低碳马氏体和高碳马氏体
钢铁家族中各种组织形貌生长特点及性能

钢铁家族中各种组织形貌生长特点及性能现代材料可以分为四大类-—金属、高分子、陶瓷和复合材料。
尽管目前高分子材料飞速发展,但金属材料中的钢铁仍是目前工程技术中使用最广泛、最重要的材料,那么到底是什么因素决定了钢铁材料的霸主地位呢。
下面就为大家详细介绍吧。
钢铁由铁矿石提炼而成,来源丰富,价格低廉。
钢铁又称为铁碳合金,是铁(Fe)与碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及其他少量元素(Cr、V等)所组成的合金.通过调节钢铁中各种元素的含量和热处理工艺(四把火:淬火、退火、回火、正火),可以获得各种各样的金相组织,从而使钢铁具有不同的物理性能。
将钢材取样,经过打磨、抛光,最后用特定的腐蚀剂腐蚀显示后,在金相显微镜下观察到的组织称为钢铁的金相组织。
钢铁材料的秘密便隐藏在这些组织结构中。
C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相在Fe—Fe3同,但由几个基本相(铁素体F、奥氏体A和渗碳体FeC)组成。
这些基本相以机械混合物的形3式结合,形成了钢铁中丰富多彩的金相组织结构.常见的金相组织有下列八种:一、铁素体碳溶于α-Fe晶格间隙中形成的间隙固溶体称为铁素体,属bcc结构,呈等轴多边形晶粒分布,用符号F表示.其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低(30-100 HB)。
在合金钢中,则是碳和合金元素在α-Fe中的固溶体.碳在α-Fe中的溶解量很低,在AC1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0。
0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体.随钢铁中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。
二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2。
11%C,727℃时可固溶0。
77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、 =40~50%.TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳钢回火色与温度图谱碳钢在回火时的组织转变过程及相应性能变化

碳钢回火色与温度图谱碳钢在回火时的组织转变过程及相应性能变化碳钢在回火时的组织转变过程及相应性能变化碳素钢淬火后在不同温度下回火时,组织将发生不同的变化。
由于组织变化会带来物理性能的变化,而不同的组织变化,物理性能的变化也不同。
通常根据物理性能的变化把回火转变分成四种类型。
第一类回火转变:M分解为回火M,80~250℃;低碳马氏体发生碳原子向位错附近偏聚外,马氏体中析出碳化物,使马氏体碳含量降低;高碳马氏体发生分解,马氏体中过饱和碳不断以ε碳化物形式析出,使马氏体碳含量降低。
产物:回火马氏体。
性能:保留淬火后高硬度第二类回火转变:残余A分解为回火M或下B,200~300℃;淬火后的残余奥氏体是不稳定组织,在本阶段,残余奥氏体分解为低碳马氏体和ε碳化物,此组织为回火马氏体。
第三类回火转变:碳化物析出与转变,250~400℃回火M转变为回火T(亚稳碳化物转变为稳定碳化物),250~400℃时,碳素钢M中过饱和的C几乎全部析出,将形成比ε-FeXC更稳定的碳化物。
在回火过程中除ε-FeXC 外,常见的还有两种:一种其组成与Mn5C2相近,称为χ碳化物,用χ-Mn5C2表示;另一种是渗碳体,称θ碳化物,用θ-Fe3C表示。
这两种碳化物的稳定性均高于ε-FeXC。
通常在MS以下回火残余A转变为M,然后分解为回火M,而在B转变区回火,残余A转变为下B。
第四类回火转变:回火T转变为回火S(碳化物聚集长大,α再结晶),400~700铁素体发生回复和再结晶为等轴状、碳化物球化粗大——回火索体。
主要发生如下变化:内应力消除:宏观区域性内应力(工件内外),550 ℃全部消除;微观区域性内应力(晶粒之间),500 ℃基本消除;晶格弹性畸变应力(碳过饱和),ε转变完即消除。
(300℃马氏体分解完毕)回复与再结晶:回火使亚结构(位错、孪晶)消失;板条和片状马氏体特征保留(碳钢在回火时的组织转变过程及相应性能变化回复)、消失(再结晶)。
第六章第三节钢在冷却时的转变_工程材料

§6-3 钢在冷却时的转变一、过冷奥氏体等温冷却转变曲线1、过冷奥氏体等温冷却转变曲线建立以共析钢为例:取尺寸相同的T8钢试样,A化后,迅速冷却到A1以下不同温度保温,进行等温转变,测出转变的开始点与转变结束点。
将开始点与结束点分别连接起来,就得到奥氏体等温转变曲线。
该曲线称为TTT图(Time Temperature TransformationDiagram)或C曲线。
2、孕育期:转变开始线与纵坐标轴之间的距离。
孕育期越短,过冷奥氏体越不稳定,转变越快。
孕育期最短处称为鼻温3、影响C曲线的因素A的成分越均匀,晶粒越粗,其稳定性越高,C曲线右移;A含碳量越高,稳定性越高,C曲线右移,共析钢C曲线最靠右;合金元素,除Co外所有合金元素均使C曲线右移,并使C曲线改变形状。
二、共析钢过冷奥氏体的转变产物及性能、珠光体型转变(P)转变温度:A1~鼻温(550℃)之间(高温转变)转变规律:是通过碳、铁的扩散完成转变。
铁原子重新排列由fcc bcc,碳从铁中扩散出,形成转变产物:珠光体型组织铁素体和渗碳体的机械混合物产物形态:渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。
珠光体型组织按层间距大小分为珠光体(P)、索氏体(S)和屈氏体(T)珠光体3800×索氏体8000×屈氏体8000×2、贝氏体型转变(B)转变温度:鼻温(550℃)~Ms之间(中温转变)转变规律:半扩散型转变,铁原子不扩散,只能做微小的位置调整,由fcc→bcc。
碳原子有一定扩散能力,部分碳原子从铁中扩散出来,形成碳化物。
转变产物:贝氏体型组织,渗碳体分布在过饱和的铁素体基体上的两相混合物。
上贝氏体(B上):550℃~350℃之间形成形态:呈羽毛状, 小片状的渗碳体分布在成排的铁素体片之间。
光学显微照片1300×电子显微照片5000×上贝氏体性能:铁素体片较宽,塑性变形抗力较低;渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。
马氏体与贝氏体的辨别[最新]
![马氏体与贝氏体的辨别[最新]](https://img.taocdn.com/s3/m/ed994316b42acfc789eb172ded630b1c59ee9b24.png)
马氏体与贝氏体的鉴别王元瑞(上海材料研究所检测中心,200437)1 马氏体组织形态是一种非扩散型相变,是提高钢的硬度、强度的主要途径。
1.1板条状马氏体(低碳马氏体):是低、中碳钢,马氏体时效钢,不锈钢等铁系合金中形成的一种典型组织。
亚结构是位错(又称位错马氏体),其形态特征见表1。
1.2片状马氏体(针状马氏体或高碳马氏体):常见淬火高、中碳钢,高镍的Fe-Ni合金中。
亚结构是孪晶,其形态特征见表1。
表1 铁碳合金马氏体类型及其特征特征板条状马氏体片状马氏体形成温度 Ms>350℃ Ms≈200~100℃ Ms<100℃<0.3 1~1.4合金成分(C%)0.3~1时为混合型1.4~2组织形态板条自奥氏体晶界向晶内平行成群,板条宽度0.1~0.2μ,长度<10μ,一个奥氏体晶粒内包含几个(3~5)板条群,板条体之间为小角晶界,板条群之间为大角晶界凸透镜片状(或针状),中间稍厚,初生者较厚较长,横贯整个奥氏体晶粒,次生者尺寸较小,片与片之间互成角度排列。
在初生片与奥氏体晶界之间,片间交角较大,互相撞击,形成显微裂纹同左,片的中央有中脊。
在两个出生片之间常见到“Z”字形分布的细薄片1.3其它马氏体形态:1.3.1蝶状马氏体:在Fe-Ni合金中当马氏体在某一温度范围内形成时会出现,形状为细长杆状,断面呈蝴蝶形,亚结构为高密度位错,看不到孪晶。
1.3.2薄片状马氏体:是在Ms点极低的Fe-Ni-C合金中发现的。
呈非常细的带状,带互相交叉、呈现曲折、分叉等特异形态,由孪晶组成的孪晶型马氏体。
1.3.3ε马氏体:在Fe-Mn合金中,当Mn超过15%时,淬火后形成ε马氏体,它是密排六方结构。
金相形态呈极薄的片状。
2 贝氏体组织形态贝氏体是过饱和铁素体和渗碳体组成的两相混合物。
2.1上贝氏体(B上):是成束的大致平行的条状铁素体和间夹有相平行的渗碳体所组成的非层状组织。
亚结构是位错。
形成温度在贝氏体转变区的上部。
马氏体的形态及成因

马氏体的形态及成因马氏体的形态及成因:一、三维形貌及结构:1.板条位错型。
一般呈束(排)分布,内部存在高密度位错。
2.片状孪晶型。
一般呈交叉针状分布,其中含碳量≥1.4%即惯态面为{259}r者有中脊,呈“之”字状,即有爆发性发展的特征。
3.钢中含碳量对马氏体三维形貌及亚结构的影响:马氏体含碳量≤0.6%为板条位错型,马氏体含碳量≥1.4%为片状孪晶型,两者之间为混合型。
这是理论上的马氏体形态,与实际的情况有区别。
二、二维形貌及结构:1.板条马氏体在光学显微镜下成一排,具有黑白差。
所以在光学显微镜有时呈现黑白交替排列的现象。
⑴成束分布的现象十分明显,长度几乎可惯穿母相晶粒,且排的宽度宽(包含的板条多)。
⑵板条一小束平行相连,形成以束为单位的平行相连的黑白差(3%的硝酸酒精溶液正确浸蚀下)。
⑶黑白差相对较大。
深色的马氏体是先形成的马氏体,是受到严重的自回火的马氏体,所以呈深色。
在金相上评定淬火马氏体的级别以最深的马氏体为准。
由于含碳量低,切变造成惯态面破坏情况轻微,所以马氏体连在一起成为平行相连。
2.中碳马氏体的特征:⑴成束分布的现象在正常淬火后不十分明显,高温淬火后才几乎可贯穿母相晶粒,且排的宽度窄(即包含的板条少)。
⑵板条一小束平行相间,形成以束为单位的平行相间的黑白差。
⑶黑白差相对较小。
3.高碳马氏体的特征(高碳钢中的马氏体不等于高碳马氏体):⑴马氏体呈明显的针叶状。
⑵次生马氏体从先生成马氏体针叶间开始生长,并与之呈60°的夹角。
⑶后生成的马氏体小于先生成的马氏体,且不能穿越奥氏体晶界。
⑷马氏体针叶上有微观裂纹,若金相磨面正好剖过马氏体针叶,精细观察可见裂纹。
四、马氏体黑白差的原因:1.由于成份来不及扩散均匀所形成的区域性黑白差。
原铁素体区域碳浓度低,得到较多的板条马氏体(黑色);原珠光体区域碳浓度高,得到片状马氏体(白色)。
2.由于在Ms以下等温分级淬火所致。
3.由于高碳合金钢中球、粒状碳化物分布不均匀所致。
金相图谱内容说明

图谱文字说明第一部分金相图谱一.铁碳合金平衡组织图1 名称铁素体( 工业纯铁退火)组织铁素体说明等轴多边形晶粒为铁素体,黑色线条为晶界图2 名称奥氏体(T8钢950℃加热)组织奥氏体说明白色多边形晶粒为奥氏体,黑色线条为晶界。
高温下部分晶粒已合并长大,形成了混合晶粒图3 名称渗碳体(从珠光体中电化学分离出来的滲碳体片)组织渗碳体片说明从珠光体中分离出来的渗碳体片,其形状是不规则的,一侧鸡冠似的形状,某些部位有孔图4 名称亚共析钢组织( 20钢退火)组织铁素体+珠光体说明白色块状为铁素体,因放大倍数低,层状结构未能显示出来,珠光体呈黑色块图5 名称亚共析钢组织( 45钢退火)组织铁素体+珠光体说明白色块状为铁素体,黑色块状为珠光体图6 名称亚共析钢组织( 60钢退火)组织铁素体+珠光体说明白色网状分布的为铁素体,珠光体呈黑色块状图7 名称共析钢组织(T8钢退火)组织层状珠光体说明层状珠光体是铁素体和滲碳体的层状组织,因放大倍数较低,且分辨率小于滲碳体层片厚度,故只能看到白色基体的铁素体和黑色线条的滲碳体图8 名称共析钢电镜组织(T8钢退火)组织层状珠光体说明深灰色基体为铁素体,白色条状为滲碳体图9 名称过共析钢组织(T12钢完全退火)组织层状珠光体+二次滲碳体说明基体为层状珠光体,晶界上的白色网络为二次滲碳体图10 名称亚共晶白口铸铁铸态组织组织珠光体+变态莱氏体+二次滲碳体说明变态莱氏体呈黑白相间的基体,大黑块为珠光体,大黑块珠光体外围的白色滲碳体为二次滲碳体图11 名称共晶白口铸铁铸态组织组织变态莱氏体说明变态莱氏体中白色基体为滲碳体(共晶滲碳体和二次滲碳体),黑色圆状及条状为珠光体图12 名称过共晶口铸铁铸态组织组织一次滲碳体+变态莱氏体说明基体为黑白相间分布的变态莱氏体,白色条状为一次滲碳体二.钢经热处理后组织图13 名称索氏体(T8钢正火)组织索氏体说明索氏体是细珠光体,其层状结构只有在高倍金相显微镜下才可分辩图14 名称索氏体电镜形貌(T8钢正火)组织索氏体说明浅灰色基体为铁素体,白色条状为滲碳体图15 名称托氏体(45钢860℃油淬,试样心部)组织托氏体+马氏体说明托氏体是极细珠光体,在光学金相显微镜下呈黑色团絮状。
马氏体的性能
(二)形状记忆效应
指一定形状的合金在某 种条件下经任意塑性变形, 然后加热至该材料固有的某 一临界以上时,又完全恢复 其原来形状的现象。
具有形状记忆效应的合 金称为形状记忆合金。
形状记忆效应的能恢复 的变形量约为6~8%,最高可 以达到百分之十几,变形量 过大时不能完全恢复。
形状记忆合金可分为单 程和双程记忆合金
具有形状记忆效应的合金应具备的条件: 1、必须是热弹性马氏体; 2、亚结构为孪晶或层错; 3、母相具有有序结构。 (三)形状记忆合金的应用 Ni-Ti合金宇航天线、结固件; (1)自动组装的结构件; (2)热敏装置和安全装置; (3)热能和机械能转换装置; (4)医学上的应用。
(四)相变冷作硬化
(三)马氏体转变超塑性
超塑性:指高的延伸率及低的流变抗力。 相变塑性:金属及合金在相变过程中塑性增长,往往 在低于母相屈服极限的条件下即发生了塑性变形,这 种现象称为相变塑性。
马氏体的相变塑性:钢 在马氏体转变时也会产 生相变塑性现象,称为 马氏体的相变塑性。
0.3%C-4%Ni-1.3%Cr 钢的M相变塑性850℃A 化,Ms为307 ℃,A的屈服 强度为137MPa
当C%超过0.4%后,由于碳原子靠得太近,使相 邻碳原子所造成的应力场相互重迭,以致抵消而降低 了强化效应。
合金元素也有固溶强化作用,相对碳来说要小很 多,据估计,仅与合金元素对F的固溶强化作用大致 相当。
(3)时效强化
理论计算得出,在
室温下只要几分钟甚至 几秒钟即可通过C原子扩 散而产生时效强化,在60℃ 以 上 , 时 效 就 能 进 行发生碳原子偏聚现象, 是M自回火的一种表现, C原子含量越高时效强化 效果越大。
马氏体的性能
(一)马氏体的硬度 与强度
钢材中的各种组织与性能
钢材中的各种组织与性能以下是共析钢的各种组织与性能。
一、珠光体1、珠光体(P):650℃~727℃等温冷却,片间距约0.3μm,硬度10~20HRC。
2、索氏体(S):600℃~650℃等温冷却,片间距0.1~0.3μm,硬度20~30HRC。
3、托氏体(T):550℃~600℃等温冷却,片间距约0.1μm,硬度30~40HRC。
珠光体的片间距越小,硬度越高,塑性与韧性越好。
它是我们日常工作中最易得到的有实用价值的组织。
这也是为什么我们的大部分钢材处理中需要在550℃~700℃等温退火的原因。
二、贝氏体1、上贝氏体:共析钢上贝氏体的形成温度为350℃~550℃。
上贝氏体的力学性能很差,脆性很大,强度也很低,基本上没有实用价值。
2、下贝氏体:共析钢上贝氏体的形成温度为~350℃,在马氏体形成温度附近。
下贝氏体有较高的强度和硬度,还有良好的塑性和韧性,具有较优良的综合力学性能。
不过因为其形成温度较窄,不适宜单批次大量工件的热处理加工。
所以现在大都用添加合金元素的办法来得到下贝氏体钢材。
我国的Mn-B系贝氏体钢研究和应用方面居于世界前列。
三、马氏体1、板条马氏体:C<0.25%,亦称为低碳马氏体。
板条马氏体具有较高的强度,良好的韧性和塑性。
故近年来,生产中已日益广泛地采用低碳钢和低合金钢进行直接淬火的热处理工艺。
2、片状马氏体:C>1.0%,亦称为高碳马氏体。
片状马氏体内应力高,存在孪晶结构,并常伴生有显微裂纹,这些显微裂纹是极有害的,因此片状马氏体硬而脆,塑性和韧性也都较差。
3、隐晶马氏体:隐晶马氏体是片状马氏体的一种,即最大马氏体片细小到在光学显微镜下都无法分辨的情况下。
隐晶马氏体具有一定的韧性,所以有时通过晶粒细化去得到隐晶马氏体。
马氏体中碳的含量越高,内应力越大。
这就是高碳钢在淬火时容易出现变形和裂纹的原因之一。
低碳板条马氏体相变过程中的自回火效应对
低碳板条马氏体相变过程中的自回火效应对引言低碳板条是一种常用于机械制造领域的材料,其具有良好的强度和韧性。
然而,在加工和使用过程中,低碳板条可能会发生马氏体相变,从而导致材料硬化和脆化。
为了解决这一问题,研究人员发现了一种自回火效应,即在马氏体相变过程中,材料会自动进行回火处理,以恢复其韧性和强度。
马氏体相变马氏体相变是指低碳板条在经历冷却过程中,由奥氏体转变为马氏体的过程。
在高温下,低碳板条是典型的奥氏体结构,具有良好的可塑性和韧性。
然而,当低碳板条快速冷却时,奥氏体会转变为脆性的马氏体,从而导致材料的硬化和脆化。
这种相变过程是不可逆的,一旦发生,材料的性能将无法恢复。
自回火效应的发现为了解决低碳板条在马氏体相变过程中的硬化和脆化问题,研究人员发现了自回火效应。
自回火效应是指在马氏体相变过程中,材料会自动进行回火处理,以恢复其韧性和强度。
这种效应的发现为解决低碳板条的性能问题提供了一种新的方法。
自回火效应的原理自回火效应的原理是基于马氏体相变时的残余奥氏体的存在。
在马氏体相变过程中,由于相变的快速性,一部分奥氏体无法转变为马氏体,而保留在材料中。
这些残余的奥氏体具有较高的韧性和可塑性,可以起到自动回火的作用。
当材料受到应力作用时,这些残余奥氏体会发生位错滑移,进而引发回火过程,使材料恢复一定程度的韧性和强度。
自回火效应的影响因素自回火效应的程度受到多种因素的影响。
首先,马氏体相变的温度越高,残余奥氏体的含量越多,自回火效应越明显。
其次,冷却速率越快,马氏体相变的程度越高,自回火效应越明显。
此外,材料的合金元素和热处理工艺也会影响自回火效应的程度。
应用前景自回火效应的发现为低碳板条的应用提供了新的可能性。
通过控制马氏体相变的温度和冷却速率,可以调节材料的硬化程度和韧性,从而满足不同应用的需求。
此外,自回火效应还可以用于提高低碳板条的加工性能和使用寿命,减少材料的能耗和环境污染。
结论低碳板条在马氏体相变过程中可能出现硬化和脆化的问题,而自回火效应可以在相变过程中自动进行回火处理,以恢复材料的韧性和强度。
金相图谱内容说明
图谱文字说明第一部分金相图谱一.铁碳合金平衡组织图1 名称铁素体(工业纯铁退火)组织铁素体说明等轴多边形晶粒为铁素体,黑色线条为晶界图2 名称奥氏体(T8 钢950 ℃加热)组织奥氏体说明白色多边形晶粒为奥氏体,黑色线条为晶界。
高温下部分晶粒已合并长大,形成了混合晶粒图3 名称渗碳体(从珠光体中电化学分离出来的滲碳体片)组织渗碳体片说明从珠光体中分离出来的渗碳体片,其形状是不规则的,一侧鸡冠似的形状,某些部位有孔图4 名称亚共析钢组织( 20 钢退火)组织铁素体+ 珠光体说明白色块状为铁素体,因放大倍数低,层状结构未能显示出来,珠光体呈黑色块图5 名称亚共析钢组织( 45 钢退火)组织铁素体+ 珠光体说明白色块状为铁素体,黑色块状为珠光体图6 名称亚共析钢组织( 60 钢退火)组织铁素体+ 珠光体说明白色网状分布的为铁素体,珠光体呈黑色块状图7 名称共析钢组织(T8 钢退火)组织层状珠光体说明层状珠光体是铁素体和滲碳体的层状组织,因放大倍数较低,且分辨率小于滲碳体层片厚度,故只能看到白色基体的铁素体和黑色线条的滲碳体图8 名称共析钢电镜组织(T8 钢退火)组织层状珠光体说明深灰色基体为铁素体,白色条状为滲碳体图9 名称过共析钢组织(T12 钢完全退火)组织层状珠光体+ 二次滲碳体说明基体为层状珠光体,晶界上的白色网络为二次滲碳体图10 名称亚共晶白口铸铁铸态组织组织珠光体+ 变态莱氏体+ 二次滲碳体说明变态莱氏体呈黑白相间的基体,大黑块为珠光体,大黑块珠光体外围的白色滲碳体为二次滲碳体图11 名称共晶白口铸铁铸态组织组织变态莱氏体说明变态莱氏体中白色基体为滲碳体(共晶滲碳体和二次滲碳体),黑色圆状及条状为珠光体图12 名称过共晶口铸铁铸态组织组织一次滲碳体+ 变态莱氏体说明基体为黑白相间分布的变态莱氏体,白色条状为一次滲碳体.钢经热处理后组织图13 名称索氏体(T8 钢正火)组织索氏体说明索氏体是细珠光体,其层状结构只有在高倍金相显微镜下才可分辩图14 名称索氏体电镜形貌(T8 钢正火)组织索氏体组织 回火托氏体 马氏体图 16图 17图 18图 19名称 托氏体电镜形貌 组织 托氏体 说明 灰色基体为铁素体,白色条状为滲碳体 名称 回火索氏体 (45 钢 860 ℃水淬 ;600 ℃回火 ) 组织 回火索氏体 说明 回火索氏体是细粒状滲碳体和铁素体基体的混合物 名称 回火索氏体电镜形貌 组织 回火索氏体 说明 基体为铁素体 ,白色颗粒为滲碳体 说明 回火托氏体是铁素体基体和极细小颗粒状滲碳体的混合物 说明 浅灰色基体为铁素体,白色条状为滲碳体名称 托氏体 (45 钢 860 ℃油淬 ,试样心部)组织 托氏体 + 马氏体 说明 托氏体是极细珠光体, 在光学金相显微镜下呈黑色团絮状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低碳马氏体和高碳马氏体
低碳马氏体和高碳马氏体是两种不同的马氏体形态,具有不同的机械性能和用途。
低碳马氏体,也被称为板条马氏体,含碳量低于0.25%。
低碳马氏体具有良好的综合机械性能,强而韧,被广泛应用于耐磨材料、模具等耐磨机械零件。
高碳马氏体,含碳量在0.4%以上,主要用于耐磨材料。
高碳马氏体经过时效或热处理可以获得更高的硬度和强度,因此也被称为回火马氏体。
高碳马氏体的硬度和强度虽然很高,但是由于过饱和度太大,引起严重的晶格畸变和较大的应力,可能导致微裂纹的产生,因此其塑性和韧性较差。
总的来说,低碳马氏体和高碳马氏体在成分、机械性能和应用上存在明显差异。