2016-17中考数学试题汇编(含答案)

合集下载

2017年盘锦市中考数学试题(含答案和解释)

2017年盘锦市中考数学试题(含答案和解释)

2017年盘锦市中考数学试题(含答案和解释)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是()A.2B..﹣D.﹣2 【答案】A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是()A.B..D.【答案】.考点:中心对称图形.3.下列等式从左到右的变形,属于因式分解的是()A.B..D.【答案】.【解析】试题分析:A.,故A不是因式分解;B.,故B不是因式分解;.,故正确;D.=a(x+1)(x﹣1),故D分解不完全.故选.考点:因式分解的意义.4.如图,下面几何体的俯视图是()A.B..D.【答案】D.【解析】试题分析:从上面可看到第一行有三个正方形,第二行最左边有1个正方形.故选D.考点:简单组合体的三视图..在我市举办的中学生“争做明盘锦人”演讲比赛中,有1名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这1名学生成绩的()A.众数B.方差.平均数D.中位数【答案】D.考点:统计量的选择.6.不等式组的解集是()A.﹣1<x≤3B.1≤x<3.﹣1≤x<3D.1<x≤3【答案】.考点:解一元一次不等式组.7.样本数据3,2,4,a,8的平均数是4,则这组数据的众数是()A.2B.3.4D.8【答案】B.【解析】试题分析:a=4×﹣3﹣2﹣4﹣8=3,则这组数据为3,2,4,3,8;众数为3,故选B.考点:众数;算术平均数.8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进,结果每位同学比原少分摊4元车费.设原游玩的同学有x名,则可得方程()A.B..D.【答案】D.【解析】试题分析:由题意得:,故选D.考点:由实际问题抽象出分式方程.9.如图,双曲线(x<0)经过▱AB的对角线交点D,已知边在轴上,且A⊥于点,则▱AB的面积是()A.B..3D.6【答案】.考点:反比例函数系数的几何意义;平行四边形的性质.10.如图,抛物线与x轴交于点A(﹣1,0),顶点坐标(1,n),与轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①ab>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥a2+b(为任意实数);⑤一元二次方程有两个不相等的实数根,其中正确的有()A.2个B.3个.4个D.个【答案】B.【解析】试题分析:∵抛物线开口向下,∴a<0,∵顶点坐标(1,n),∴对称轴为直线x=1,∴=1,∴b=﹣2a>0,∵与轴的交点在(0,3),(0,4)之间(包含端点),∴3≤≤4,∴ab<0,故①错误;3a+b=3a+(﹣2a)=a<0,故②正确;∵与x轴交于点A(﹣1,0),∴a﹣b+=0,∴a﹣(﹣2a)+=0,∴=﹣3a,∴3≤﹣3a≤4,∴﹣≤a≤﹣1,故③正确;∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+≥a2+b+,∴a+b≥a2+b,故④正确;一元二次方程有两个相等的实数根x1=x2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B.考点:抛物线与x轴的交点;根的判别式;二次函数的性质.二、填空题(每小题3分,共24分)11.2016年我国对“一带一路”沿线国家直接投资14亿美元,将14亿用科学记数法表示为.【答案】14×1010.【解析】试题分析:将14亿用科学记数法表示为:14×1010.故答案为:14×1010.考点:科学记数法—表示较大的数.12.若式子有意义,则x的取值范围是.【答案】x>.考点:二次根式有意义的条.13.计算:= .【答案】.【解析】试题分析:原式= ,故答案为:.考点:整式的除法.14.对于▱ABD,从以下五个关系式中任取一个作为条:①AB=B;②∠BAD=90°;③A=BD;④A⊥BD;⑤∠DAB=∠AB,能判定▱ABD是矩形的概率是.【答案】.【解析】试题分析:由题意可知添加②③⑤可以判断平行四边形是矩形,∴能判定▱ABD是矩形的概率是,故答案为:.考点:概率公式;矩形的判定.1.如图,在△AB中,∠B=30°,∠=4°,AD是B边上的高,AB=4,分别以B、为圆心,以BD、D为半径画弧,交边AB、A于点E、F,则图中阴影部分的面积是2.【答案】.考点:扇形面积的计算;勾股定理.16.在平面直角坐标系中,点P的坐标为(0,﹣),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于轴,且AB=8,反比例函数(≠0)经过点B,则= .【答案】﹣8或﹣32.【解析】试题分析:设线段AB交轴于点,当点在点P的上方时,连接PB,如图,∵⊙P 与x轴相切,且P(0,﹣),∴PB=P=,∵AB=8,∴B=4,在Rt△PB 中,由勾股定理可得P= =3,∴=P﹣P=﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(≠0)经过点B,∴=4×(﹣2)=﹣8;当点在点P下方时,同理可求得P=3,则=P+P=8,∴B(4,﹣8),∴=4×(﹣8)=﹣32;综上可知的值为﹣8或﹣32,故答案为:﹣8或﹣32.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论.17.如图,⊙的半径A=3,A的垂直平分线交⊙于B、两点,连接B、,用扇形B围成一个圆锥的侧面,则这个圆锥的高为.【答案】.考点:圆锥的计算;线段垂直平分线的性质.18.如图,点A1(1,1)在直线=x上,过点A1分别作轴、x轴的平行线交直线于点B1,B2,过点B2作轴的平行线交直线=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为.【答案】.考点:一次函数图象上点的坐标特征;规律型:点的坐标;综合题.三、解答题(19小题8分,20小题10分,共18分)19.先化简,再求值:,其中a= .【答案】,1.【解析】试题分析:根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.试题解析:原式===当a=1+2=3时,原式= =1.考点:分式的化简求值;零指数幂;负整数指数幂.20.如图,码头A、B分别在海岛的北偏东4°和北偏东60°方向上,仓库在海岛的北偏东7°方向上,码头A、B均在仓库的正西方向,码头B和仓库的距离B=0,若将一批物资从仓库用汽车运送到A、B两个码头中的一处,再用货船运送到海岛,若汽车的行驶速度为0/h,货船航行的速度为2/h,问这批物资在哪个码头装船,最早运抵海岛?(两个码头物资装船所用的时间相同,参考数据:≈14,≈17)【答案】这批物资在B码头装船,最早运抵海岛.由题意∠=7°,∠B=60°,∠=4°,∠=90°,∴∠=1°,∠B=30°,=A,∵∠B=∠+∠B,∴∠=∠B=1°,∴B=B=0(),在Rt△B中,= B=2(),B= = (),在Rt△A中,=A=2(),A= ≈3,∴AB=B﹣A≈17(),∴从A码头的时间= =34(小时),从B码头的时间= =3(小时),3<34.答:这批物资在B码头装船,最早运抵海岛.考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)0;(2)26;(3)104000元;(4).【解析】试题分析:(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出类型人数,即可补全条形图;(2)由各类的人数可得其总消费,进而可求出该班同学用于饮品上的人均花费是多少元;(3)用总人数乘以样本中的人均消费数额即可;(4)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.试题解析:(1)∵抽查的总人数为:20÷40%=0人,∴类人数=0﹣20﹣﹣1=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(×0+20×2+3×10+4×1)÷0=26元;(3)我市初中生每天用于饮品上的花费=40000×26=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)= = .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图;加权平均数.22.如图,在平面直角坐标系中,直线l:与x轴、轴分别交于点,N,高为3的等边三角形AB,边B在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B11,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A11所在直线的解析式;(3)在坐标平面内找一点P,使得以P、A1、1、为顶点的四边形是平行四边形,请直接写出P点坐标.【答案】(1)A1(,3),在直线上;(2);(3)P1(,3),P2(,﹣3),P3(﹣,3).试题解析:(1)如图作A1H⊥x轴于H.在Rt△A1H中,∵A1H=3,∠A1H=60°,∴H=A1H•tan30°= ,∴A1(,3),∵x= 时,=3,∴A1在直线上.(2)∵A1(,3),1(,0),设直线A11的解析式为=x+b,则有:,解得:,∴直线A11的解析式为.(3)∵(4 ,0),A1(,3),1(2 ,0),由图象可知,当以P、A1、1、为顶点的四边形是平行四边形时,P1(,3),P2(,﹣3),P3(﹣,3).考点:一次函数综合题;分类讨论.23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.=﹣10x2+2210x﹣112800,当=880时,﹣10x2+2210x﹣112800=880,整理,得:x2﹣221x+12138=0,解得:x=102或x=119,∵当x=102时,销量为1410﹣1020=390,当x=119时,销量为1410﹣1190=220,∴若要达到880元的利润,且薄利多销,∴此时的定价应为102元;小杰:=﹣10x2+2210x﹣112800= ,∵价格取整数,即x为整数,∴当x=110或x=111时,取得最大值,最大值为9300.答:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.考点:二次函数的应用;二次函数的最值;最值问题.24.如图,在等腰△AB中,AB=B,以B为直径的⊙与A相交于点D,过点D作DE⊥AB交B延长线于点E,垂足为点F.(1)判断DE与⊙的位置关系,并说明理由;(2)若⊙的半径R=,tan= ,求EF的长.【答案】(1)直线DE是⊙的切线;(2).(2)过D作DH⊥B于H,∵⊙的半径R=,tan= ,∴B=10,设BD=,D=2,∴B= =10,∴=2 ,∴BD=2 ,D=4 ,∴DH= =4,∴H= =3,∵DE⊥D,DH⊥E,∴D2=H•E,∴E= ,∴BE= ,∵DE⊥AB,∴BF∥D,∴△BFE∽△DE,∴,即,∴BF=2,∴EF= = .考点:直线与圆的位置关系;等腰三角形的性质;解直角三角形;探究型.2.如图,在Rt△AB中,∠AB=90°,∠A=30°,点为AB中点,点P 为直线B上的动点(不与点B、点重合),连接、P,将线段P绕点P 顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段B上时,请直接写出线段BQ与P的数量关系.(2)如图2,当点P在B延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在B延长线上时,若∠BP=1°,BP=4,请求出BQ的长.【答案】(1)BQ=P;(2)成立:P=BQ;(3).(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.设E==a,则E=FP=2a,EF= a,在Rt△PE中,表示出P,根据P+B=4,可得方程,求出a即可解决问题;试题解析:(1)结论:BQ=P.理由:如图1中,作PH∥AB交于H.在Rt△AB中,∵∠AB=90°,∠A=30°,点为AB中点,∴=A=B,∠B=60°,∴△B是等边三角形,∴∠HP=∠B=60°,∠PH=∠B=60°,∴∠HP=∠PH=60°,∴△PH是等边三角形,∴P=PH=H,∴H=PB,∵∠PB=∠PQ+∠QPB=∠B+∠P,∵∠PQ=∠P=60°,∴∠PH=∠QPB,∵P=PQ,∴△PH≌△QPB,∴PH=QB,∴P=BQ.(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.∵∠P=1°,∠B=∠P+∠P,∴∠P=4°,∴E=E,设E==a,则E=FP=2a,EF= a,在Rt△PE中,P= = = ,∵P+B=4,∴,解得a= ,∴P= ,由(2)可知BQ=P,∴BQ= .考点:几何变换综合题;探究型;变式探究;压轴题.26.如图,直线=﹣2x+4交轴于点A,交抛物线于点B(3,﹣2),抛物线经过点(﹣1,0),交轴于点D,点P是抛物线上的动点,作PE⊥DB交DB所在直线于点E.(1)求抛物线的解析式;(2)当△PDE为等腰直角三角形时,求出PE的长及P点坐标;(3)在(2)的条下,连接PB,将△PBE沿直线AB翻折,直接写出翻折点后E的对称点坐标.【答案】(1);(2)PE=或2,P(2,﹣3)或(,3);(3)E的对称点坐标为(,﹣)或(36,﹣12).【解析】试题分析:(1)把B(3,﹣2),(﹣1,0)代入即可得到结论;(2)由求得D(0,﹣2),根据等腰直角三角形的性质得到DE=PE,列方程即可得到结论;(3)①当P点在直线BD的上方时,如图1,设点E关于直线AB 的对称点为E′,过E′作E′H⊥DE于H,求得直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论;②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE 于H,得到直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论.(2)设P(,),在中,当x=0时,=﹣2,∴D(0,﹣2),∵B(3,﹣2),∴BD∥x轴,∵PE⊥BD,∴E(,﹣2),∴DE=,PE= ,或PE= ,∵△PDE为等腰直角三角形,且∠PED=90°,∴DE=PE,∴= ,或= ,解得:=,=2,=0(不合题意,舍去),∴PE=或2,P(2,﹣3)或(,3);②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE于H,由(2)知,此时,E(2,﹣2),∴DE=2,∴BE′=BE=1,∵EE′⊥AB,∴设直线EE′的解析式为,∴﹣2= ×2+b,∴b=﹣3,∴直线EE′的解析式为,设E′(,),∴E′H= = ,BH=﹣3,∵E′H2+BH2=BE′2,∴()2+(﹣3)2=1,∴=36,=2(舍去),∴E′(36,﹣12).综上所述,E的对称点坐标为(,﹣)或(36,﹣12).考点:二次函数综合题;动点型;翻折变换(折叠问题);分类讨论;压轴题.。

北京市各区2016年中考数学一模汇编整式(含参考答案)

北京市各区2016年中考数学一模汇编整式(含参考答案)

北京市2016年各区中考一模汇编整式一、整式之幂运算1.【2016东城一模,第02题】下列运算中,正确的是A .x ·x 3=x 3B .(x 2)3=x 5C .624x x x ÷=D .(x -y )2=x 2+y 22.【2016通州一模,第03题】下列各式运算的结果为6a 的是A .33a a +B .33()aC .33a a ⋅ D.122a a ÷二、整式之因式分解3.【2016东城一模,第08题】对式子2241a a --进行配方变形,正确的是A .22(1)3a +-B . 23(1)2a --C .22(1)1a --D .22(1)3a --4.【2016东城一模,第11题】分解因式:22ab ac -=.5.【2016丰台一模,第11题】分解因式:2x 3-8x =.6.【2016平谷一模,第11题】分解因式:228x y y -=.7.【2016朝阳一模,第12题】分解因式:22369a b ab b -+=____________.8.【2016海淀一模,第11题】分解因式:22a b ab b -+=9.【2016西城一模,第11题】分解因式:34ab ab -=_______________.二、整式之因式简化10.【2016平谷一模,第18题】已知a+b =﹣1,求代数式()()2122a b a b a -+++的值.11.【2016通州一模,第11题】已知3m n +=,2m n -=,那么22m n -的值是 .详细解答1. C2. C3. D4. ()()a b c b c +-5. 2x (x +2)(x -2)6. ()()222y x x +-7. 2)3(b a b -8. 2(1)b a -9. ab(b+2)(b-2)10. 解:()()2122a b a b a -+++=222122+a a ab b a -+++……………………………………………………2 =2221+a ab b ++ (3)∵a+b =﹣1,∴原式=()21a b ++............................................................4 =2 (5)11. 6。

专题15 应用题-中考数学试题分项版解析汇编(原卷版)

专题15 应用题-中考数学试题分项版解析汇编(原卷版)

专题15:应用题一、选择题1.(2017湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里2.(2017山东临沂第8题)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.90606x x=+B.90606x x=+C.90606x x=-D.90606x x=-3.(2017浙江台州第9题)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A. 10分钟 B.13分钟 C. 15分钟 D.19分钟二、填空题1.(2017北京第12题)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.2.(2017山东滨州第9题)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C.2×16x=22(27-x) D.2×22x=16(27-x)3.(2017辽宁沈阳第15题)某商场购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可销售出 400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是 元时,才能在半月内获得最大利润. 4.(2017江苏苏州第17题)如图,在一笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 北偏东60的方向,在码头B 北偏西45的方向,C 4A =km .游客小张准备从观光岛屿C 乘船沿C A 回到码头A 或沿C B 回到码头B ,设开往码头A 、B 的游船速度分别为1v 、2v ,若回到A 、B 所用时间相等,则12v v = (结果保留根号).5. (2017浙江金华第16题)在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=.拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进人小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S = 2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE ∆区域,使之变成落地为五边ABCDE 的小屋,其它条件不变.则在BC 的变化过程中,当S 取得最小值时,边长BC 的长为 m .6. (2017浙江台州第14题)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少定为 元/千克.三、解答题1.(2017天津第22题)如图,一艘海轮位于灯塔P 的北偏东064方向,距离灯塔120海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东045方向上的B 处,求BP 和BA 的长(结果取整数). 参考数据:05.264tan ,44.064cos ,90.064sin 000≈≈≈,2取414.1.2.(2017天津第23题)用4A 纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数).(1)根据题意,填写下表: 一次复印页数(页)5 10 20 30 … 甲复印店收费(元)5.0 2 … 乙复印店收费(元)6.0 4.2… (2)设在甲复印店复印收费1y 元,在乙复印店复印收费2y 元,分别写出21y y ,关于x 的函数关系式;(3)当70>x 时,顾客在哪家复印店复印花费少?请说明理由.3.(2017福建第20题)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.4.(2017河南第19题)如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B船测得渔船C在其南偏东53︒方向.已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:4sin535︒≈,3cos535︒≈,4tan533︒≈,2 1.41≈)5.(2017河南第21题)学校“百变魔方”社团准备购买A,B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.6.(2017广东广州第21题)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.7.(2017湖南长沙第22题)为了维护国家主权和海洋权力,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东060方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东030方向上.(1)求APB ∠的度数;(2)已知在灯塔P 的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?8. (2017湖南长沙第24题)自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A 型商品的件数是用7500元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多10元.(1)求一件B A ,型商品的进价分别为多少元?(2)若该欧洲客商购进B A ,型商品共250件进行试销,其中A 型商品的件数不大于B 型的件数,且不小于80件,已知A 型商品的售价为240元/件,B 型商品的售价为220元/件,且全部售出,设购进A 型商品m 件,求该客商销售这批商品的利润y 与m 之间的函数关系式,并写出m 的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A 型商品,就从一件A 型商品的利润中捐献慈善资金a 元,求该客商售完所有商品并捐献资金后获得的最大收益.9. (2017山东临沂第22题)如图,两座建筑物的水平距离30m BC =,从A 点测得D 点的俯角α为30︒,测得C 点的俯角β为60︒,求这两座建筑物的高度.10. (2017山东临沂第24题)某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y (元)与每月用水量x (3m )之间的关系如图所示.(1)求y 关于x 的函数解析式;(2)若某用户二、三月份共用水340m (二月份用水量不超过325m ),缴纳水费79.8元,则该用户二、三月份的用水量各是多少3m ?11. (2017山东青岛第19题)(本小题满分6分)如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长(结果保留整数)(参考数据:73.1351267tan 13567cos 131267sin ≈≈︒≈︒≈︒;;;)12. (2017山东青岛第20题)(本小题满分8分)A 、B 两地相距60km ,甲、乙两人从两地出发相向而行,甲先出发.图中21,l l 表示两人离A 地的距离S (km )与时间t (h )的关系,结合图像回答下列问题:(1)表示乙离开A 地的距离与时间关系的图像是________(填21l l 或);甲的速度是__________km/h ;乙的速度是________km/h 。

广东省深圳市2016-2017学年中考模拟数学考试试卷(二)

广东省深圳市2016-2017学年中考模拟数学考试试卷(二)

广东省深圳市2016-2017学年中考模拟数学考试试卷(二)一、选择题1.9的平方根是()A. ±3B. 3C. ﹣3D. 812.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2016年“快的打车”账户流水总金额达到147.3亿元,147.3亿用科学记数法表示为()A. 1.473×1010B. 14.73×1010C. 1.473×1011D. 1.473×10123.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A. B. C. D.4.下列运算正确的是()A. 3ab﹣2ab=1B. x4•x2=x6C. (x2)3=x5D. 3x2÷x=2x5.如图,已知a∥b,∠1=50°,则∠2=()A. 40°B. 50°C. 120°D. 130°6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A. 120元B. 100元C. 72元D. 50元7.由几个大小相同的正方形组成的几何图形如图,则它的左视图是()A. B. C. D.8.若ab>0,则函数y=ax+b与y=b(a≠0)在同一直角坐标系中的图象可能是()xA. B. C. D.9.已知不等式组 {x −a <−11−x 3≤1 的解集如图所示(原点没标出),则a 的值为( )A. ﹣1B. 0C. 1D. 210.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A 处时,发现它的北偏东30°方向有一灯塔B .轮船继续向北航行2小时后到达C 处,发现灯塔B 在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A. 1小时B. √3 小时C. 2小时D. 2√3 小时 11.对于数对(a ,b )、(c ,d ),定义:当且仅当a=c 且b=d 时,(a ,b )=(c ,d );并定义其运算如下: (a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x ,y )※(1,﹣1)=(1,3),则x y 的值是( ) A. ﹣1 B. 0 C. 1 D. 2 12.如图所示,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下面的结论:①△ODC 是等边三角形;②BC=2AB ;③∠AOE=135°;④S △AOE =S △COE , 其中正确结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题13.分解因式:ax 2﹣9a=________.14.有A 、B 两只不透明口袋,每只口袋装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、”心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.15.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打________折.16.如图,直线y=x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1 , 以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2 , 以原点O 为圆心,OB 2长为半径画弧交x轴于点A3;…,按照此做法进行下去,则OA n的长为________.三、解答题17.计算:(﹣12)﹣2+ √3tan60°+|﹣1|+(2cos60°+1)0.18.解方程:3+xx−4+1=14−x.19.某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机________台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是________;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是________台.20.2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)21.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB= 3,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,46).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.求证:AD∥OB;(3)动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值.答案解析部分一、<b >选择题1.【答案】A【解析】【解答】解:∵(±3)2=9,∴9的平方根为±3.故选A.【分析】直接根据平方根的定义求解即可.2.【答案】A【解析】【解答】解:147.3亿用科学记数法表示为1.473×1010,故选:A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】B【解析】【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形与中心对称图形的概念求解.4.【答案】B【解析】【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.5.【答案】D【解析】【解答】解:如图,∵∠1=50°,∴∠3=180°﹣∠1=180°﹣50°=130°,又∵a∥b,∴∠2=∠3=130°.故选D .【分析】根据平角的定义得到∠3=180°﹣∠1=180°﹣50°=130°,然后根据两直线平行,同位角相等即可得到∠2的度数. 6.【答案】 D【解析】【解答】设进货价为x 元,由题意得: (1+100%)x•60%=60, 解得:x =50, 故选:D .【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x , 再根据以6折优惠售出,即可得出符合题意的方程,求出即可. 7.【答案】B【解析】【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形, 故选:B . 【分析】根据从左边看得到的图形是左视图,可得答案. 8.【答案】C【解析】【解答】解:∵ab >0, ∴a 、b 同号,当a >0,b >0时,直线经过第一、二、三象限,双曲线经过第一、三象限, 当a <0,b <0时,直线经过第二、三、四象限,双曲线经过第二、四象限,A 、图中直线经过直线经过第一、四、三象限,双曲线经过第一、三象限,故A 选项错误;B 、图中直线经过原点,故B 选项错误;C 、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故C 选项正确;D 、图中直线经过第二、一、四象限,双曲线经过第二、四象限,故D 选项错误. 故选:C .【分析】由于ab >0,那么a 、b 同号,当a >0,b >0时,直线经过第一、二、三象限,双曲线经过第一、二象限,当a <0,b <0时,直线经过第二、三、四象限,双曲线经过第二、四象限,利用这些结论即可求解. 9.【答案】D【解析】【解答】解:∵ {x −a <−11−x 3≤1 的解集为:﹣2≤x <a ﹣1, 又∵,∴﹣2≤x <1, ∴a ﹣1=1, ∴a=2. 故选D .【分析】首先解不等式组,求得其解集,又由 ,即可求得不等式组的解集,则可得到关于a 的方程,解方程即可求得a 的值. 10.【答案】 A【解析】【解答】解:作BD ⊥AC 于D ,如下图所示:易知:∠DAB=30°,∠DCB=60°, 则∠CBD=∠CBA=30°. ∴AC=BC ,∵轮船以40海里/时的速度在海面上航行, ∴AC=BC=2×40=80海里, ∴CD= 12 BC=40海里.故该船需要继续航行的时间为40÷40=1小时. 故选A .【分析】过B 作AC 的垂线,设垂足为D .由题易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°,得AC=BC .由此可在Rt △CBD 中,根据BC (即AC )的长求出CD 的长,进而可求出该船需要继续航行的时间. 11.【答案】C【解析】【解答】解:∵(a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ), ∴(x ,y )※(1,﹣1)=(x+y ,﹣x+y )=(1,3),∵当且仅当a=c 且b=d 时,(a ,b )=(c ,d ); ∴ {x +y =1−x +y =3 ,解得: {x =−1y =2 , ∴x y 的值是(﹣1)2=1, 故选:C .【分析】根据(a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ),得出(x ,y )※(1,﹣1)的值即可求出x ,y 的值.12.【答案】 C【解析】【解答】解:∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OC ,OD=OB ,AC=BD , ∴OA=OD=OC=OB , ∵AE 平分∠BAD , ∴∠DAE=45°, ∵∠CAE=15°, ∴∠DAC=30°, ∵OA=OD ,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴∠BOE=∠BEO=1(180°﹣∠OBE)=75°,2∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等得出S△AOE=S COE,∴④正确;故选C.【分析】根据矩形性质求出OD=OC,根据角求出∠DOC=60°即可得出三角形DOC是等边三角形,求出AC=2AB,即可判断②,求出∠BOE=75°,∠AOB=60°,相加即可求出∠AOE,根据等底等高的三角形面积相等得出S△AOE=S COE.二、<b >填空题13.【答案】a(x+3)(x﹣3)【解析】【解答】解:ax2﹣9a =a(x2﹣9),=a(x+3)(x﹣3).故答案为:a(x+3)(x﹣3).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.14.【答案】14.故答案【解析】【解答】解:共有4种情况,恰好能组成“细心”字样的情况数有1种,所以概率为14为1.4【分析】列举出所有情况,看刚好能组成“细心”字样的情况数占所有情况数的多少即可.15.【答案】七【解析】【解答】解:设打x折,﹣800≥800×5%,根据题意得1200• x10解得x≥7.所以最低可打七折.故答案为七.﹣800≥800×5%,然后解不等式求出x的范【分析】设打x折,利用销售价减进价等于利润得到1200• x10围,从而得到x的最小值即可.16.【答案】(√2)n﹣1【解析】【解答】解:∵B1,B2,…,B n是直线y=x上的点,∴△OA1B1,△OA2B2,…,△OA n B n都是等腰直角三角形,由等腰三角形的性质,得OA2=OB1= √2OA1,OA3=OB1= √2OA2,…OA n=OB n﹣1= √2OA n﹣1=(√2)n﹣1.故答案为:(√2)n﹣1.【分析】由直线y=x的性质可知,△OA1B1,△OA2B2,…都是等腰直角三角形,且OA2=OB1= √2OA1,由此可知,后一个三角形的直角边长是前一个三角形直角边长的√2倍,得出一般规律.三、<b >解答题17.【答案】解:原式=4+3+1+1 =9【解析】【分析】原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.18.【答案】解:方程两边同乘(x﹣4),得:3+x+x﹣4=﹣1,整理解得x=0.经检验x=0是原方程的解【解析】【分析】因为4﹣x=﹣(x﹣4),所以最简公分母为(x﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.19.【答案】(1)240(2)解:如图(3)135°(4)55【解析】【解答】解:(1)由两种统计图可知一月份的销售量为60台,占前四个月销售量的25%,∴60÷25%=240,∴专卖店1~4月共销售这种品牌的手机240台;(2)如图;(3)∵90240×360°=135°∴“二月”所在的扇形的圆心角的度数是135°;(4)排序后一三两月的销量位于中间位置,∴中位数为:(60+50)÷2=55台.【分析】(1)用一月份的销售量除以该月的销售量所占百分比即可得到总得销售量;(2)用销售总量减去其他三个月的销售量即可得到二月份的销售量;(3)用二月份的销售量除以四个月的销售总量即可得到二月份所占百分比;(4)找到销售量位于中间位置的两个月份,其销量的平均数即为四个月销量的中位数.20.【答案】(1)解:延长BA交EF于一点G,如图所示,则∠DAC=180°﹣∠BAC﹣∠GAE=180°﹣38°﹣(90°﹣23°)=75°(2)解:过点A作CD的垂线,设垂足为H,在Rt△ADH中,∠ADC=60°,∠AHD=90°,∴∠DAH=30°,∵AD=3,∴DH= 32,AH= 3√32,在Rt△ACH中,∠CAH=∠CAD﹣∠DAH=75°﹣30°=45°,∴∠C=45°,∴CH=AH= 3√32,AC= 3√62,则树高3√62+ 3√32+ 32(米)【解析】【分析】(1)延长BA交EF于点G,利用三角形外角性质即可求出所求角的度数;(2)过A作CD的垂线,垂足为H,在直角三角形ADH中,求出∠DAH=30°,利用30度角所对的直角边等于斜边的一半求出DH与AH的长,确定出三角形ACH为等腰直角三角形,求出CH,AH的长,由AC+CH+HD求出大树高即可.21.【答案】(1)解:设A型花和B型花每枝的成本分别是x元和y元,根据题意得:{2x+3y=22 x+5y=25解得:{x=5y=4所以A型花和B型花每枝的成本分别是5元和4元(2)解:设按甲方案绿化的道路总长度为a米,根据题意得:1500﹣a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a)+4×5(1500﹣a)=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元【解析】【分析】(1)本题需根据题意设A型花和B型花每枝的成本分别是x元和y元,根据题意列出方程组,即可求出A型花和B型花每枝的成本.(2)本题需先根据题意设按甲方案绿化的道路总长度为a 米,根据题意列出不等式,解出结果;再求出工程的总成本即可得出答案.22.【答案】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴AFRP =EAER,即:AF2=22+AR由(1)得AF=AR,∴AR2=22+AR,解得:AR=−1+√5或AR=−1−√5(不合题意,舍去),∴DP=AR=−1+√5,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴t=√5−1(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK= 12BR= 12(2﹣x),∵△EFA∽△EPK,∴FAPK =EAEK,即:x2=24−12(2−x),解得:x=± √17﹣3(舍去负值);∴t= √17−12(秒);若PB=RB,则△EFA∽△EPB,∴EAEB =AFBP= 12,∴ARBP =12,∴BP= 23AB= 23×2= 43∴CP=BC﹣BP=2﹣43= 23,∴t=83(秒).综上所述,当PR=PB时,t= √17−12;当PB=RB时,t=83秒.【解析】【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.23.【答案】(1)解:∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴{16a+4b=04a−2b=6,解得{a=12b=−2,∴抛物线的解析式为:y= 12x2﹣2x(2)解:如图,连接AC交OB于点E,连接OC、BC,∵OC=BC,AB=AO,∴AC⊥OB,∵AD为切线,∴AC⊥AD,∴AD∥OB(3)解:∵tan∠AOB= 3,4∴sin∠AOB= 3,5∴AE=OA•sin∠AOB=4× 3=2.4,5∵AD∥OB,∴∠OAD=∠AOB,∴OD=OA•tan∠OAD=OA•tan∠AOB=4× 3=3,4当PQ⊥AD时,OP=t,DQ=2t,过O点作OF⊥AD于F,在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF= √OD2−OF2= √32−2.42=1.8,∴t=1.8秒.【解析】【分析】(1)把经过的点的坐标代入抛物线表达式,然后利用待定系数法求二次函数解析式;(2)连接AC交OB于点E,连接OC、OB,然后根据到线段两端点距离相等的点在线段的垂直平分线上求出AC⊥OB,再根据圆的切线的定义求出AC⊥AD,然后根据垂直于同一直线的两直线互相平行证明;(3)根据∠AOB的正切值求出余弦值,然后求出AE,再利用∠OAD的正切值求出OD的长,表示出OP、OQ,再过O点作OF⊥AD于F,用t表示出DF,在Rt△ODF中,利用勾股定理列式求出DF,从而得解.。

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

专题3 方程(组)和不等式(组)一、选择题目1. (2017浙江衢州第6题)二元一次方程组的解是A. B. C. D. 2.(2017山东德州第8题)不等式组的解集为( )学科网A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 43.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. B.C. D.4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x ++=--的解为正数,且使关于y的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是⎩⎨⎧-=-=+236y x y x ⎩⎨⎧==15y x ⎩⎨⎧==24y x ⎩⎨⎧-=-=15y x ⎩⎨⎧-=-=24y x 31+2-132+9x xx ⎧≥>⎪⎨⎪⎩240120-=4-20x x 240120-=4+20x x 120240-=4-20xx 120240-=4+20x x( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x -2x 2=5706.(2017贵州安顺第8题)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( ) A .0B .﹣1C .2D .﹣37.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x 的两个根,则12x x 的值是( )A.2B.2C.4D.38. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5%9.(2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.80703000x xB.2807043000xC.8027023000x xD.28070470803000x x11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x +的值为( ) A .2B .﹣1C .-12D .﹣2 12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣313.(2017山东烟台第10题)若是方程的两个根,且,则的值为( )A .或2B .1或 C. D .114.(2017四川宜宾第4题)一元二次方程4x 2﹣2x+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断15.(2017四川自贡第4题)不等式组23-42+1x x >≤⎧⎨⎩的解集表示在数轴上正确的是( )16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3D .617. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .600480+40x x =C .600480+40xx =D .600480-40xx =18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )21,x x 01222=--+-m m mx x 21211x x x x -=+m 1-2-2-14A .1B .3C .14-D .7419.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x += B .2(1)2x += C .2(2)3x += D .2(1)3x += 二、填空题目1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是2.(2017浙江宁波第14题)分式方程21332x x的解是 .3.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 4.(2017江苏盐城第13题)若方程x 2-4x+1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为 5.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .6.(2017四川泸州第15题)若关于x 的分式方程x 2322m mx x ++=--的解为正实数,则实数m 的取值范围是 .7.(2017四川宜宾第13题)若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 .10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.x 18<x x 2m 133x y x y ⎧-=+⎨+=⎩三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

中考数学最新真题试题汇编及解析(湖南怀化)

中考数学最新真题试题汇编及解析(湖南怀化)
【详解】解:(3.14﹣π)0+| ﹣1|+( )﹣1﹣
=1+ -1+2-2
=2- .
【点睛】本题考查的是实数的运算,熟知二次根式的性质、负整数指数幂、零指数幂的计算法则是解答此题的关键.
18.解不等式组,并把解集在数轴上表示出来.
【答案】 ,数轴见解析
【解析】
【分析】根据解一元一次不等式组的方法步骤求解,然后在数轴上把解集表示出来即可.
7.一个多边形的内角和为900°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
【答案】A
【解析】
【分析】根据n边形的内角和是(n﹣2)•180°,列出方程即可求解.
【详解】解:根据n边形的内角和公式,得
(n﹣2)•180°=900°,
解得n=7,
∴这个多边形的边数是7,
故选:A.
【点睛】本题考查了多边形的内角和,解题的关键是熟记内角和公式并列出方程.
设CD=x,则BD=2.4-x,
在Rt△ACD中,∠ACD=45°,
∴∠CAD=45°,
∴AD=CD=x.
在Rt△ABD中, ,
即 ,
解得x=0.88,
可知AD=0 88千米=880米,
因为880米>800米,所以公路不穿过纪念园.
【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.
【详解】解:连接OC,
∵AB与⊙O相切于点C,
∴OC⊥AB,即∠OCA=90°,
在Rt△OCA中,AO=3,OC=2,
∴AC= ,
故答案为: .
【点睛】本题考查了切线的性质,勾股定理,熟练掌握切线的性质是解题关键.切线的性质:圆的切线垂直于经过切点的半径.

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

上海市历年中考数学试题、模拟题汇编及答案

上海市历年中考数学试题、模拟题汇编及答案数学是中学阶段的一门重要学科,对学生的逻辑思维能力和问题解决能力有着举足轻重的影响。

而上海市历年中考数学试题则是检验学生学习成绩的重要依据。

本文将为大家汇编整理上海市历年中考数学试题及模拟题,并提供答案,帮助学生加深对数学知识的理解和提高解题能力。

一、选择题1. 下列哪个图形是正方形?A. △ABCB. ○AC. ◇ABCDD. □MNPQ答案:D2. 已知函数y = 2x - 3,求y = 5的解。

A. x = 1B. x = -1C. x = 2D. x = -2答案:C3. 一辆汽车以每小时60公里的速度行驶,行驶8小时后行程为多少公里?A. 360公里B. 480公里C. 520公里D. 600公里答案:D二、解答题1. 计算下列各式的值:(1)3 × 5 - 4 × 2(2)3^2 + 4 × 5解答:(1)3 × 5 - 4 × 2 = 15 - 8 = 7(2)3^2 + 4 × 5 = 9 + 20 = 292. 在△ABC中,∠A = 90°,AB = 3cm,AC = 4cm,求BC的长度。

解答:由勾股定理可知,BC的长度为√(AB^2 + AC^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 5cm3. 某商场原价500元的商品打8折,又打7折,请问最终售价是多少?解答:打8折后的价格为500 × 0.8 = 400元再打7折后的价格为400 × 0.7 = 280元三、综合题某班级有48名学生,其中男生占总人数的3/8,女生有多少人?解答:男生人数为48 × 3/8 = 18人女生人数为48 - 18 = 30人四、模拟题1. 某商店举行促销活动,原价800元的商品打6折,再打8折,最终售价是多少?答案:打6折后的价格为800 × 0.6 = 480元再打8折后的价格为480 × 0.8 = 384元2. 已知函数y = 3x - 2,求y = 10的解。

陕西省2016中考数学复习针对性训练:混合运算、解分式方程、作图七(针对陕西中考第16、17、18题)

混合运算、解分式方程、作图七(针对陕西中考第16、17、18题)
1.计算:(2016)0+|-tan 45°|-(12
)-1+8. 解:原式=2 2
2.计算:8-(2015-π)0-4cos 45°+(-3)2.
解:原式=8
3.先化简,再求值:2a(a +2b)-(a +2b)2,其中a =-1,b = 3.
解:-11
4.解分式方程:2x 2-4+x x -2
=1. 解:x =-3
5.解方程:1-x x -2=x 2x -4
-1. 解:x =-2
6.(2015·大连)解方程:x -3x -2=3x x -3
. 解:x =±32
7.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c ,直线l 及l 外一点A.
求作:Rt △ABC ,使直角边为AC ,AC ⊥l ,垂足为C ,斜边AB =c.
解:如图, △ABC 为所求.
8.(2015·南宁)如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(-1,1),B(-3,1),C(-1,4).
(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;
(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).
解:
(1)如图,画出△ABC 关于y 轴对称的△A 1B 1C 1 (2)如图,画出△ABC 绕着点B 顺时针旋转90°后得到的△A 2BC 2, 线段BC 旋转过程中所扫过的面积 S =90π×(13)2360=13π4。

陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12 统计与概率一、填空题1.已知一组数据:3,5,x,7,9的平均数为6,则x=.二、综合题2.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.3.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.4.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.5.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.6.今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.7.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?8.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.9.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试题汇编 一、 填空题: 1. 一种细菌的半径约为0.000045米,用科学记数法表示为 米. 2. 8的立方根是 ,2的平方根是 ; 3. 如果|a+2|+1b=0,那么a、b的大小关系为a b(填“>”“=”或“<”); 4. 计算:)13)(13(= 。

5. 计算:2+8―18= 。 6. 在实数范围内分解因式:ab2-2a=___ ______.

7. 计算:x-1x-2 +12-x = 。 8. 不等式组xx21210的解集是___________。 9. 方程2x33x2的解是________________. 10. 观察下列等式,21 ×2 = 21 +2,32 ×3 = 32 +3,43 ×4 = 43 +4,54 ×5 = 54 +5 设n表示正整数,用关于n的等式表示这个规律为_______ ____; 11. 在函数yx12中,自变量x的取值范围是__________。 12. 如果反比例函数的图象经过点(1,-2),那么这个反比例函数的解析式为_________________。 13. 函数25xy与x轴的交点是 ,与y轴的交点是 ,与两坐标轴围成的三角形面积是 ; 14. 某地的电话月租费24元,通话费每分钟0.15元,则每月话费y(元)与通话时间x(分钟)之间的关系式是 ,某居民某月的电话费是38.7元,则通话时间是 分钟,若通话时间62分钟,则电话费为 元; 15. 函数xy2的图像,在每一个象限内,y随x的增大而 ;

16. 把函数22xy的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ; 17. 把二次函数842xxy化成nhxy2)(的形式是 ,顶点坐标是 ,对称轴是 ; 18. 1,2,3,x的平均数是3,则3,6,x的平均数是 ; 19. 2004年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31 这组数据的中位数是 ; 20. 为了调查某校初中三年级240名学生的身高情况,从中抽测了40名学生的身高,在这个问题中总体是 ,个体是 ,样本是 ; 21. 点P(1,2)关于x轴的对称点的坐标是 ,关于y轴的对称点的坐标是 ,关于原点的对称点的坐标是 ; 22. 若点mmP21, 在第一象限,则m的取值范围是 ;

23. 已知10x,化简2)1(xx的结果是 ; 24. 方程0222xx的根是31x,则222xx可分解为 ; 25. 方程022x的解是______x; 26. 方程 032kxx 的一根是3,则它的另一根是 , _____k;

27. 已知2x时,分式axbx无意义,4x时此分式值为0,则_____ba;

28. 若方程组137byaxbyax的解是12yx,则a=_________,b=_______; 29. 10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)= ,P(摸到奇数)= ; 30. 甲、乙两人进行射击比赛,在相同条件下各射击 10 次他们的平均成绩均为 7 环10 次射击成绩的方差分别是:3S2甲,2.1S2乙.成绩较为稳定的是________.(填“甲”或“乙” ) 二、选择题: 31、在实数π,2,41.3,2,tan45°中,有理数的个数是 ( ) A、 2个 B、3个 C、 4个 D、5个 32、下列二次根式中与3是同类二次根式的是 ( ) A、 18 B、 3.0 C、30 D、300 33、在下列函数中,正比例函数是 ( ) A xy2 B xy21 C 2xy D 4xy 34、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速前进,结果准时到校,在课堂上,李老师请学生画出:自行车行进路程S(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的示意图如下,你认为正确的是 ( )

B 35、正比例函数kxy和反比例函数xky)0(k在同一坐标系内的图象为

( )

A B C D 36、二次函数0,2babaxxy若中,则它的图象必经过点 ( ) A (1,1) B (1,1) C (1,1) D (1,1)

37、不等式组053032xx的整数解的个数是 ( ) A 1 B 2 C 3 D 4

O s t O s t O s t O s

t A C D

y x o y x o y x o

y

x o 38、在同一坐标系中,作出函数2kxy和)0(2kkxy的图象,只可能是 ( )

39、若关于x的方程0222aaxx有两个相等的实根,则a的值是 ( ) A -4 B 4 C 4或-4 D 2 40、某中学为了了解初中三年级数学的学习情况,在全校学生中抽取了50名学生进行测试(成绩均为整数,满分为100分),将50名学生的数学成绩进行整理,分成5组画出的频率分布直方图如图所示,已知从左至右4个小组的频率分别是0.06,0.08,0.20,0.28,那么这次测试学生成绩为优秀的有(分数大于或等于80分为优秀)。 ( ) A 30人 B 31人 C 33人 D 34人 41、某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x元,则可列出方程为 ( ) A 205.0420420xx B 204205.0420xx C 5.020420420xx D 5.042020420xx 42、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证( ) (A)222()2abaabb (B)222()2abaabb (C)22()()ababab (D)22(2)()2ababaabb

yyyy

xxxxOO

O

O-2-2-2ABCD

2

aabbb

ab

图2图1 三、解答题: 43、计算: 103122;

44、计算:1121222aaaaaa 45、解不等式组351)2(354xxxx 46、抛物线的对称轴是2x,且过(4,-4)、(-1,2),求此抛物线的解析式; 47、为了保护学生的视力,课桌椅的高度是按一定的关系配套设计的。研究表明:假设课桌的高度为ycm,椅子的高度(不含靠背)为xcm,则y应是x的一次函数,右边的表中给出两套符合条件的桌椅的高度: 第一套 第二套 椅子高度x(cm) 40.0 37.0 桌子高度y(cm) 75.0 70.2

(1)请确定y与x的函数关系式; (2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由。

48、有一个抛物线形拱桥,其最大高度为16m,跨度为40m,现把它的示意图放在平面直角坐标系中如 图(4),求抛物线的解析式

y

x40

16

O 49、某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554 台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 % .该厂第一季度生产甲、乙两种机器各多少台?

50、为节约用电,某学校于本学期初制定了详细的用电计划。如果实际每天比计划多用2度电,那么本学期的用电量将会超过2530度;如果实际每天比计划节约2度电,那么本学期用电量将会不超过2200度电。若本学期的在校时间按110天计算,那么学校每天用电量应控制在什么范围内?

51、某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下: 每人销售件数 1800 510 250 210 150 120 人数 1 1 3 5 5 2 (1)求这15位营销人员该月销售量的平均数、中位数和众数; (2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如果不合理,请你制定一个较合理的销售定额,并说明理由; 52、小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(0.04千瓦)的白炽灯,售价18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,并已知小刚家所在地的电价是每千瓦时0.5元。 (1)设照明时间是x小时,设一盏节能灯的费用1y和一盏白炽灯的费用2y,求出21,yy与x之间的函数关系式(注:费用=灯的售价+电费)

(2)小刚想在这两种灯中选一盏。 ①当照明时间是多少时,使用两种灯的费用一样多?

②照明时间是在什么范围内,选用白炽灯的费用最低? ③照明时间是在什么范围内,选用节能灯的费用最低?

(3)小刚想在这两种灯中选购两盏。 假定照明时间是3000小时,使用寿命就是2800小时。请你帮他设计一种费用最低的选灯方案,并说明理由。

相关文档
最新文档