渗碳工艺的六种常见方法

合集下载

金属零件增碳的方法

金属零件增碳的方法

金属零件增碳的方法
金属零件增碳是一种常用的工艺,它可以增加金属零件的硬度和耐磨性,使其
更适合于特定的使用环境和工作条件。

以下是几种常见的金属零件增碳的方法:
1. 渗碳法:渗碳法是将含有高碳含量的气体(如一氧化碳)与金属零件置于高
温环境中进行反应,使碳元素在金属表面渗透并扩散到深层。

这种方法可以在金属零件的表面形成一层含碳深度达到相应要求的薄硬层,提高其硬度和耐磨性。

2. 离子渗碳法:离子渗碳法是一种使用离子束照射金属零件表面的方法。

通过
将含有碳离子的气体加速到高速,并将其束流引向金属零件表面,碳离子会在金属表面形成一层较深的渗碳层。

这种方法可以在金属零件的表面形成均匀的薄硬层,具有较高的耐磨性和强度。

3. 化学渗碳法:化学渗碳法是通过在含碳化合物的溶液中浸泡金属零件,使其
在高温环境下与溶液中的碳元素发生反应,从而在金属表面形成渗碳层。

这种方法适用于复杂形状的金属零件,能够实现较深层次的渗碳,提高零件的耐磨性和强度。

4. 气体渗碳法:气体渗碳法是将金属零件置于含有碳气体的高温环境中进行反应。

通过在一定时间内暴露在碳气体中,金属零件的表面会发生化学反应,形成渗碳层。

这种方法简单易行,适用于大批量生产。

以上是几种常见的金属零件增碳的方法。

选择适当的增碳方法取决于金属零件
的要求、形状和生产需求。

增碳后的金属零件具有更高的硬度和耐磨性,在使用过程中更加可靠和耐用。

渗碳的名词解释

渗碳的名词解释

渗碳的名词解释渗碳是一种金属加工工艺,主要应用于钢铁材料的硬化和强化,以提高材料的力学性能。

渗碳工艺的目的是通过在钢铁材料表面浸渍碳元素,使其在表面形成一层高碳含量的硬质层,从而增加材料的硬度和耐磨性。

渗碳工艺最早起源于古代冶金技术,古人在钢铁制作过程中发现了渗碳的好处。

渗碳的原理是利用碳元素的亲和力,让其在材料表面渗透进入晶格结构中,并与铁原子形成固溶体。

通过加热和控制温度、时间等参数,可以使渗碳层的厚度和碳含量达到一定的要求。

渗碳工艺主要有几种方法:气体渗碳、液体渗碳和固体渗碳。

气体渗碳是最常见的方法,它是通过在特定温度下将碳气体与材料表面接触,使碳元素渗入材料中。

液体渗碳则是将包含碳元素的溶液浸泡或喷涂在材料表面,并在高温条件下进行处理。

固体渗碳则是将预先制备好的碳质物质覆盖在材料表面,通过高温处理使碳渗入材料中。

渗碳工艺的应用广泛,特别是在汽车、航空航天、机械制造等领域中。

在汽车制造过程中,发动机零部件如曲轴、凸轮轴、齿轮等需要具备较高的硬度和耐磨性,以保证发动机的可靠性和寿命。

渗碳工艺可以在材料表面形成一层硬质层,提高这些关键部件的性能。

在航空航天领域,渗碳工艺同样得到广泛应用。

航空发动机叶片、涡轮等高温部件需要具备较高的热稳定性和耐烧蚀性能,而渗碳工艺可以为这些部件提供一定的保护。

除了提高材料的力学性能外,渗碳还可以改善材料的耐腐蚀性能。

由于渗碳层的形成,使得材料表面形成一层致密的氧化物膜,减缓了氧和腐蚀介质对材料的作用,从而延长了材料的使用寿命。

然而,渗碳也存在一些问题和限制。

首先是渗碳工艺对材料的要求相对较高,只有一些特定的钢铁材料才适用于渗碳处理。

其次,渗碳层的形成需要较长的处理时间,特别是对于较厚的渗碳层,处理时间更长。

此外,渗碳过程中材料内部会产生应力,可能会导致变形和破裂,因此处理过程需要严格控制。

总之,渗碳是一种重要的金属加工工艺,可以通过在材料表面形成一层高碳含量的硬质层,提高材料的硬度、耐磨性和耐腐蚀性能。

渗碳淬火的工艺流程

渗碳淬火的工艺流程

渗碳淬火的工艺流程
《渗碳淬火工艺流程》
渗碳淬火是一种常用的热处理工艺,用于提高钢材的表面硬度和耐磨性。

该工艺通过将低碳钢置于含有高碳成分的气体或液体中,使其在高温下表面渗入碳元素,然后再进行淬火处理,使钢材表面形成一层高碳度的淬火层,从而提高其硬度和耐磨性。

工艺流程如下:
1. 预处理:首先将需要进行渗碳淬火处理的钢材进行表面清洁,去除油污、锈蚀等杂质,确保表面洁净。

2. 预热:将钢材加热至500-600摄氏度的温度,使其达到适合
进行渗碳的状态,同时也有助于加速碳元素的渗透。

3. 渗碳:将预热后的钢材置于含有高碳成分的气体或液体中,常用的渗碳介质包括固体碳、气体(如一氧化碳)和液体(如盐浴)。

在高温(700-900摄氏度)下,钢材表面的低碳元素
会渗入高碳成分介质中,达到表面碳化的目的。

4. 冷却:经过一定时间的渗碳处理后,将钢材从渗碳介质中取出,进行冷却处理。

可以选择空冷或者速冷方式进行。

5. 淬火:在渗碳完成后,将钢材进行淬火处理,快速冷却使其组织变为马氏体,进而使表面形成一层具有很高硬度的淬火层。

6. 回火:淬火后的钢材虽然硬度高,但脆性也随之增加。

为了提高其韧性和耐久性,需要进行回火处理。

将淬火后的钢材加热至适当温度,再进行控制冷却,使其达到硬度和韧性的平衡状态。

通过以上工艺流程,钢材的表面硬度和耐磨性得到了显著提升,适用于需要耐磨性较高的部件和机械零件制造。

连续炉渗碳工艺

连续炉渗碳工艺

连续炉渗碳工艺一、工艺概述连续炉渗碳工艺是一种将碳元素渗入钢材表面以提高其硬度和耐磨性的加工工艺。

该工艺通过在连续炉中对钢材进行预处理和加热,然后将其浸入含有碳化物的盐浴中进行渗碳处理,最后通过淬火和回火等步骤来完成整个加工过程。

二、设备与材料1. 连续式生产线:用于将钢材送入炉内进行预处理和加热。

2. 渗碳炉:用于将钢材浸入含有碳化物的盐浴中进行渗碳处理。

3. 盐浴:用于在渗碳炉中形成含有碳化物的介质。

4. 淬火槽:用于快速冷却已经渗碳的钢材。

5. 回火炉:用于将淬火后的钢材加热到适当的温度,以减少其脆性并增加其韧性。

6. 碱洗槽:用于去除表面残留的盐浴。

三、工艺步骤1. 钢材进入预处理区域:首先,钢材会被送入连续式生产线的预处理区域。

在这里,钢材会被清洗和去除表面氧化物等杂质。

2. 钢材进入加热炉:经过预处理后,钢材会被送入加热炉中进行加热。

在这里,钢材会被加热到所需温度(通常为850℃至950℃)。

3. 钢材进入渗碳炉:一旦钢材达到所需温度,它就会被送入渗碳炉中。

在这里,钢材将被浸入含有碳化物的盐浴中进行渗碳处理。

该过程通常需要10至30分钟。

4. 钢材进入淬火槽:一旦渗碳完成,钢材将被迅速冷却以形成马氏体组织。

这个过程通常通过将钢材浸入水或油中来实现。

5. 钢材进入回火炉:淬火后的钢材很脆性,在回火炉中将其加热到适当的温度(通常为150℃至250℃)以减少其脆性并增加其韧性。

6. 钢材进入碱洗槽:最后,钢材将被送入碱洗槽中去除表面残留的盐浴。

这个过程通常涉及使用强碱性溶液进行清洗。

四、工艺优点1. 连续炉渗碳工艺可以在较短的时间内对大量钢材进行处理,提高生产效率。

2. 该工艺可以在一次加工中完成多个步骤,减少了加工时间和成本。

3. 渗碳后的钢材具有高硬度和耐磨性,适用于制造高强度机械零件等领域。

五、工艺缺点1. 连续炉渗碳需要大量的设备和能源投入,成本较高。

2. 该工艺可能导致钢材表面出现不均匀的渗碳层,影响其质量。

表面渗碳处理工艺

表面渗碳处理工艺

表面渗碳处理工艺渗碳与渗氮一般是指钢的表面化学热处理渗碳必须用低碳钢或低碳合金钢。

可分为固体、液体、气体渗碳三种。

应用较广泛的气体渗碳,加热温度900-950℃。

渗碳深度主要取决于保温时间,一般按每小时0.2-0.25mm估算。

表面含碳量可达百分之0.85-1.05。

渗碳后必须热处理,常用淬火后低温回火。

得到表面高硬度心部高韧性的耐磨抗冲击零件。

渗氮应用最广泛的气体渗氮,加热温度500-600℃。

氮原子与钢的表面中的铝、铬、钼形成氮化物,一般深度为0.1-0.6mm,氮化层不用淬火即可得到很高的硬度,这种性能可维持到600-650℃。

工件变形小,可防止水、蒸气、碱性溶液的腐蚀。

但生产周期长,成本高,氮化层薄而脆,不宜承受集中的重载荷。

主要用来处理重要和复杂的精密零件。

涂层、镀膜是物理的方法。

“渗”是化学变化,本质不同。

钢的渗碳---就是将低碳钢在富碳的介质中加热到高温(一般为900--950℃),使活性碳原子渗入钢的表面,以获得高碳的渗层组织。

随后经淬火和低温回火,使表面具有高的硬度、耐磨性及疲劳抗力,而心部仍保持足够的强度和韧性。

渗碳钢的化学成分特点1)渗碳钢的含碳量一般都在0.15--0.25%范围内,对于重载的渗碳体,可以提高到0.25--0.30%,以使心部在淬火及低温回火后仍具有足够的塑性和韧性。

但含碳量不能太低,否则就不能保证一定的强度。

2)合金元素在渗碳钢中的作用是提高淬透性,细化晶粒,强化固溶体,影响渗层中的含碳量、渗层厚度及组织。

在渗碳钢中通常加入的合金元素有锰、铬、镍、钼、钨、钒、硼等。

常用渗碳钢可以分碳素渗碳钢和合金渗碳钢两大类1)碳素渗碳钢中,用得最多的是15和20钢,它们经渗碳和热处理后表面硬度可达56--62HRC。

但由于淬透性较低,只适用于心部强度要求不高、受力小、承受磨损的小型零件,如轴套、链条等。

2)低合金渗碳钢如20Cr、20Cr2MnVB、20Mn2TiB等,其渗透性和心部强度均较碳素渗碳钢高,可用于制造一般机械中的较为重要的渗碳件,如汽车、拖拉机中的齿轮、活塞销等。

渗碳的方法原理应用

渗碳的方法原理应用

渗碳的方法原理应用1. 渗碳的定义渗碳是一种金属表面处理工艺,通过在金属表面形成富碳层,提高金属材料的硬度和耐磨性。

渗碳是通过将含碳化合物加热至高温,使其在金属表面扩散,形成富碳层的过程。

2. 渗碳的原理渗碳的原理基于扩散理论,即在高温下,含碳化合物中的碳原子会从高浓度区域向低浓度区域扩散,最终在金属表面形成富碳层。

渗碳的速率取决于温度、时间和温度梯度。

3. 渗碳的方法渗碳的方法主要包括以下几种:•固体渗碳:将含碳化合物(如氰化钠、氰化钾等)与金属样品一同加入高温容器中,通过高温加热使碳原子扩散到金属表面。

•液体渗碳:通过将含有碳源的液体(如液态碳氢化合物)浸泡金属样品,使碳原子通过溶液扩散到金属表面。

•气体渗碳:通过在高温环境下,将含碳气体(如甲烷、一氧化碳等)与金属样品接触,使碳原子在金属表面扩散。

•离子渗碳:通过将含碳化合物(如氰化物)溶解在溶剂中,再通过电场作用将碳离子引入金属样品,实现渗碳。

4. 渗碳的应用渗碳广泛应用于许多领域,主要包括以下几个方面:•机械工程:在机械工程中,渗碳可以提高金属的硬度和耐磨性,用于制造轴承、齿轮等零部件,增加其使用寿命。

•汽车工业:在汽车工业中,渗碳可以用于制造曲轴、减震器等零部件,提高其耐磨性和强度。

•航空航天:在航空航天领域,渗碳可用于制造发动机零部件、航空轴承等高性能材料,提高其抗腐蚀性能和疲劳寿命。

•工具制造:在工具制造中,渗碳可以用于制造刀具、钻头等工具,提高其切削性能和寿命。

•能源领域:在能源领域,渗碳可用于制造石油钻具、钻井机零部件等设备,提高其耐磨性和使用寿命。

5. 渗碳的优点和注意事项渗碳具有以下优点:•提高材料硬度和耐磨性;•延长材料使用寿命;•显著改善材料表面性能。

渗碳需要注意以下事项:•清洁金属表面,避免表面有锈蚀、油污等影响渗碳效果;•控制渗碳工艺参数,如温度、时间,以保证渗碳层的质量;•选择合适的渗碳方法,根据不同材料和应用场景进行选择;•进行适当的后处理,如淬火、回火等,以提高渗碳层的性能。

渗碳

渗碳

• (2)装箱:零件的固体渗碳时在渗碳箱中进行 ,渗碳箱 一般用钢板焊成或铸铁铸成,渗碳箱不宜过大,其外形尺 寸应尽可能适合工件的要求,箱子最好与炉底板架空,受 热均匀 。 • (3) 装炉与升温:零件可在低温入炉并用分段升温的方 法。但对于连续生产,这种方法不经济,故通常采用高温 入炉的方法。 • (4) 保温时间:零件在渗碳温度下需要保温时间视渗碳 层深度要求而定。 • (5) 出炉前的试棒检查:保温完毕大约半小时抽检试 棒,可把试棒淬于水中,折断后观察断口,或将断面抛光 后用4%硝酸酒精腐蚀,以检查渗碳层所达到的深度,渗 碳深度达到了技术要求则可出炉。如还未达到渗碳层深 度,应适当延长保温时间。
渗碳零件的材料
渗碳用钢:合金渗碳 钢含碳量0.15~0.25 %之间。 例15、20、20Cr、 20CrMnTi、20SiMnVB 等
• 发展历史:渗碳工艺在中国可以上溯2000 年以前。最早是用固体渗碳介质渗碳。液 体和气体渗碳是在20世纪出现并得到广泛 应用的。美国在20年代开始采用转筒炉进 行气体渗碳。30年代﹐连续式气体渗碳炉 开始在工业上应用。60年代高温(960~ 1100℃)气体渗碳得到发展。至70年代﹐出 现了真空渗碳和离子渗碳。
由渗剂直接滴入炉内进行渗碳时,由于热裂 分解出的活性碳原子过多,不能全部为零件表面所 吸收而以炭黑、焦油等形式沉积于零件表面,阻碍 渗碳过程,而且渗碳气氛的碳势也不易控制。因此 发展了滴注可控气氛渗碳,即向高温炉中同时滴入 两种有机液体,一种液体(如甲醇)产生的气体碳 势较低,作为稀释气体;另一种液体(如醋酸乙酯) 产生的气体碳势较高,作为富化气。通过改变两种 液体的滴入比例,利用露点仪和红外分析仪控制碳 势,是零件表面的含碳量控制在要求的范围内。
气体渗碳通过下述反应使原子扩散渗透到钢 中:2CO=〔C〕+CO2 • 滴注式的CO是通过C一H一O系有机剂在炉中 直接热分解而获得的。但液体有机剂的品种 很多,并不是都可以用于滴注。作为滴注用 的有机剂一般可分为下列三类: (1)C>O时,如CH3·COOCH(醋酸甲脂) 2CO+3H2+〔C〕 (2)C=O时,如CH3OH(甲醇) CO+2H2 (3)C<O时,如HCOOH(甲酸) CO+H2+〔O〕

渗碳的工艺流程

渗碳的工艺流程

渗碳的工艺流程
《渗碳的工艺流程》
渗碳是一种常用的表面处理工艺,用于提高金属零件的表面硬度和耐磨性。

下面是渗碳的工艺流程:
1. 准备工件:首先,需要准备要进行渗碳处理的金属零件。

这些零件需要经过清洗和除油处理,确保表面干净,没有杂质和油脂。

2. 淬火处理:接下来,将工件进行淬火处理,以提高其基体的硬度。

淬火可以通过急冷或者加热后迅速冷却来实现。

3. 包装:将经过淬火处理的工件进行包装,通常使用含有碳源的包装材料(如含有木炭和碳粉的包装剂)。

包装的目的是为了在高温下将碳源转移到金属表面上。

4. 加热:将包装好的工件放入加热炉中,进行高温加热。

在800°C至950°C的温度下,碳源开始蒸发并渗入到工件表面。

5. 等温保持:在达到所需的渗碳深度后,需要对工件进行等温保持一段时间,以确保碳元素充分渗入金属表面。

6. 冷却:工件经过等温保持后,可以慢慢冷却至室温。

在冷却过程中,需要防止工件表面出现氧化或者脱碳现象。

7. 清洗和处理:最后,将渗碳后的工件进行清洗和处理,去除
包装材料和表面残余物质。

在此过程中,工件通常还会进行后续的调质和表面处理,以进一步提高其性能。

通过以上工艺流程,金属零件可以获得较高的表面硬度和耐磨性,从而提升其使用寿命和性能。

渗碳工艺在机械制造、汽车制造等领域广泛应用,对提高零件的耐磨、耐腐蚀和强度有着显著的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

书山有路勤为径,学海无涯苦作舟
渗碳工艺的六种常见方法
1、一次加热淬火低温回火,渗碳温度820~850o C 或
780~810o C
特点:对心部强度要求高者,采用820~850o C 淬火,心部组织为
低碳马氏体;表面要求硬度高者,采用780~810o C 加热淬火可以细化晶
粒。

适用范围:适用于固体渗碳后的碳钢和低合金钢工件。

气体、液体渗碳后的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。

2、渗碳、高温回火,一次加热淬火、低温回火,渗碳温度840~860o C
特点:高温回火使马氏体和残留奥氏体分解,渗层中碳和合金元素以碳化物形式析出,便于工削加工及淬火后渗层残留奥氏体减少。

适用范围:主要用于Cr-Ni 合金钢渗碳工件。

3、二次淬火低温回火
特点:第一次淬火(或正火),可以消除渗层网状碳化物及细化心部组织。

第二次淬火主要改善渗层组织,但对心部性能要求较高时应在心部Ac3 以上淬火。

适用范围:主要用于对力学性能要求很高的重要渗碳工件,特别是对粗晶粒钢。

但在渗碳后需进行两次高温加热,使工件变形及氧化脱碳增加,热处理过程较复杂。

4、二次淬火冷处理低温回火
特点:高于Ac1 或Ac3(心部)的温度淬火,高合金钢表层残留奥氏体较多,经冷处理(-70~80&ordm;C)促使奥氏体转变,从而提高表面硬度和耐磨性。

相关文档
最新文档