传导、辐射和谐波总结
高次谐波-百度百科

高次谐波(high order harmonic component)对于任意一复合周期振动函数Y(T)按傅氏级数分解表示为:第一项称均值或直流分量,第二项为基波或基本振动,第三项称二次谐波,依次类推或把二次谐波以后的统称为高次谐波。
危害与一般无线电电磁干扰一样,变频器产生的高次谐波通过传导、电磁辐射和感应耦合三种方式对电源及邻近用电设备产生谐波污染。
传导是指高次谐波按着各自的阻抗分流到电源系统和并联的负载,对并联的电气设备产生干扰,感应耦合是指在传导的过程中,与变频器输出线平行敷设的导线又会产生电磁耦合形成感应干扰,电磁辐射是指变频器输出端的高次谐波还会产生辐射作用,对邻近的无线电及电子设备产生干扰。
高次谐波的危害具体表现在以下几个方面:①变压器电流和电压谐波将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。
谐波还能产生共振及噪声。
②感应电动机电流和电压谐波同样使电动机铜损和铁损增加,温度升。
同时谐波电流会改变电磁转距,产生振动力矩,使电动机发生周期性转速变动,影响输出效率,并发出噪声。
③电力电容器当高次谐波产生时,由于频率增大,电容器阻抗瞬间减小,涌人大量电流,因而导致过热、甚至损坏电容器,还有可能发生共振,产生振动和噪声。
④开关设备由于谐波电流使开关设备在起动瞬间产生很高的电流变化率,使暂态恢复峰值电压增大,破坏绝缘,还会引起开关跳脱、引起误动作。
⑤保护电器电流中含有的谐波会产生额外转距,改变电器动作特性,引起误动作,甚至改变其操作特性,或烧毁线圈。
⑥计量仪表计量仪表因为谐波会造成感应盘产生额外转距,引起误差,降低精度,甚至烧毁线圈。
⑦电力电子设备电力电子设备通常靠精确电源零交叉原理或电压波形的形态来控制和操作,若电压有谐波成分时,零交叉移动、波形改变、以致造成许多误动作。
⑧其它高次谐波还会对电脑、通信、设备电视及音响设备、载波遥控设备等产生干扰,使通信中断,产生杂讯,甚至发生误动作,另外还会对照明设备产生影响。
电磁兼容知识点总结

电磁兼容知识点总结一、电磁干扰的特点1.电磁干扰的来源电磁干扰主要来自于电子设备、无线通信设备、电源线、雷电放电、静电放电等。
其中电子设备是产生电磁干扰最主要的来源,包括计算机、通信设备、电视机、音响、照明设备等。
这些设备在工作时会产生电磁场,从而对其它设备产生干扰。
2.电磁干扰的传播电磁干扰的传播途径主要有辐射传播和传导传播两种方式。
辐射传播是指电磁波以空间传播的方式传播干扰,主要影响范围是设备本身周围的空间。
传导传播是指电磁波通过导体传播干扰,通常是通过电源线、信号线、地线等传导到其它设备。
3.电磁干扰的特点电磁干扰的特点包括频率广泛、能量巨大、传播速度快、影响范围广等。
由于电磁干扰的这些特点,一旦产生干扰就会对其它设备产生不同程度的影响,从而影响设备的正常工作。
二、电磁兼容的基本原理和方法1.基本原理电磁兼容的基本原理是通过设计、测试和控制减小设备产生的电磁干扰和提高设备抗干扰能力,使设备在电磁环境中能够共存共存。
为了实现这一目标,需要对设备进行整体设计,考虑其电磁兼容性,包括电源线滤波、辐射和导体电磁干扰控制、接地系统设计等。
2.基本方法电磁兼容的基本方法主要包括以下几种:a.增加滤波器滤波器是电磁兼容的重要手段,它能够有效地减小电磁干扰并提高设备对外部干扰的抵抗能力。
常见的滤波器有电源线滤波器、信号线滤波器、天线滤波器等。
b.增加屏蔽屏蔽是减小电磁辐射和提高设备抗干扰能力的重要手段,主要包括电磁屏蔽罩、屏蔽涂料、屏蔽隔板等。
通过在设备内部或外部增加屏蔽,可以有效减小电磁干扰。
c.合理设计接地系统接地系统是提高设备抗干扰能力的关键因素,通过合理设计接地系统可以减小设备对外部干扰的敏感性和提高设备对外部干扰的抵抗能力。
d.改善功率供应改善功率供应是减小电磁干扰的重要手段,包括选择优质的电源装置、增加稳压器、提高电源线的质量等。
e.系统整体设计系统整体设计是电磁兼容的关键环节,通过对系统整体进行电磁兼容性的考虑,可以有效地减小系统产生的电磁干扰并提高其抗干扰能力。
变频器谐波处理的实例_变频器谐波传达路径及有用处理谐波烦扰的

变频器谐波处理的实例_变频器谐波传达路径及有用处理谐波烦扰的在实习运用进程中,常常遇到变频器谐波烦扰疑问,下面简略介绍谐波处理的实例、谐波传达途径及有用处理谐波烦扰的办法。
1.按捺变频器谐波烦扰实例例1,某变频操控系统,由两台变频器构成,且在同一柜体内,变频器调频办法均为电位器手调办法,作业某一台变频器时,作业正常,两台一同作业时,频率彼此烦扰,即调度一台变频器的电位器对另一台变频器的频率有影响,反过来也相同。
开端咱们以为是电位器及操控线缺陷,清扫这种或许后,断定是谐波烦扰致使。
处理办法:把变频器输入线与输出线分隔,别离走各自的电缆沟,选用大一号截面的电缆换原先电缆,输出端与电动机之间的电缆长度尽或许短。
经过谐波处理处理后,发热缺陷清扫。
对现场呈现的各种变频器高次谐波烦扰,根柢上都能照以上介绍的办法顺畅按捺,但对谐波成分及崎岖央求很严的设备,彻底按捺高次谐波烦扰十分艰难,有待进一步攻关处理。
例2,某变频操控系统,切换两套机泵,原先机泵是靠自耦降压主张工频作业正常,现改为变频作业,虽能完毕调频减速功用,但变频器输出端到电动机间的输出线严峻发热,电动机外壳温升加剧,常常呈现维护跳闸。
这是由于变频器输出电压和电流信号中包含PWM高次谐波,而谐波电流在输出导线和电动机绕线上构成附加功率损耗。
处理办法:把其间一只电位器移到别的柜体固定,且引线用屏蔽信号线,效果烦扰削弱。
为了彻底进行谐波处理烦扰,从头加工一个电控柜,并与原柜体必定间隔放置,把其间的一台变频器移到该电控柜,相应的接线及引线作必要的改动,这么处理后,烦扰根柢消除,缺陷清扫。
例3,某变频切换操控系统,变频器主张作业正常,而附近液位计读数偏高,一次表输入4mA 时,液位闪现不是下限值;液位未到设定上限值时,液位计却闪现上限,致使变频器接纳停机指令,迫使变频器接连作业。
这显着是变频器的高次谐波烦扰液位计,烦扰传达途径是液位计的电源回路或信号线。
处理办法:将液位计的供电电源取自另一供电变压器,谐波烦扰削弱,再将信号线穿入钢管敷设,并与变频器主回旅程离隔必定间隔,经这么处理后,经过谐波处理液位计作业康复正常。
史上最全开关电源传导与辐射超标整改方案

史上最全开关电源传导与辐射超标整改方案目前,电子产品电磁兼容问题越来越受到人们的重视,尤其是世界上发达国家,已经形成了一套完整的电磁兼容体系,同时我国也正在建立电磁兼容体系,因此,实现产品的电磁兼容是进入国际市场的通行证。
对于开关电源来说,由于开关管、整流管工作在大电流、高电压的条件下,对外界会产生很强的电磁干扰,因此开关电源的传导发射和电磁辐射发射相对其它产品来说更加难以实现电磁兼容,但如果我们对开关电源产生电磁干扰的原理了解清楚后,就不难找到合适的对策,将传导发射电平和辐射发射电平降到合适的水平,实现电磁兼容性设计。
开关电源电磁干扰的产生机理及其传播途径率的提高一方面减小了电源的体积和重量,另一方面也导致了更为严重的EMI问题。
开关电源工作时,其内部的电压和电流波形都是在非常短的时间内上升和下降的,因此,开关电源本身是一个噪声发生源。
开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。
使电源产生的干扰不至于对电子系统和电网造成危害的根本办法是削弱噪声发生源,或者切断电源噪声和电子系统、电网之间的耦合途径。
现在按噪声干扰源来分别说明:1、二极管的反向恢复时间引起的干扰交流输入电压经功率二极管整流桥变为正弦脉动电压,经电容平滑后变为直流,但电容电流的波形不是正弦波而是脉冲波。
由电流波形可知,电流中含有高次谐波。
大量电流谐波分量流入电网,造成对电网的谐波污染。
另外,由于电流是脉冲波,使电源输入功率因数降低。
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
2、开关管工作时产生的谐波干扰功率开关管在导通时流过较大的脉冲电流。
例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。
电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。
在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
谐波对电力设备的损坏是谐波危害的主要方面之一。
谐波会引起设备的绝缘老化、过热、机械振动等问题。
尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。
此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。
谐波对电能质量的恶化也是谐波危害的重要方面之一。
谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。
这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。
谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。
谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。
谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。
尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。
此外,谐波还会导致电能的浪费,增加用户的用电成本。
谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。
非线性负载是产生谐波的主要原因之一。
非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。
此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。
而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。
为了减少谐波的危害,需要采取一系列的措施。
首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。
其次,可以采用滤波器等设备对谐波进行抑制和补偿。
谐波电压和谐波电流

谐波电压和谐波电流谐波电压和谐波电流是电力系统中常见的现象,它们对电力设备和电网运行产生了很大的影响。
本文将从谐波的定义、产生原因、对电力系统的影响以及谐波的控制方法等方面进行论述。
我们来了解一下什么是谐波。
谐波是指频率是基波频率整数倍的电压或电流成分。
在电力系统中,基波频率一般为50Hz或60Hz,那么谐波频率就是50Hz或60Hz的整数倍。
谐波电压和谐波电流的产生主要源于非线性负载,如电弧炉、变频器、电子设备等。
这些非线性负载会引起电压和电流的畸变,产生谐波成分。
谐波电压和谐波电流对电力系统的影响是多方面的。
首先,谐波会导致电力设备的损坏。
谐波电流会使变压器、电动机等设备产生热损耗,加速设备老化,降低设备的可靠性和使用寿命。
其次,谐波还会引起电力系统的电磁干扰。
谐波电流会使仪表计量误差增大,影响电能计量的准确性。
此外,谐波还会导致电力系统的电压波动增大,造成电压不稳定,影响电力质量。
最后,谐波还会产生电磁辐射,对周围环境和其他电子设备产生干扰。
为了控制谐波的影响,我们可以采取以下几种方法。
首先,可以采用滤波器来抑制谐波。
滤波器是一种能够选择性地通过或阻断特定频段信号的电路。
通过合理配置滤波器,可以有效地抑制谐波电压和电流的传播和扩散。
其次,可以采取谐波抑制器来降低谐波。
谐波抑制器是一种能够产生与谐波相位相反的谐波电流,通过与谐波电流叠加抵消谐波的方法来降低谐波水平。
再次,可以采用合适的电力设备来减少谐波的产生。
例如,使用低谐波的电动机、变压器等设备,可以有效地降低谐波水平。
最后,可以通过合理的电网规划和设计来避免谐波问题。
例如,合理配置电力设备的容量和数量,减少电网的负荷率,可以降低谐波的产生和传播。
总结起来,谐波电压和谐波电流是电力系统中常见的问题,会对电力设备和电网运行产生不利影响。
为了降低谐波的影响,我们可以通过滤波器、谐波抑制器、合适的电力设备和合理的电网规划等方式来控制谐波。
这样可以保证电力系统的正常运行,提高电力质量,减少设备损坏和电磁干扰,确保电能计量的准确性,同时也保护了环境和其他电子设备的安全和稳定性。
电磁波的知识点总结
电磁波的知识点总结电磁波的知识点总结在年少学习的日子里,是不是经常追着教师要知识点?知识点就是掌握某个问题/知识的学习要点。
相信很多人都在为知识点发愁,下面是WTT搜集整理的电磁波的知识点总结,有所帮助。
电磁波的知识点总结篇1电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式挪动,其传播方向垂直于电场与磁场构成的平面,有效地传递能量和动量。
电磁波的产生:电磁波是由时断时续变化的电流产生的。
电磁波谱:按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。
假如把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。
以无线电的波长最长,宇宙射线的波长最短。
无线电波3000米~0.3毫米。
(微波0.1~100厘米)红外线0.3毫米~0.75微米。
(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米)可见光0.7微米~0.4微米。
紫外线0.4微米~10纳米X射线10纳米~0.1纳米γ射线0.1纳米~1皮米高能射线小于1皮米(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。
微波的根本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对于金属类东西,那么会反射微波。
电磁波的发现1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解: (1) 均匀变化的磁场产生稳定电场(2) 非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场理解: (1) 均匀变化的电场产生稳定磁场(2) 非均匀变化的电场产生变化磁场3、麦克斯韦电磁场理论的理解:恒定的电场不产生磁场恒定的磁场不产生电场均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场4、电磁场:假如在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是互相联络着的,形成不可分割的统一体,这就是电磁场5、电磁波:电磁场由发生区域向远处的传播就是电磁波.6、电磁波的特点:(1) 电磁波是横波,电场强度E 和磁感应强度 B按正弦规律变化,二者互相垂直,均与波的传播方向垂直(2)电磁波可以在真空中传播,速度和光速一样. v=λf(3) 电磁波具有波的特性7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干预,偏振和衍射等现象,他还测量出电磁波和光有一样的速度。
电磁兼容性设计中的辐射和传导干扰分析
电磁兼容性设计中的辐射和传导干扰分析
在电磁兼容性设计中,辐射和传导干扰分析是至关重要的一环。
电磁兼容性(EMC)是指电子设备在电磁环境中能够以满足规定性能要求的能力,要实现良好的EMC设计,就必须对辐射和传导干扰进行深入分析。
首先,我们来看看辐射干扰分析。
辐射干扰是指电子设备发出的电磁辐射干扰其他设备的现象。
为了有效地减少辐射干扰,我们需要对设备进行辐射电磁场的测量和分析。
通过电磁场模拟软件,可以对设备的辐射场进行仿真,找出辐射源和辐射路径,进而进行优化设计。
此外,还需要对设备的天线设计进行优化,减小辐射功率,提高辐射效率,确保设备在正常工作状态下不会对周围设备产生干扰。
其次,传导干扰分析同样重要。
传导干扰是指电子设备之间通过导线、传输线等传导介质传输的电磁干扰。
为了减小传导干扰,我们需要对设备的传导路径进行分析。
通过传导路径的模拟和测量,可以确定传导干扰的来源和传播路径。
然后可以通过优化传导路径的设计和材料选择,采取屏蔽措施等方法来降低传导干扰的影响。
在进行辐射和传导干扰分析时,需要结合实际工作环境中的电磁干扰特点和要求,充分考虑设备之间、设备与周围环境之间的相互作用。
此外,还需要充分了解设备的工作原理和电磁特性,以便更好地进行干扰分析和解决方案的设计。
总的来说,电磁兼容性设计中的辐射和传导干扰分析是确保设备正常工作和避免干扰的重要环节。
通过对辐射和传导干扰的深入分析和优化设计,可以有效提高设备的抗干扰能力,确保设备在各种电磁环境下稳定可靠地工作。
希望以上内容对您有所帮助,如有任何疑问或需要进一步了解,请随时与我们联系。
EMC原理传导(共模 差模) 辐射(近场 远场) 详解
EMC原理传导(共模差模) 辐射(近场远场) 详解主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到庇护的设备,同时抑制和衰减设备对外界产生干扰。
而辐射干扰主要通过屏蔽的手段加以滤除。
EMC概念介绍EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;假如作为一门学科,则译为电磁兼容。
它包括两个概念:EMI 和EMS。
EMI(electromagneticinterference)电磁干扰,指自身干扰其它电器产品的电磁干扰量。
EMS (electromagneticsusceptibility)电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。
因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避开本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他设备的正常工作。
从滤波器的功能来看,它的作用是允许某一部分频率的信号顺当的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频。
而我们频繁的功能是允许信号中的低频或直流重量通过,抑制高频重量或干扰噪声。
电源噪声干扰在日常生活中很常见。
比如你正在用法电脑的时候,当手机信号浮现时,电脑音响会有杂音。
比如电话或手机通话时有嗞嗞的杂声。
又比如用法电吹风烫头发时,电视机不但会产生噪音,而且屏幕会浮现很大的雪花般的条纹。
这都是一些频繁的噪声信号干扰,但事实上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。
这些噪声信号假如浮现在仪器,医疗仪器有可能带来极大的损失甚至生命平安。
比如,会造成自动化仪器误动作,造成医疗仪器失控等等。
我们常说的噪声干扰,是指对实用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。
最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。
但是,一些非实用电子信号对第1页共2页。
微观尺度下的热传导与热辐射
微观尺度下的热传导与热辐射热传导和热辐射是热能在微观尺度下的两种传播方式。
在我们日常生活中,我们经常会遇到这些现象,如锅炉中的水被加热后会产生热传导,太阳照射地球产生的热辐射等。
本文将详细探讨微观尺度下的热传导及热辐射的基本概念、特性与应用。
一、热传导热传导是指热能在固体、液体和气体中通过颗粒之间的碰撞和振动传递的过程。
它是热能从高温物体传递到低温物体的方式之一,其传导率与物体的热导率、温度梯度及物质的性质有关。
在微观尺度下,物质由许多微小的颗粒组成,如原子或分子。
这些颗粒之间通过碰撞和振动相互传递能量。
当物体的一部分受热时,该部分的颗粒会增加其热振动,进而将热能传递给邻近的颗粒。
这样,热能通过物质中的颗粒逐渐传递,直到整个物体达到热平衡。
热传导的速率取决于物质的热导率、温度梯度和物体的尺寸。
热导率是一个物质特有的性质,衡量了物质导热的能力。
温度梯度是指物体内不同位置的温度差异。
物体尺寸越大,热传导的距离越长,传导速率越慢。
热传导在日常生活中有着广泛的应用,如热传导用于锅炉中的水加热、导热材料的制备以及热散热器的设计等。
二、热辐射热辐射是指由于物体的热振动而产生的电磁波辐射。
它是一种在真空中传播的能量传递方式。
根据斯特藩-玻尔兹曼定律,热辐射功率与物体的温度的四次方成正比。
在微观尺度下,物质的温度越高,原子或分子的热振动越剧烈,产生的电磁波频率也越高。
热辐射的电磁波包括可见光、红外线以及其他的电磁波。
当这些电磁波与其他物体相互作用时,它们可以被吸收、反射或传递。
热辐射在许多领域有广泛的应用。
例如,太阳辐射地球产生的热辐射使地球保持温暖,太阳能利用就是基于热辐射原理的。
此外,热辐射还应用于红外线热成像、激光制备等领域。
三、微观尺度下的热传导与热辐射的比较微观尺度下的热传导和热辐射有一些共同点和区别。
首先,它们都是热能在微观尺度下的传播方式,但传播的机制不同。
热传导是通过颗粒之间的碰撞和振动传递能量,热辐射是通过物体的热振动产生的电磁波辐射传递能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传导、辐射和谐波总结 第一篇:传导发射(Conducted Emission)
传导发射(Conducted Emission)测试,通常也会被成为骚扰电压测试,只要有电源线的产品都会涉及到,包括许多直流供电产品,另外,信号/控制线在不少标准中也有传导发射的要求,通常用骚扰电压或骚扰电流的限值(两者有相互转换关系)来表示,灯具中的插入损耗测试(直接用dB表示)也属于传导测试范畴。
1. 测试标准:有CISPR22(ITE),CISPR14-1(家电和工具),CISPR13(AV),CISPR15(灯具),CISPR11(ISM),其他产品及产品类标准都是引用以上标准的测试方法,以引用CISPR22居多。
2. 测试方法: 1) 仪器和设备:接收机、LISN(线路阻抗稳定网络,或叫AMN人工电源网络)、模拟手、被动电压探头、电流探头(与电流探头配合使用的CDN,容性电压探头)、DIA(断续干扰分析仪,用于测试CISPR14-1中的断续干扰)、测插入损耗的一整套设备等,当然,PC也不可少,听说老外的资深工程师是直接手动用接收机测,汗一个。 接收机、DIA需要遵循CISPR16-1-1的要求,其他辅助设备需要遵循CISPR16-1-2的要求。
2) 测试布置:分台式与落地式,台式设备离LISN 80cm,离接地平板40cm(这里的接地平板可以是水平接地板,也可以是屏蔽室的垂直接地内墙),落地式设备离接地平板距离随不同标准有不同的偏差允许,CISPR14-1,15里面是10cm +/- 25%,13里面是up to 12mm,22里面是up to 15cm, 11里没有明确距离,只说了需要与接地板用绝缘材料隔开。辅助设备
的布置也随测试标准的不同有出入,CISPR22中辅助设备离主设备10cm,相互之间的互联线至少离接地平板40cm。手持II类设备需要包模拟手。CISPR15中自镇流荧光灯需要罩在一个辅助锥形金属罩里。 测试布置在不同的标准里面都有很直观的布置图给出,一目了然,描述起来反而说不清楚,呵呵。
3) 测试频段:大多是150kHz-30MHz,CISPR15是例外(骚扰电压9kHz-30MHz,插入损耗150kHz-1,605kHz)。
4) 测试限值:随不同标准,不同的产品分类(Group 1/2, Class A/B)而限值不同。 5) 测试过程: a) 交/直流电源端骚扰电压:这个最常见,将电源插头连到LISN上,接收机RF输入连到LISN的RF输出(可能中间会插入RF衰减器或脉冲限幅器),切换LISN的L/N开关来选择测试电源线的对地共模骚扰电压。
b) 断续干扰:CISPR14-1及一些引用CISPR14-1的标准有要求。通常使用断续干扰分析仪,配合LISN测量。标准也允许用示波器与接收机的组合来替代。示波器观察骚扰持续时间,接收机观察骚扰电平幅度。
c) 负载端骚扰电压:CISPR14-1、CISPR15和CISPR11中有要求。使用被动电压探头,将需要测试的负载线绝缘剥开,直接用探头连接收机测量负载线导线端子对地的骚扰电压。 补充一句,如果设备额定电流过大,没有合适的LISN可用,也可以直接用电压探头来测量电源端的骚扰电压。
d) 通讯线骚扰电压/骚扰电流:CISPR22中提及。针对不同类型的通讯线有不同的测试方法。Annex C有详细描述,Annex F有各种方法的优缺点分析。主要是依靠电流探头与CDN、150欧姆接地电阻、容性电压探头的不同组合来测试不同类型的通讯线缆,需要保证的前提是测试线缆的对地阻抗是150欧姆。结果可以直接用骚扰电流dBuA表示,也可以换算成骚扰电压dBuV表示,换算阻抗是150欧姆,也就是两者量值相差44dB。
e) 插入损耗:CISPR15提到。使用RF正弦波发生器经过平衡/不平衡转换器、模拟灯、LISN,最后用接收机测量比较电压来得出插入损耗的数值。
3. 结果判定:这个简单,接收机检波器的测量值(QP/AV)分别与限值线比较,低于限制线PASS,高出FAIL。
4. 注意事项:传导测试因为是对地的共模骚扰测量,因此关键在测试布置上,布置没问题了用接收机测就行了,而布置上的差异会导致结果的出入。
悬而未决的问题: 接收机RF输入端脉冲限幅器的使用:有些测试机构使用,保护接收机;有些抵制,认为限幅器中包含非线性元件对脉冲进行限幅,导致互调失真及产生谐波形式的骚扰而影响测试结果。个人意见尽量不要使用,虽然没有进行过实际比对。
第二篇:辐射发射(Radiated Emission) 辐射发射挺难总结的,涉及东西太多,先写了下面这点,仍然希望大家指正,我好修改与补充。
辐射发射(Radiated Emission)测试,是测量EUT通过空间传播的辐射骚扰场强。可以分为磁场辐射、电场辐射,前者针对灯具和电磁炉,后者则应用普遍。另外,家电和电动工具、AV产品的辅助设备有功率辐射的要求(称为骚扰功率)。
1. 测试标准 a) 电场辐射:CISPR22,CISPR13,CISPR11,CISPR14-1(特定类别的玩具); b) 磁场辐射:CISPR15(工作电流频率超过100Hz的灯具),CISPR11(电磁炉); c) 骚扰功率:CISPR14-1(工作频率不超过9kHz的一部分设备除外),CISPR13(只对辅助设备)。
2.测试方法 1)仪器和设备: a) 电场辐射:接收机(1G以下)、频谱仪(1G以上)、电波暗室、天线(1G以下一般用双锥和对数周期的组合或用宽带复合天线,1G以上喇叭天线); b) 磁场辐射:接收机、三环天线或单小环远天线; c) 骚扰功率:接收机、功率吸收钳。 接收机遵循CISPR16-1-1的要求,天线、场地遵循CISPR16-1-4的要求,吸收钳遵循CISPR16-1-3的要求。
2)测试布置: a)电场辐射:也是分台式与落地式,与传导发射相同(因为辐射发射结果与产品布置的关系尤为密切,因此需要严格按照标准布置包括产品、辅助设备、所有电缆在内的受试样品);
b)磁场辐射:不同尺寸的三环天线对能够测试的EUT最大尺寸是有限制的,以2m直径的环形三环天线为例,长度小于1.6m的EUT能够放在三环天线中心测试;在CISPR11中,超过1.6m的电磁炉用0.6m直径的单环远天线在3m外测量,最低高度1m;
c)骚扰功率:分台式与落地式,台式设备放在0.8m的非金属桌子上,离其他金属物体至少0.8m(通常是屏蔽室的金属内墙,这个距离要求在CISPR14-1中是至少0.4m);落地式设备放在0.1m的非金属支撑上;被测线缆(LUT)布置在高0.8m、长6m的功率吸收钳导轨上,吸收
钳套在线缆上,电流互感器端朝向被测设备。如果被测设备有其他线缆,在不影响功能的情况下能断开的断开,不能断开的用铁氧体吸收钳隔离。
3)测试频段:电场辐射一般是30MHz-1GHz(有些产品需要测超过1G,根据具体标准的规定),磁场9kHz-30MHz,骚扰功率30-300MHz。
4)测试限值:随不同标准,场地是3m、10m或其他尺寸,不同的产品分类(Group 1/2, Class A/B)而限值不同。
5)测试过程: a)30MHz-1GHz电场辐射:在半电波暗室中进行,EUT随转台360度转动,天线在1-4m高度上下升降,寻找辐射最大值。结果用QP值表示。垂直、水平两种天线极化方向都测;
b)大于1G的电场辐射:工作频率超过108MHz的ITE设备、超过400MHz的ISM设备需要测试,是在3m场地,使用频谱仪测。ITE设备测试方法基本同30MHz-1GHz,结果用Peak与AV值表示。ISM的产品有点不同,需要在全电波暗室中测,天线同产品同高度,不升降,转台仍然转动以寻找辐射最大值;
c)替代法:采用ERP(有效发射功率)来代替,再换算成场强数值。这个在RF测试中经常用到,常规EMC很少使用。替代法测试的目的是测试EUT的壳体辐射,需要拆除所有可拆卸电缆,不可拆卸的电缆上套铁氧体磁环。首先用天线A和接收机测量出EUT的最大骚扰值,然后用天线B替代EUT,调节信号发生器输出功率,直至测量接收机达到同样的值。记录替代天线B的输入端功率,即为EUT的壳体辐射功率。天线的选则根据测试频率来定;
d)磁场辐射:采用三环天线的磁场辐射测试没啥好说的,样品放置在天线中心,X/Y/Z三个方向各测一组磁场辐射的结果。采用单小环天线时,天线垂直地面放置,最低部分高于地面1m,因为是近场测量,又考虑到了地面的反射,测量所得的值反映了EUT的水平和垂直的磁场分量;
e)骚扰功率:对设备的所有长度超过25cm的电缆(也包括辅助设备的线缆)都需进行。因为在30-300MHz内不同频点的骚扰在被测线缆中呈驻波形式分布。因此在测量中需要沿导轨拉功率吸收钳以寻找每个终测频点骚扰功率最大的位置(大致在离设备半波长的距离处)。
3.结果判定:仍然是与限值线比较。低于PASS,高出FAIL。 4.注意事项:测试布置仍然是测试最需要的环节。另外,因为是高频测试,场地、设备等都是很重要的会影响最终结果的因素。
第三篇:谐波电流(Harmonic Current) 本帖被 barry 执行加亮操作(2007-06-19) 谐波电流(Harmonic Current)测试主要测量EUT工作时注入到电网中的谐波。
1.测试标准:在低压供电设备范畴内,涉及到的产品标准有 IEC 61000-3-2(额定电流小于16A); IEC 61000-3-4(额定电流大于16A); IEC 61000-3-12(额定电流大于16A小于75A)。 对应的EN标准中只有EN 61000-3-2和EN 61000-3-12列在了欧盟EMC协调标准的官方公报(EU OJ)中。因此对于大于75A的设备没有相应的协调标准。以下的讨论基于61000-3-2和61000-3-12(简称-3-2和-3-12)。
而涉及到测试方法的基础标准为IEC 61000-4-7,目前为止有两个版本,1991版和2002版 2.测试方法: 1)仪器和设备:谐波分析仪,纯净AC电源
2)测试布置:没什么讲究 3)测试频段:2次至40次谐波,即100Hz-2kHz 4)测试限值:-3-2中根据产品的分类Class A/B/C/D有不同限值;-3-12中基于不同的短路比(Rsce)有不同限值。
5)控制方法: 谐波标准不同与其他标准,它对产品控制方法的设计有所要求。在-3-2中,对供电电源进行非对称控制及半波整流是不允许的,除非满足下列条件之一:是检测不安全状况唯一可用方法、被控制部分功率小于等于100W、被控制设备是两芯软线供电并且短时使用;在-3-12中,只允许使用对称控制方法,针对发热元件的对称控制方法只能用于专业设备中,并且前提是该专业设备的主要目的不是用于加热。