北京市十一学校2016届高三上学期12月月考数学(理)试题含答案
2016年北京高考数学理科答案与解析

2016年北京高考数学(理科)答案与解析1. C【解析】集合{|22}A x x =-<<,集合{|1,0,1,2,3}B x =-,所以{1,0,1}A B =-I .2. C【解析】可行域如图阴影部分,目标函数平移到虚线处取得最大值,对应的点为()1,2,最大值为2124⨯+=.1,2()2x +y =02x-y=0x =0x +y =33. B【解析】开始1a =,0k =;第一次循环12a =-,1k =;第二次循环2a =-,2k =,第三次循环1a =,条件判断为“是”跳出,此时2k =.4. D【解析】若=a b r r 成立,则以a r ,b r 为边组成平行四边形,那么该平行四边形为菱形,+a b r r ,a b -r r表示的是该菱形的对角线,而菱形的对角线不一定相等,所以+=a b a b -r r r r不一定成立,从而不是充分条件;反之,+=a b a b -r r r r 成立,则以a r ,b r为边组成平行四边形,则该平行四边形为矩形,矩形的邻边不一定相等,所以=a b r r不一定成立,从而不是必要条件.5. C【解析】 A .考查的是反比例函数1y x=在()0,+∞单调递减,所以11x y <即110x y -<所以A 错; B .考查的是三角函数sin y x =在()0,+∞单调性,不是单调的,所以不一定有sin sin x y >,B 错;C .考查的是指数函数12xy ⎛⎫= ⎪⎝⎭在()0,+∞单调递减,所以有1122xy⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭即11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭所以C 对;D 考查的是对数函数ln y x =的性质,ln ln ln x y xy +=,当0x y >>时,0xy >不一定有ln 0xy >,所以D 错.6.A【解析】通过三视图可还原几何体为如图所示三棱锥,则通过侧视图得高1h =,底面积111122S =⨯⨯=,所以体积1136V Sh ==.7.A【解析】点π,4P t ⎛⎫ ⎪⎝⎭在函数πsin 23y x ⎛⎫=- ⎪⎝⎭上,所以πππ1sin 2sin 4362t ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,然后πsin 23y x ⎛⎫=- ⎪⎝⎭向左平移个单位,即πsin 2()sin 23y x s x ⎛⎫=+-= ⎪⎝⎭,所以π+π,6s k k =∈Z ,所以的最小值为π6.8.B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加个; ②黑+黑,则丙盒中黑球数加个;③红+黑(红球放入甲盒中),则乙盒中黑球数加个; ④黑+红(黑球放入甲盒中),则丙盒中红球数加个.因为红球和黑球个数一样,所以①和②的情况一样多,③和④的情况完全随机. ③和④对B 选项中的乙盒中的红球与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样. 综上,选B .9.1-【解析】()()()11i i 1i ++=-++a a a∵其对应点在实轴上 ∴10+=a ,1=-a10.60【解析】由二项式定理得含2x 的项为()2226C 260-=x x11.2【解析】将极坐标转化为直角坐标进行运算cos =x ρθ,sin =y ρθ直线的直角坐标方程为10--=x∵2cos =ρθ,()222sin cos 2cos +=ρθθρθ∴222+=x y x圆的直角坐标方程为()2211-+=x y圆心()1,0在直线上,因此AB 为圆的直径,2=AB12.6【解析】∵3542+=a a a ∴40=a∵16=a ,413=+a a d ∴2=-d ∴()61661662⨯-=+=S a d13. 2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=aOCBAyx14.2,1a <-.【解析】由()323330x x x '-=-=,得1x =±,如下图,是()f x 的两个函数在没有限制条件时的图象.⑴ ()()max 12f x f =-=;⑵ 当1a -≥时,()f x 有最大值()12f -=;当1a <-时,2x -在x a >时无最大值,且()3max23a x x ->-.所以,1a <-.15.【解析】⑴ ∵222a c b+=+∴222a c b +-=∴222cos 2a c b B ac +-===∴π4B ∠=⑵∵πA B C ++=∴3π4AC +=cos A C +()A A A =++ A A =+πsin()4A =+∵3π4A C +=∴3(0,π)4A ∈∴ππ(,π)44A +∈∴πsin()4A +最大值为1上式最大值为116. 【解析】⑴81004020⨯=,C 班学生40人 ⑵在A 班中取到每个人的概率相同均为15设A 班中取到第个人事件为,1,2,3,4,5i A i = C 班中取到第j 个人事件为,1,2,3,4,5,6,7,8j C j =A 班中取到i j A C >的概率为i P所求事件为D则1234511111()55555P D P P P P P =++++ 12131313145858585858=⨯+⨯+⨯+⨯+⨯ 38= ⑶10μμ<三组平均数分别为7,9,8.25,总均值08.2μ=但1μ中多加的三个数据7,9,8.25,平均值为8.08,比0μ小, 故拉低了平均值17.【解析】⑴∵面PAD I 面ABCD AD =面PAD ⊥面ABCD∵AB ⊥AD ,AB ⊂面ABCD ∴AB ⊥面PAD ∵PD ⊂面PAD ∴AB ⊥PD 又PD ⊥PA ∴PD ⊥面PAB⑵取AD 中点为O ,连结CO ,PO∵CD AC ==∴CO ⊥AD∵PA PD = ∴PO ⊥AD以O 为原点,如图建系 易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,, 则(111)PB =-u u u v ,,,(011)PD =--u u u v ,,,(201)PC =-u u u v,,,(210)CD =--u u u v,,设n v为面PDC 的法向量,令00(,1)n x y =v , 011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩v u u u v v v u u u v ,,则PB 与面PCD 夹角θ有sin cos ,n θ=<v u u u⑶假设存在M 点使得BM ∥面PCD设AM APλ=,()0,','M y z由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-u u u r ,()1,1,0B ,()0,'1,'AM y z =-u u u u r有()0,1,AM AP M λλλ=⇒-u u u u r u u u r∴()1,,BM λλ=--u u u u rOx yz PABCD∵BM ∥面PCD ,n u u r为PCD 的法向量 ∴0BM n ⋅=u u u u r r即102λλ-++=∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求.18.【解析】 (I )()e a x f x x bx -=+Q∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+①2(2)(12)e e 1a f b -'=-+=- ② 由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴g 的最小值是(2)(12)e 1g =-=-∴()f x '的最小值为(2)(2)e e 10f g '=+=-> 即()0f x '>对x ∀∈R 恒成立 ∴()f x 在(),-∞+∞上单调递增,无减区间.19.【解析】⑴由已知,112c ab a ==,又222a b c =+,解得2,1,a b c ===∴椭圆的方程为2214x y +=. ⑵方法一:设椭圆上一点()00,P x y ,则220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos My θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.20.【解析】⑴ (){}25G A =,⑵ 因为存在1n a a >,设数列A 中第一个大于1a 的项为k a ,则1k i a a a >≥,其中21i k -≤≤,所以()k G A ∈,()G A ≠∅. ⑶ 设A 数列的所有“G 时刻”为12k i i i <<<L ,对于第一个“G 时刻”,有11i i a a a >≥,1231i i =-L ,,,,则 111111i i i a a a a ---≤≤.对于第二个“G 时刻”()21i i >,有21i i i a a a >≥(2121i i =-L ,,,).则212211i i i i a a a a ---≤≤.类似的321i i a a -≤,…,11k k i i a a --≤.于是,()()()()11221211k k k k k i i i i i i i i k a a a a a a a a a a ----+-++-+-=-L ≥. 对于N a ,若()N G A ∈,则k i N a a =;若()N G A ∉,则k N i a a ≤,否则由⑵,知1k k i i N a a a +L ,,,中存在“G 时刻”,与只有k 个“G 时刻”矛盾.从而,11k i N k a a a a --≥≥,证毕.。
2016届北京市十一学校高三上学期12月月考数学(文科)

2016届北京市十一学校高三上学期12月月考数学(文科)一、选择题(共8小题;共40分)1. 若集合A=x x2=1,B=x x2−3x+2=0,则集合A∪B= A. 1B. 1,2C. −1,1,2D. −1,1,−22. “k=1”是“直线l1:kx+y+2=0与直线l2:x+ky−k=0平行”的 A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 即不充分也不必要条件3. 已知x>0,y>0,且2x+y=1,则xy的最大值是 A. 14B. 18C. 4D. 84. 抛物线x2=12ay a≠0的焦点坐标是 A. a2,0 B. a2,0或 −a2,0C. 0,18a D. 0,18a或0,−18a5. 如图是某个三棱锥的三视图,其中主视图是等边三角形,左视图是直角三角形,俯视图是等腰直角三角形,则该三棱锥的侧面积为是 A. 3B. +C. +D. +6. 过点M2,0作圆x2+y2=1的两条切线MA,MB(A,B为切点),则MA⋅MB= A. −12B. −32C. 12D. 327. 已知函数f x=x4+ax2+bx+c c<0,若函数是偶函数,且f f0=c4+c,则函数f x的零点的个数 A. 0B. 2C. 3D. 48. 在平面直角坐标系xOy中,记不等式组x+y≥0,x−y≤0,y≤2,所表示的平面区域为D,在映射T:u=x+y,v=x−y,的作用下,区域D内的点x,y对应的象为点u,v,则由点u,v所形成的平面区域的面积为 A. 2B. 4C. 8D. 16二、填空题(共6小题;共30分)9. 设复数z满足i z=−3+2i,则z的共轭复数z= ______.10. 已知直线l1:x+3y−6=0与直线l2:kx−y+m=0,k>0,0<m<2,若l1,l2与两坐标轴围成的四边形有一个外接圆,则k= ______.11. 已知椭圆x2a +y2b=1a>b>0的离心率是13,则双曲线x2a−y2b=1的两条渐近线方程为______.12. 在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且a=4,b=5,并且S△ABC=53,则边c的长度为______.13. 已知过定点−1,0的动圆与直线x=1相切,则此动圆圆心轨迹方程是______.14. 已知点P3,4和圆C:x−22+y2=4.A,B是圆C上的两个动点,且 AB =23,则圆心到直线AB的距离d= ______;OP⋅ OA+OB(O为坐标原点)的取值范围是______.三、解答题(共6小题;共78分)15. 设数列a n的前n项和为S n=2a n−2n,(1)求a1,a4;(2)证明:a n2n是等差数列;(3)求a n的前n项和S n.16. 已知函数f x=4cosωx⋅sin ωx+π4ω>0的最小正周期为π.(1)求ω的值;(2)求f x在区间0,π2的单调区间.17. 在平面直角坐标系xOy中,直线l1:y=2x−4,l2:y=x−1,设圆C的半径为1,圆心在l1上.(1)若圆心C也在直线l2上,①求圆C的方程;②过点A2,0作圆C的切线,求切线的方程;(2)若圆在直线l2截得的弦长为2,求圆C的方程.18. 如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.(1)求证:DE∥平面PBC;(2)求证:BC⊥平面PAB;(3)试问在线段AB上是否存在点F,使得过三点D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.19. 已知函数f x=x ln x,g x=x3+ax2−x+2;,1,求函数g x的解析式;(1)如果函数g x的单调减区间为 −13(2)在1的条件下,求函数g x的图象过点P1,1的切线方程;(3)对任意的x∈0,+∞,若不等式2f x≤gʹx+2恒成立,求实数a的取值范围.F的直线l与20. 已知椭圆的焦点在x轴上,一个顶点为0,1,离心率为e=5坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程;(2)设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点的坐标;若不存在,说明理由;(3)设M m,0是线段OF(O为坐标原点)上的一个动点,且 MA+MB⊥AB,求m的取值范围.答案第一部分1. C2. A3. B4. C5. D6. D7. B8. C第二部分9. 2−3i10. 311. y=±223x12. 2113. y2=−4x14. 1;2,22第三部分15. (1)因为a1=S1,2a1=S1+2,所以a1=2,S1=2.n=2时,S2=2a2−22,a2=6;n=3时,S3=2a3−8,a3=16;n=4时,S4=2a4−16,a4=40.所以a1=2,a4=40.(2)由题设S n=2a n−2n,S n+1=2a n+1−2n+1,以上两式相减可得a n+1=2a n+1−2a n−2n,即a n+1−2a n=2n,即a n+12n+1−a n2n=12(常数).所以a n2n 是首项为1,公差为12的等差数列.(3)由2可得a n2n =1+12n−1=12n+1,即a n=n+1⋅2n−1,所以S n=2n+12n−1−2n=n⋅2n.16. (1)f x=4cosωx⋅sin ωx+π4=22sinωx cosωx+22cos2ωx=2sin2ωx+cos2ωx+2=2sin2ωx+π4+ 2.因为f x的最小正周期为π,且ω>0,所以2π2ω=π,故ω=1.(2)由1知,f x=2sin2x+π4+2.若0≤x≤π2,则π4≤2x+π4≤5π4.当π4≤2x+π4≤π2,即0≤x≤π8时,f x单调递增;当π2≤2x+π4≤5π4,即π8≤x≤π2时,f x单调递减.综上可知,f x在区间0,π8上单调递增,区间π8,π2上单调递减.17. (1)①由题设,圆心C是直线y=2x−4和y=x−1的交点,解得点C3,2.所以圆的方程是x−32+y−22=1.②由题可知,若切线的斜率不存在,直线x=2是圆C的一条切线.若切线的斜率存在,设切线方程为y=k x−2,则k2+1=1,解得k=34,即3x−4y−6=0.综上所述,所求切线方程为x=2和3x−4y−6=0.(2)因为圆心在直线l1上,所以不妨设圆心C的坐标为a,2a−4,因为圆在直线l2截得的弦长为,所以半弦长为22,且半径为1,圆心C到直线l2的距离为1−222=22,即2=22,所以3−a =1,解得a=4或a=2.所以圆心分别为4,4或2,0,所求圆C的方程为x−42+y−42=1或x−22+y2=1.18. (1)因为点E是AC中点,点D为PA的中点,所以DE为三角形PAC的中位线,所以DE∥PC.又因为DE⊄面PBC,PC⊂面PBC,所以DE∥平面PBC.(2)因为平面PAC⊥面ABC,平面PAC∩平面ABC=AC,又PA⊂平面PAC,PA⊥AC,所以PA⊥面ABC.所以PA⊥BC.又因为AB⊥BC,且PA∩AB=A,所以BC⊥面PAB.(3)当点F是线段AB中点时,过点D,E,F的平面内的任一条直线都与平面PBC平行.取AB中点F,连接EF,连接DF.1可知DE∥平面PBC.因为点E是AC中点,点F为AB的中点,所以EF为三角形ABC的中位线,所以EF∥BC.又因为EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又因为DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.19. (1)因为函数g x的单调减区间为 −13,1,所以gʹx=3x2+2ax−1<0的解集是 −13,1,所以将x=1代入方程3x2+2ax−1=0,解得a=−1,所以g x=x3−x2−x+2.(2)设切点为x0,y0,则gʹx=3x2−2x−1,所以切线的斜率为k=gʹx0=3x02−2x0−1,又因为切线过点1,1,所以切线方程为y−1=3x02−2x0−1x−1.因为切点在切线上也在曲线上,所以y0=x03−x02−x0+2y0−1=3x02−2x0−1x0−1解出x0=0,y0=2,或x0=1,y0=1.所以切线方程为y=1或x+y−2=0.(3)依题意有2x ln x≤3x2+2ax−1+2在x∈0,+∞上恒成立,所以a≥ln x−32x−12x恒成立.设 x=ln x−3x2−12x,即需求 x的最大值.ʹx=1x −32+12x=−x−13x+12x,令 ʹx=0,所以x=1或x=−13(舍).当0<x<1时, ʹx>0,当x>1时, ʹx<0,所以x=1时, x取得最大值, x max=−2,所以a≥−2,所以a的取值范围是−2,+∞.20. (1)由已知b=1,由e=5得a2−b2a2=45,所以a2=5,椭圆的方程为x25+y2=1.(2)右焦点为F2,0,设直线l的方程为y=k x−2k≠0,A x1y1,B x2,y2.联立直线和椭圆的方程有x2+5y2=5,y=k x−2,化简整理后得1+5k2x2−20k2x+20k2−5=0,Δ>0恒成立.由根与系数的关系,有x1+x2=20k21+5k2,x1x2=20k2−51+5k2.因为点C与点A关于x轴对称,所以C x1,−y1.假设存在N x0,0满足题意,则BN=x0−x2,−y2,CN=x0−x1,y1.因为C,B,N三点共线,所以BN∥CN,所以x0−x2y1=−y2x0−x1,即y1+y2x0=x2y1+ x1y2.因此x0=k x1−2x2+k x2−2x1 k x1−2+k x2−2=2x1x2−2x1+x212=2⋅20k2−51+5k2−2⋅20k21+5k220k21+5k2−4=5 2 .所在存在定点N52,0,使得C,B,N三点共线.(3)由已知0≤m≤2,而MA+MB=x1−m,y1+x2−m,y2=x1+x2−2m,y1+y2,AB=x2−x1,y2−y1.因为 MA+MB⊥AB,所以x1+x2−2m,y1+y2⋅x2−x1,y2−y1=0,即x1+x2−2m x2−x1+k x1−2+k x2−2k x2−2−k x1−2=0,因为x1≠x2,所以1+k2x1+x2−2m−4k2=0,所以m=8k21+5k.因为k2=m8−5m >0,所以0<m<85,即当0<m<85时, MA+MB⊥AB.。
2016年北京市高考理科数学试题及答案-高考试卷

2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合A =B =,则(A )(B )(C ) (D )(2)若x,y 满足 2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x+y 的最大值为(A )0 (B )3 (C )4 (D )5(3)执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为(A )1 (B )2(C )3 (D )4(4)设a ,b 是向量,则“=a b ”是“+=-a b a b ”的(A ) 充分而不必要条件 (B )必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. (9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
2016年高考试卷(数学理)北京卷-解析版

2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,学优高考网则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B ) (C ) (D )1(7)将函数图像上的点P ( ,t )向左平移s (s ﹥0) 个单位长度得到点P ′.若 P ′位于函数的图像上,则(A )t = ,s 的最小值为 (B )t = ,s 的最小值为 (C )t = ,s 的最小值为 (D )t = ,s 的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,学优高考网则 (A )乙盒中黑球不多于丙盒中黑球 (B )乙盒中红球与丙盒中黑球一样多(C )乙盒中红球不多于丙盒中红球 (D )乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
精编2016年北京市高考数学理科试题和答案

2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A ,B 两点, 则=____________________.(12)已知为等差数列,为其前n 项和,若 ,,则.(13)双曲线 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点。
【推荐】北京市2016届高三数学(理)优题精练:数列 Word版含答案[ 高考]
![【推荐】北京市2016届高三数学(理)优题精练:数列 Word版含答案[ 高考]](https://img.taocdn.com/s3/m/ac9dfacc551810a6f52486bf.png)
北京市2016届高三数学理优题精练数 列一、选择、填空题1、(2015年北京高考)设{}n a 是等差数列. 下列结论中正确的是A.若021>+a a ,则032>+a aB.若031>+a a ,则021<+a aC.若210a a <<,则312a a a >D.若01<a ,则()0)(3212>--a a a a2、(2014年北京高考)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =______时,{}n a 的前n 项和最大.3、(2013年北京高考)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =__________;前n 项和S n =__________.4、(朝阳区2015届高三一模)设S n 为等差数列的前n 项和。
若,则通项公式=____。
5、(东城区2015届高三二模)已知{}n a 为各项都是正数的等比数列,若484a a ⋅=,则567a a a ⋅⋅=(A )4 (B )8 (C )16 (D )646、(丰台区2015届高三一模)在等比数列}{n a 中,344a a +=,22a =,则公比q 等于(A) -2(B) 1或-2(C) 1(D)1或27、(海淀区2015届高三二模)若等比数列{}n a 满足2664a a =,3432a a =,则公比q =_____;22212n a a a +++= .8、(石景山区2015届高三一模)等差数列{}n a 中,11,m k a a k m==()m k ≠,则该数列前mk 项之和为( ) A .12mk - B .2mkC .12mk +D .12mk + 9、(西城区2015届高三一模)若数列a n 满足a 1 = -2,且对于任意的m , n ∈N *,都有m n m n a a a += , 则3a = ;数列{ a n } 前10 项的和S 10 = .10、(大兴区2015届高三上学期期末)已知数列{}n a 为等差数列,若134a a +=,2410a a +=,则{}n a 的前n 项和n S =_____.11、(丰台区2015届高三上学期期末)等差数列{}n a 的前n 项和为n S ,如果12a =,3522a a +=,那么3S 等于_____12、(北京四中2015届高三上学期期中)在等差数列{}n a 中,已知4816a a +=,则该数列前11项和11S = .13、(东城区示范校2015届高三上学期综合能力测试)数列{}n a 的前n 项和记为n S ,若02,2111=+=+n n S a a ,...,2,1=n ,则数列{}n a 的通项公式为=n a _______________ 14、(东城区2015届高三4月综合练习(一))设等差数列{}n a 的前n 项和为n S ,若28S =,412S =,则{}n a 的公差d = .15、()已知,4,m n 是等差数列,那么m n ⋅=______;mn 的最大值为______二、解答题 1、(2015年北京高考)已知数列{}n a 满足:*1a ∈N , 361≤a ,且⎩⎨⎧>-≤=+18,36218,2.1n nn n n a a a a a () 2,1=n . 记集合{}*∈=N n a M n .(Ⅰ)若61=a ,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.2、(2014年北京高考)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值. (2)记m 为,,,a b c d四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).3、(2013年北京高考)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2,…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N *,a n +4=a n ),写出d 1,d 2,d 3,d 4的值;(2)设d 是非负整数,证明:d n =-d (n =1,2,3,…)的充分必要条件为{a n }是公差为d 的等差数列; (3)证明:若a 1=2,d n =1(n =1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.4、(朝阳区2015届高三一模)若数列 中不超过 f (m )的项数恰为b m (m ∈N * ),则称数列是数列 的生成数列,称相应的函数 f (m )是生成的控制函数。
北京市西城区2016届高三上学期期末考试数学理试题(WORD版)-含答案
北京市西城区2015 — 2016学年度第一学期期末试卷高三数学(理科) 2016.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|1}A x x =>,集合{2}B a =+,若A B =∅,则实数a 的取值范围是( )(A )(,1]-∞- (B )(,1]-∞(C )[1,)-+∞(D )[1,)+∞2. 下列函数中,值域为R 的偶函数是( )(A )21y x =+ (B )e e x x y -=- (C )lg ||y x = (D )2y x =3. 设命题p :“若1sin 2α=,则π6α=”,命题q :“若a b >,则11a b<”,则( ) (A )“p q ∧”为真命题 (B )“p q ∨”为假命题 (C )“q ⌝”为假命题 (D )以上都不对4. 在数列{}n a 中,“对任意的*n ∈N ,212n n n a a a ++=”是“数列{}n a 为等比数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 5. 一个几何体的三视图如图所示,那么这个 几何体的表面积是( ) (A )1623+ (B )1625+ (C )2023+ (D )2025+侧(左)视图正(主)视图俯视图22 1 1开始 4x >输出y 结束否 是 输入xy=12○1 6. 设x ,y 满足约束条件1,3,,x y y m y x +-⎧⎪⎨⎪⎩≤≤≥ 若3z x y =+的最大值与最小值的差为7,则实数m =( )(A )32 (B )32- (C )14(D )14-7. 某市乘坐出租车的收费办法如下:不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费);当车程超过4千米时,另收燃油附加费1元.相应系统收费的程序框图如图所示,其中x (单位:千米)为行驶里程,y (单位:元)为所收费用,用[x ]表示不大于x 的最大整数,则图中○1处应填( ) (A )12[]42y x =-+(B )12[]52y x =-+(C )12[]42y x =++(D )12[]52y x =++8. 如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( ) (A )(0,7) (B )(4,7) (C )(0,4) (D )(5,16)-第Ⅱ卷(非选择题 共110分)E FD P C A BB OC A NM二、填空题:本大题共6小题,每小题5分,共30分. 9. 已知复数z 满足(1i)24i z +=-,那么z =____.10.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c . 若A B =,3a =,2c =,则cos C =____.11.双曲线C :221164x y -=的渐近线方程为_____;设12,F F 为双曲线C 的左、右焦点,P 为C 上一点,且1||4PF =,则2||PF =____.12.如图,在ABC ∆中,90ABC ∠=,3AB =,4BC =,点O 为BC 的中点,以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN =____;AMMC= ____.13. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有____种.(用数字作答)14. 某食品的保鲜时间t (单位:小时)与储藏温度x (单位:C )满足函数关系60,264, , 0.kx x t x +⎧=⎨>⎩≤ 且该食品在4C 的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论: ○1 该食品在6C 的保鲜时间是8小时;○2 当[6,6]x ∈-时,该食品的保鲜时间t 随着x 增大而逐渐减少; ○3 到了此日13时,甲所购买的食品还在保鲜时间内; ○4 到了此日14时,甲所购买的食品已然过了保鲜时间. 其中,所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数3()cos (sin 3cos )2f x x x x =+-,x ∈R . (Ⅰ)求()f x 的最小正周期和单调递增区间;(Ⅱ)设0α>,若函数()()g x f x α=+为奇函数,求α的最小值.16.(本小题满分13分)甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分. 两人4局的得分情况如下: 甲 6 6 9 9 乙79xy(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;(Ⅱ)如果7x y ==,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X ,求X 的分布列和数学期望;(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x 的所有可能取值.(结论不要求证明)17.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=,侧面PAB ⊥底面ABCD ,90BAP ∠=,2AB AC PA ===, ,E F 分别为,BC AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证://ME 平面PAB ; (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PMPD的值.18.(本小题满分13分)F CADPMB E已知函数2()1f x x =-,函数()2ln g x t x =,其中1t ≤.(Ⅰ)如果函数()f x 与()g x 在1x =处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线()y f x =与()y g x =有且仅有一个公共点,求t 的取值范围.19.(本小题满分14分)已知椭圆C :)0(12222>>=+b a by a x 的离心率为23,点3(1,)2A 在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满足此圆与l 相交两点1P ,2P (两点均不在坐标轴上),且使得直线1OP ,2OP 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.20.(本小题满分13分)在数字21,2,,()n n ≥的任意一个排列A :12,,,n a a a 中,如果对于,,i j i j *∈<N ,有i j a a >,那么就称(,)i j a a 为一个逆序对. 记排列A 中逆序对的个数为()S A .如=4n 时,在排列B :3, 2, 4, 1中,逆序对有(3,2),(3,1),(2,1),(4,1),则()4S B =.(Ⅰ)设排列 C : 3, 5, 6, 4, 1, 2,写出()S C 的值;(Ⅱ)对于数字1,2,,n 的一切排列A ,求所有()S A 的算术平均值;(Ⅲ)如果把排列A :12,,,n a a a 中两个数字,()i j a a i j <交换位置,而其余数字的位置保持不变,那么就得到一个新的排列A ':12,,,n b b b ,求证:()()S A S A '+为奇数.北京市西城区2015 — 2016学年度第一学期期末高三数学(理科)参考答案及评分标准2016.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9.13i -- 10.7911.12y x =±12 12. 132- 91613.54 14.○1 ○4 注:第11,12题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:3()cos (sin 3cos )2f x x x x =+- 23sin cos (2cos 1)2x x x =+-13sin 2cos222x x=+ ………………4分πsin(2)3x =+,………………6分所以函数()f x 的最小正周期2π=π2T =. ………………7分由ππππ2π+23222x k k -+≤≤,k ∈Z ,得5ππππ+1212x k k -≤≤, 所以函数()f x 的单调递增区间为5ππππ+]1212[k k -,,k ∈Z . ………………9分 (注:或者写成单调递增区间为5ππππ+)1212(k k -,,k ∈Z . ) (Ⅱ)解:由题意,得π()()sin(22)3g x f x x αα=+=++,因为函数()g x 为奇函数,且x ∈R ,所以(0)0g =,即πsin(2)03α+=, ………………11分所以π2π3k α+=,k ∈Z , 解得ππ26k α=-,k ∈Z ,验证知其符合题意. 又因为0α>, 所以α的最小值为π3. ………………13分16.(本小题满分13分)(Ⅰ)解:记 “从甲的4局比赛中,随机选取2局,且这2局的得分恰好相等”为事件A , ………………1分 由题意,得2421()C 3P A ==, 所以从甲的4局比赛中,随机选取2局,且这2局得分恰好相等的概率为13. ……4分(Ⅱ)解:由题意,X 的所有可能取值为13,15,16,18, ………………5分且3(13)8P X ==,1(15)8P X ==,3(16)8P X ==,1(18)8P X ==,………………7分所以X 的分布列为:X 13 15 16 18P38 1838 18……………… 8分 所以3131()13151618158888E X =⨯+⨯+⨯+⨯=. ………………10分(Ⅲ)解:x 的可能取值为6,7,8. ………………13分17.(本小题满分14分)(Ⅰ)证明:在平行四边形ABCD 中,因为AB AC =,135BCD ∠=, 所以AB AC ⊥.由,E F 分别为,BC AD 的中点,得//EF AB ,所以EF AC ⊥. ………………1分 因为侧面PAB ⊥底面ABCD ,且90BAP ∠=,所以PA ⊥底面ABCD . ………………2分又因为EF ⊂底面ABCD ,所以PA EF ⊥. ………………3分 又因为PAAC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF ⊥平面PAC . ………………4分 (Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以//MF PA ,又因为MF ⊄平面PAB ,PA ⊂平面PAB ,FADPMz所以//MF 平面PAB . ………………5分 同理,得//EF 平面PAB . 又因为=MFEF F ,MF ⊂平面MEF ,EF ⊂平面MEF ,所以平面//MEF 平面PAB . ………………7分又因为ME ⊂平面MEF ,所以//ME 平面PAB . ………………9分(Ⅲ)解:因为PA ⊥底面ABCD ,AB AC ⊥,所以,,AP AB AC 两两垂直,故以,,AB AC AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(0,0,2),(2,2,0),(1,1,0)A B C P D E -,所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-, ………………10分 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--, 所以(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量(0,0,1)=m . ………………11分 设平面PBC 的法向量为(,,)x y z =n , 由0BC ⋅=n ,0PB ⋅=n ,得220,220,x y x z -+=⎧⎨-=⎩ 令1x =, 得(1,1,1)=n . ………………12分因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以|cos ,||cos ,|ME ME <>=<>m n ,即||||||||||||ME ME ME ME ⋅⋅=⋅⋅m n m n , ………………13分所以 2|22|||3λλ-=, 解得332λ-=,或332λ+=(舍). ………………14分18.(本小题满分13分)(Ⅰ)解:求导,得()2f x x '=,2()tg x x'=,(0)x >. ………………2分 由题意,得切线l 的斜率(1)(1)k f g ''==,即22k t ==,解得1t =. ……………3分 又切点坐标为(1,0),所以切线l 的方程为220x y --=. ………………4分(Ⅱ)解:设函数2()()()12ln h x f x g x x t x =-=--,(0,)x ∈+∞. ………………5分 “曲线()y f x =与()y g x =有且仅有一个公共点”等价于“函数()y h x =有且仅有一 个零点”.求导,得2222()2t x th x x x x-'=-=. ………………6分① 当0t ≤时,由(0,)x ∈+∞,得()0h x '>,所以()h x 在(0,)+∞单调递增.又因为(1)0h =,所以()y h x =有且仅有一个零点1,符合题意. ………………8分② 当1t =时,当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,1)1(1,)+∞()h x '-0 +()h x↘↗所以()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以当1x =时,min()(1)0h x h ==,故()y h x =有且仅有一个零点1,符合题意. ………………10分③ 当01t <<时, 令()0h x '=,解得x t =.当x 变化时,()h x '与()h x 的变化情况如下表所示:x(0,)tt(,)t +∞()h x '-0 +()h x↘↗所以()h x 在(0,)t 上单调递减,在(,)t +∞上单调递增, 所以当x t =时,min()()h x h t =. ………………11分因为(1)0h =,1t <,且()h x 在(,)t +∞上单调递增, 所以()(1)0h t h <=.又因为存在12e(0,1)t-∈ ,111122()12ln 0tttth t ----=--=>ee ee ,所以存在0(0,1)x ∈使得0()0h x =,所以函数()y h x =存在两个零点0x ,1,与题意不符.综上,曲线()y f x =与()y g x =有且仅有一个公共点时,t 的范围是0{|t t ≤,或1}t =.………………13分19.(本小题满分14分) (Ⅰ)解:由题意,得32c a =,222a b c =+, ………………2分 又因为点3(1,)2A 在椭圆C 上,所以221314ab+=, ………………3分解得2a =,1b =,3c =,所以椭圆C 的方程为1422=+y x . ………………5分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=. ………………6分 证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=. ………………7分由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , ………………8分 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+. ………………9分由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=, ………………10分则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,221221m r x x k -⋅=+, ………………11分设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++=== 222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+, ………………12分将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-.要使得12k k 为定值,则224141r r-=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. ………………13分当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 综上,当圆的方程为225x y +=时,圆与l 的交点12,P P 满足斜率之积12k k 为定值14-. ………………14分 20.(本小题满分13分)(Ⅰ)解:()10S C =; ………………2分 (Ⅱ)解:考察排列D :121,,,,n n d d d d -与排列1121,,,,n n D d d d d -:,因为数对(,)i j d d 与(,)j i d d 中必有一个为逆序对(其中1i j n <≤≤), 且排列D 中数对(,)i j d d 共有2(1)C 2n n n -=个, ………………3分 所以1(1)()()2n n S D S D -+=. ………………5分 所以排列D 与1D 的逆序对的个数的算术平均值为(1)4n n -. ………………6分 而对于数字1,2,,n 的任意一个排列A :12,,,n a a a ,都可以构造排列A 1:121,,,,n n a a a a -,且这两个排列的逆序对的个数的算术平均值为(1)4n n -. 所以所有()S A 的算术平均值为(1)4n n -. ………………7分(Ⅲ)证明:○1当1j i =+,即,i j a a 相邻时, 不妨设1i i a a +<,则排列A '为12112,,,,,,,,i i i i n a a a a a a a -++,此时排列A '与排列A :12,,,n a a a 相比,仅多了一个逆序对1(,)i i a a +,所以()()1S A S A '=+,所以()()2()1S A S A S A '+=+为奇数. ………………10分 ○2当1j i ≠+,即,i j a a 不相邻时,假设,i j a a 之间有m 个数字,记排列A :1212,,,,,,,,,,i m j n a a a k k k a a ,先将i a 向右移动一个位置,得到排列A 1:12112,,,,,,,,,,,,i i m j n a a a k a k k a a -,由○1,知1()S A 与()S A 的奇偶性不同, 再将i a 向右移动一个位置,得到排列A 2:121123,,,,,,,,,,,,i i m j n a a a k k a k k a a -,由○1,知2()S A 与1()S A 的奇偶性不同,以此类推,i a 共向右移动m 次,得到排列A m :1212,,,,,,,,,,m i j n a a k k k a a a , 再将j a 向左移动一个位置,得到排列A m +1:1211,,,,,,,,,,i m j i n a a a k k a a a -,以此类推,j a 共向左移动m +1次,得到排列A 2m +1:121,,,,,,,,,j m i n a a a k k a a ,即为排列A ',由○1,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化, 而排列A 经过21m +次的前后两数交换位置,可以得到排列A ', 所以排列A 与排列A '的逆序数的奇偶性不同, 所以()()S A S A '+为奇数.综上,得()()S A S A '+为奇数. ………………13分。
北京市中央民族大学附属中学2016届高三上学期12月月考数学(理)试题缺答案
中央民族大学附属中学2015-2016学年第一学期12月试题高三数学( 理科)一、选择题: (本大题共8小题,每小题5分,共40分)1.抛物线y x 22-=的焦点坐标是()A.(-1,0)B.(1,0)C.(0,-21)D. (0, 21) 2.设非零实数a,b 满足a <b ,则下列不等式中一定成立的是() A. b1>1a B. 2<b ab C. >0b a + D. <0b a - 3.设R a ∈,则“a=1”是直线012:1=-+y ax l 与直线04)1(:2=+++y a x l 平行,的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.相距1600m 的两个哨所A ,B,听到远处传来的炮弹爆炸声,已知当时的声音速度是320m/s, 在A 哨所听到爆炸声的时间比在B 哨所听到时迟4s.若以AB 所在直线为x 轴、以线段AB 的中垂线为 y 轴,则爆炸点所在曲线的方程可以是() A. >0)(156440043560022x y x =- B. >0)(14806402222x y x =- C. 156440043560022=+y x D. 14806402222=+y x 5.己知βα,於是两个不同平面,m 、n 是两条不同直线,下列选项中错误的是()A.若 m∥n,α⊥m ,则α⊥nB. 若 m∥α, n =βα ,则n m ∥C.若βα⊥⊥m m ,,则βα∥D.若βα⊂⊥m m ,,则βα⊥6.已知三条侧棱两两垂直的正三棱锥的俯视图如右图所示,左视图的面积是() A. 2 B. 32 C. 22 D. 42 7.己知点M(2,-3). N(-3,-2),直线1:+-=a ax y l 与线段MN 相交,则实数a 的取值范围是 ()A. ]43,4[-B. ),43[]4,(+∞--∞C. ),4[]43,(+∞--∞ D. ]4,43[- 8.若直线 被圆C:jcV<所截的弦长不小于2,则予2. PIS /与下列曲线一定有公共点的是()A. 1)1(22=+-y xB. 122=-y xC. 2x y = D. 1222=+y x 二、填空题:((本大题共6小题,每小题5分,共30分)9.若复数)()(2R x ii x x x z ∈-+=为纯虚数,则x 等于 . 10.直线x y 2=为双曲线)0>,0>(1:2222b a by a x C =-的—条渐近线,则双曲线C 的离心率是 .11.动点在圆122=+y x 上移动时,它与定点B (3,0)连线的中点的轨迹方程是 。
2016年高考真题——理科数学(北京卷)解析(精品资料).doc
【最新整理,下载后即可编辑】本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|||2}A x x=<,{1,0,1,2,3}B =-,则A B=()A.{0,1}B.{0,1,2}C.{1,0,1}- D.{1,0,1,2}-【答案】C考点:集合交集.2.若x,y满足203x yx yx-≤⎧⎪+≤⎨⎪≥⎩,则2x y+的最大值为()A.0B.3C.4D.5【答案】C【解析】试题分析:作出如图可行域,则当yxz+=2经过点P时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.考点:线性规划.3.执行如图所示的程序框图,若输入的a 值为1,则输出的k 值为( )A.1B.2C.3D.4开始输入ak =0,b =aa =b 输出k结束k =k +111a a=-+否是【答案】B考点:算法与程序框图4.设a ,b 是向量,则“||||a b =”是“||||a b a b +=-”的( )xy OPA.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】D 【解析】试题分析:由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.考点:1.充分必要条件;2.平面向量数量积. 5.已知x ,y R ∈,且0x y >>,则( ) A.110x y-> B.sin sin 0x y -> C.11()()022x y -<D.ln ln 0x y +> 【答案】C考点: 函数性质6.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1【答案】A 【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.7.将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,s 的最小值为6π B.32t =,s 的最小值为6πC.12t =,s 的最小值为3π D.32t =,s 的最小值为3π【答案】A考点:三角函数图象平移8.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多 【答案】C 【解析】试题分析:若乙盒中放入的是红球,则须保证抽到的两个均是红球;若乙盒中放入的是黑球,则须保证抽到的两个球是一红一黑,且红球放入甲盒;若丙盒中放入的是红球,则须保证抽到的两个球是一红一黑:且黑球放入甲盒;若丙盒中放入的是黑球,则须保证抽到的两个球都是黑球;A:由于抽到的两个球是红球和黑球的次数是奇数还是偶数无法确定,故无法判定乙盒和丙盒中异色球的大小关系,而抽到两个红球的次数与抽到两个黑球的次数应是相等的,故选C.考点:概率统计分析.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.设a R∈,若复数(1)()++在复平面内对应的点位于实轴上,则i a ia=_______________.【答案】1-.【解析】试题分析:(1)()1(1)1++=-++∈⇒=-,故填:1-.i a i a a i R a考点:复数运算10.在6-的展开式中,2x的系数为__________________.(用数(12)x字作答)【答案】60.考点:二项式定理.11.在极坐标系中,直线cos3sin10ρθρθ-=与圆2cosρθ=交于A,B 两点,则||AB =______. 【答案】2 【解析】试题分析:分别将直线方程和圆方程化为直角坐标方程:直线为310x y --=过圆22(1)1x y -+=圆心,因此2AB =,故填:2.考点:极坐标方程与直角方程的互相转化.12.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6 【解析】试题分析:∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-,∴616156615(2)6S a d =+=⨯+⨯-=,故填:6. 考点:等差数列基本性质.13.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________. 【答案】2考点:双曲线的性质14.设函数33,()2,x x x a f x x x a⎧-≤=⎨->⎩.①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________. 【答案】2,(,1)-∞-. 【解析】试题分析:如图作出函数3()3g x x x =-与直线2y x =-的图象,它们的交点是(1,2)A -,(0,0)O ,(1,2)B -,由2'()33g x x =-,知1x =是函数()g x 的极大值点, ①当0a =时,33,0()2,0x x x f x x x ⎧-≤=⎨->⎩,因此()f x 的最大值是(1)2f -=;②由图象知当1a ≥-时,()f x 有最大值是(1)2f -=;只有当1a <-时,由332a a a -<-,因此()f x 无最大值,∴所求a 的范围是(,1)-∞-,故填:2,(,1)-∞-.考点:1.分段函数求最值;2.数形结合的数学思想.三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程) 15.(本小题13分) 在∆ABC 中,2222+=+a c b ac . (1)求B ∠ 的大小;(2)求2cos cos A C + 的最大值. 【答案】(1)4π;(2)1.22cos cos()224A A A π=+=-,因为304A π<∠<,所以当4A π∠=时,2cos A C +取得最大值1.考点:1.三角恒等变形;2.余弦定理. 16.(本小题13分)A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ,表格中数据的平均数记为μ,试判断0μ和1μ的大小,(结论不要求证明)【答案】(1)40;(2)38;(3)10μμ<.3323133222122111C A C A C A C A C A C A C A C A E = 45352515342414C A C A C A C A C A C A C A因此)()()()()()()()()(3323133222122111C A P C A P C A P C A P C A P C A P C A P C A P E P +++++++=8340115)()()()()()()(45352515342414=⨯=+++++++C A P C A P C A P C A P C A P C A P C A P(3)根据平均数计算公式即可知,01μμ<. 考点:1.分层抽样;2.独立事件的概率;3.平均数 17.(本小题14分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由.【答案】(1)见解析;(23;(3)存在,14AMAP=【解析】试题分析:(1)由面面垂直性质定理知AB⊥平面PAD ;根据线面垂直性质定理可知PD AB ⊥,再由线面垂直判定定理可知⊥PD 平面PAB ;(2)取AD 的中点O ,连结PO ,CO ,以O 为坐标原点建立空间直角坐标系O xyz -,利用向量法可求出直线PB 与平面PCD 所成角的正弦值;(3)假设存在,根据A ,P ,M 三点共线,设AP AM λ=,根据//BM 平面PCD ,即0=⋅n BM ,求λ的值,即可求出AM AP的值.试题解析:(1)因为平面PAD ⊥平面ABCD ,AB AD ⊥,所以⊥AB⊥,AB平面PAD,所以PD又因为PDPA⊥,所以⊥PD平面PAB;考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用. 18.(本小题13分) 设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值; (2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】试题分析:(1)根据题意求出()f x ',根据(2)22f e =+,(2)1f e '=-,求a ,b 的值; (2)由题意知判断)(x f ',即判断11)(-+-=x e x x g 的单调性,知()0g x >,即()0f x '>,由此求得()f x 的单调区间.考点:导数的应用. 19.(本小题14分) 已知椭圆C :22221+=x y a b(0a b >>)3,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析.【解析】试题分析:(1)根据离心率为2,即2c a =,OAB ∆的面积为1,即112ab =,椭圆中222a b c =+列方程求解;(2)根据已知条件分别求出AN ,||BM 的值,求其乘积为定值.228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.考点:1.椭圆方程及其性质;2.直线与椭圆的位置关系.20.(本小题13分)设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ; (3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.如果∅≠i G ,取i i G m min =,则对任何iim n k i a a a m k <≤<≤,1.从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G .考点:数列、对新定义的理解.。
【北京卷】2016年高考数学理科试题(Word版,含答案)
2016年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合A=B=,则(A)(B)(C)(D)(2)若x,y满足,则2x+y的最大值为(A)0 (B)3(C)4 (D)5(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为(A)1(B)2(C)3(D)4(4)设a,b是向量,则“I a I=I b I”是“I a+b I=Ia-b I”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(5)已知x,y R,且x y o,则(A)-(B)(C)(-0 (D)lnx+lny(6)某三棱锥的三视图如图所示,则该三棱锥的体积为(A)(B)(C)(D)1(7)将函数图像上的点P(,t)向左平移s(s﹥0)个单位长度得到点P′.若P′位于函数的图像上,则(A)t=,s的最小值为(B)t=,s的最小值为(C)t=,s的最小值为(D)t=,s的最小值为(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则(A)乙盒中黑球不多于丙盒中黑球(B)乙盒中红球与丙盒中黑球一样多(C)乙盒中红球不多于丙盒中红球(D)乙盒中黑球与丙盒中红球一样多第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.(9)设a R ,若复数(1+i )(a+i )在复平面内对应的点位于实轴上,则a=_______________。
(10)在的展开式中,的系数为__________________.(用数字作答)(11)在极坐标系中,直线与圆交于A ,B 两点,则 =____________________.(12)已知为等差数列,为其前n 项和,若,,则.(13)双曲线 的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B为该双曲线的焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京十一学校2016届高三十二月月考 2015.12.12 数学卷(理科) 时间:120分钟 第Ⅰ卷(共60分) 一、选择题:(本题共8道小题,在每一小题只有一个正确答案,每小题5分,满分共40分) 1.复平面内,复数ii1对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.已知集合121|xxA,集合0lg|xxB,则BA( ) A.0|xx B.1|xx C.0|1|xxxx D.
4.下列函数既是奇函数,又在区间1,1上单调递减的是( ) A.xxfsin B.1xxf C.xxxf22ln D.1,021aaaaxfxx 5.已知圆111:22yxC与x轴的公共点为A,与y轴的公共点为B,设劣弧AB的中点为M,则过点M的圆C的切线方程是( )
A.22xy B.211xy C.22xy D.21xy 6.已知平面向量ba,的夹角为120,且1ba,则ba的最小值为( ) A. 1 B. 3 C. 2 D. 6 7.已知函数xf满足111xfxf,当1,0x时,xxf,若在区间1,1上方程0mmxxf恰好有两个不同的实根,则实数m的取值范围是( )
A.21,0 B.21,0 C.31,0 D.,21 8.正方体DCBAABCD的棱长为1,FE,分别是棱CCAA,的中点,过直线FE,的平面分别与棱DDBB、交于NM,,设1,0,xxBM,给出以下四个命题: ①BDBDMENF平面平面; ②当且仅当21x时,四边形MENF的面积最小; ③四边形MENF周长1,0,xxfL是单调函数; ④四棱锥MENFC的体积xhV为常值函数; 以上命题中假命题...的序号为( ) A.①④ B.② C.③ D.③④ 二、填空题:(本题共6道小题,每小题5分,满分30分)
9.在极坐标中,点4,2到圆cos2的圆心的距离为_____________. 10.若点)4,4(P为抛物线pxy22上一点,则抛物线焦点坐标为____________;点P到抛物线的准线的距离为______________. 11.在ABC中,若7,5,120BCABA,则CBsinsin的值为____________. 12.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为2的等腰直角三角形,则该几何体的体积为_________________;表面积为________________.
13.若不等式组ayxyxyx,62,0,1表示的平面区域是一个四边形,则实数a的取值范围是__________. 14.曲线C是平面内到直线1:1xl和直线1:2yl的距离之积等于常数02kk的点的轨迹.给出下列四个结论:①曲线C过点1,1;②曲线C关于点1,1对称;③若点P在曲线C上,点BA,分别在直线21,ll上,则PBPA不小于k2;④设0P为曲线C上任意一点,
则点0P关于直线1x,点1,1及直线1y对称的点分别为321PPP、、,则四边形
3210PPPP的面积为定值22k.
其中,所有正确结论的序号是_____________. 三、解答题:(本大题共6小题,共80分.解答时应写出文字说明、演算步骤或证明过程.) 15.(本小题13分)
已知函数.,43cos33sincos2Rxxxxxf (I)求xf的最小正周期; (II)求xf在区间4,4上的最大值和最小值. 16.(本小题13分) 已知na是首项为1,公差为2的等差数列.
(I)求na的通项公式及11nnaa的前n项和; (II)设nS表示na的前n项和,nb是首项为2的等比数列,公比q满足01442Sqaq,求nb的通项公式及其前n项和nT.
17.(本小题14分) 如图,在四棱锥ABCDP中,底面ABCD是正方形,ABCDPAD平面平面,FE,
分别为BDPA,中点,2ADPDPA. (I)求证:PBCEF平面//; (II)求二面角PEDF的余弦值; (III)在棱PC上是否存在一点G,使EDFGF平面?若存在,指出点G的位置;若不存在,说明理由. 18.(本小题13分) 已知函数.0,12ln2142122axaxaxxf (I)求函数xf的单调区间; (II)当41a时,存在,210x,20221axf,求实数a的取值范围. 19.(本小题14分) 已知椭圆01:2222babyaxC的右焦点为)0,1(F,短轴的端点分别为21,BB,且aFBFB21.
(I)求椭圆C的方程; (II)过点F且斜率为0kk的直线l交于椭圆于NM,两点,弦MN的垂直平分线与x轴
相交于点D.与MN的交点为P,试求MNDP的取值范围. 20.(本小题13分) 若数列,,,,,,21012aaaaa满足Znaaannn311,则称na具有性质A. (I)若数列nnba、具有性质A,k为给定的整数,c为给定的实数.以下四个数列中哪些具有性质A?请直接写出结论. ①na;②nnba;③kna;④nca. (II)若数列na具有性质A,且满足1,010aa. (i)直接写出Znaann的值; (ii)判断na的单调性,并证明你的结论. (III)若数列na具有性质A,且满足20152004aa.求证:存在无穷多个整数对ml,,满足mlaamt. 北京十一学校2016届高三十二月月考答案 2015.12.12
数学卷(理科) 时间:120分钟 一、选择题:BAACADBC 二、填空题:
9. 1 10. 0,1;5 11. 53 12. 38;32246 13. 5,3 14. ②③ 三、解答题:
15.解:(I)由已知,有43cos3cos23sin21cos2xxxxxf………………1分 43cos23cossin212xxx
43cos432sin41xx………………3分 xx2cos432sin41 3sin2cos3cos2sin21xx………………4分 32sin21x………………5分 所以,xf的最小正周期22T………………6分 (II)当4,4x时,6,6532x………………7分
故由当2,6532x,即12,4x时,xf单调递减;………………8分 故由当6,232x,即4,12x时,xf单调递增;………………9分 以及414,2112,414fff………………10分 得当4x时,xf取到最大值41; 当12x时,xf取到最大值21………………13分
故121121211212111nnnnaann,………………4分 有12121121121121215131213112111113221nnnnnaaaaaann
…6分 (II)由(I)得,21212121231nnnaannSnn………………8分 16,744Sa.因为01442Sqaq,即01682qq………………9分
所以042q,从而4q………………10分 又因21b,是nb公比4q的等比数列,所以12111242nnnnqbb………………11分
从而nb得前n项和1432111nnnqqbT………………13分 考点:等差数列、等比数列、数列求和. 16.解: (I)如图,连接AC.因为四边形ABCD是正方形,所以AC与BD互相平分. 又因为F是BD中点,所以F是AC中点. 在PAC中,E是PA中点,F是AC中点,所以PCEF//.………………2分 又因为PBCPCPBCEF平面,平面,………………3分 所以PBCEF平面//. ………………4分 (II)取AD中点O.在PAD中,因为PDPA, 所以ADPO. 因为ABCDPAD平面平面,且ADABCDPAD平面平面, 所以ABCDPO平面 因为ABCDOF平面, 所以OFPO. 又因为F是AC中点, 所以ADOF.………………5分 如图,以O为原点,OPOFOA,,分别为zyx,,轴,OA为单位长建立空间直角坐标系……6分 因为2ADPDPA,所以3OP,则0,0,1,0,2,1,0,2,1),0,0,1(,0,0,0DCBAO
0,1,0,23,0,21,3,0,0FEP
.
于是0,1,1,23,0,23,0,2,0DFDEAB. 因为PADOF平面,所以0,1,0OF是平面PAD的一个法向量.………………7分