构
B A E
D
F=3*4-2*5=2
该机构的自由度为2,有 确定运动的可能。 *如果有一个原动件1, 即F›原动件数,则机构 位置不确定,如图所示 (蓝色、红色2个位置); * 如果取构件1和4为原动 件,φ1和φ4分别表示1 和4的独立运动。每给定 一组φ1和φ4的数值, 从动件2、3便有一个确 定的相应位置(蓝色)。 因此,该机构在有两个 原动件时运动是确定的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二级杆组和三级杆组的类型和组成原理的基本思路
二级杆组和三级杆组是指在机械结构中使用的一种传动装置,用于将
输入的旋转运动转化为输出的线性运动。

这两种传动装置在工业生产
中广泛应用,具有高效、稳定、精确等特点。

下面将详细介绍二级杆
组和三级杆组的类型和组成原理的基本思路。

一、二级杆组的类型和组成原理
1. 二级杆组的类型
二级杆组是由两个连杆构成的传动装置,常见的类型有曲柄滑块机构、摇杆机构等。

- 曲柄滑块机构:由曲柄轴和滑块构成。

曲柄轴通过旋转带动滑块做直线往复运动。

- 摇杆机构:由摇臂、支点和推力销等部件组成。

通过摇臂在支点处转动来实现推力销做直线往复运动。

2. 二级杆组的组成原理
二级杆组利用连杆原理实现输入旋转运动到输出线性运动的转换。

- 曲柄滑块机构:当曲柄轴旋转时,通过连杆与滑块相连,使得滑块做直线往复运动。

曲柄轴的旋转运动通过连杆的长度比例关系,使得滑
块的线性运动产生不同的速度和位移。

- 摇杆机构:当摇臂在支点处旋转时,通过推力销与摇臂相连,使得推力销做直线往复运动。

摇臂的旋转运动通过推力销的长度比例关系,
使得推力销的线性运动产生不同的速度和位移。

二、三级杆组的类型和组成原理
1. 三级杆组的类型
三级杆组是由三个连杆构成的传动装置,常见的类型有滚轮机构、双曲柄机构等。

- 滚轮机构:由两个滚轮和一个连接它们的连杆组成。

其中一个滚轮作为输入端,另一个滚轮作为输出端。

- 双曲柄机构:由两个曲柄和一个连接它们的连杆组成。

其中一个曲柄作为输入端,另一个曲柄作为输出端。

2. 三级杆组的组成原理
三级杆组利用连杆原理实现输入旋转运动到输出线性运动或者输出旋转运动之间的转换。

- 滚轮机构:当输入滚轮旋转时,通过连杆传递运动到输出滚轮上。

由于连杆的长度比例关系,使得输出滚轮的线性速度和位移与输入滚轮不同。

- 双曲柄机构:当输入曲柄旋转时,通过连杆传递运动到输出曲柄上。

由于连杆的长度比例关系,使得输出曲柄的角速度和角位移与输入曲柄不同。

三、二级杆组和三级杆组的基本思路
二级杆组和三级杆组的基本思路都是利用连杆原理实现输入旋转运动到输出线性运动或者输出旋转运动之间的转换。

首先确定输入端和输出端的位置和方式,根据需要选择合适的连杆类型(如曲柄、摇臂、滚轮等)。

然后根据连杆长度比例关系,确定输入端和输出端之间线性速度或角
速度、位移或角位移之间的关系。

最后设计并组装相应的机构,并合理安装连接部件,以确保传动装置能够正常工作,并达到所需的效果。

总结:
二级杆组和三级杆组是一种常见且重要的传动装置,在工业生产中起到了至关重要的作用。

它们利用连杆原理将输入的旋转运动转化为输出的线性运动或者输出的旋转运动,通过合理选择和设计连杆类型以及连杆长度比例关系,实现了不同速度和位移之间的转换。

这些传动装置具有高效、稳定、精确等特点,广泛应用于各个领域。

在实际应用中,需要根据具体需求选择合适的二级杆组或三级杆组,并进行相应的设计和组装,以满足工作要求。

相关文档
最新文档