制冷课设水力计算

合集下载

冷水机组屋顶水力计算

冷水机组屋顶水力计算

冷水机组屋顶水力计算
无论是冷(热)媒水管道还是冷却水管道,水力计算的任务均在于,根据管段的流量和给定的管内水流速度,确定管道直径,然后计算管路的沿程阻力和局部阻力,以此作为选择循环泵扬程的主要依据之一。

冷(热)媒水在管道中的流速,宜按照以下数值采用;
水泵吸水管取:1.2~2.1m/s;
水泵出水管取:2.4~3.6m/s;
供水干管取:1.5~3.0m/s;
室内供水立管取:0.9~3.0m/s;
分水器和集水器取:1.2~4.5m/s;
冷却水管道取:1.0~2.5m/s。

关于钢制水管摩擦主义计算表和配件的局部阻力系数值,参见《空调调节设计手册》P811到p815,过《简明空调设计手册》p345到p350。

值得注意的是,查《钢制水管摩擦阻力计算表》时,R1、R2分别表示管内必当量绝对粗糙度为0.0002米和0.0005米条件下计算得到,对于闭式系统用R1值,对于开式系统用r2值。

空调管道水力计算解读

空调管道水力计算解读
为了保证各管路达到预期的风量,使并联支管
的计算阻力相等,称为并联管路阻力平衡。对 一般的通风系统,两支管的计算阻力差应不超 过15%;含尘风管应不超过10%。若过上述规 定,采用下述方法进行阻力平衡。 (1)调整支管管径 这种方法通过改变支管管径来调整支管阻力, 达到阻力平衡。调整后的管径按下式计算:
含有粉尘等,会增加设备和管道 的磨损。反
之,流速低,阻力小,动力消耗少;但是风 管断面大,材料和建造费用大,风管占用的 空间也增大。流速过低会使粉尘沉积而堵塞 管道。因此, 必须通过全面的技术经济比较选定合理的流 速。根据经验总结,风管内的空气流速可按 下表确定。若输送的是含尘气流,流速不应 低于其表所列的值。
计算,获得管网特性曲线。


圆形伞形罩 800m3/s
1 L=11m
2 L=6m 3 5 L=3m L=4m 4 L=6m
6 7 L=6m L=8m
除尘器
风机
1500m3/s 4000m3/s
图2-3-2 通风除尘系统的系统图
[ 解 ]:
1.对各管段进行编号,标出管段长度和风点
的排风量。 2.选定最不利环路,本系统选择1-3-5-除尘器 - 6-风机-7为最利环路。 3.根据各管段的风量及选定的流速,确定最 不利环路各管段的断面尺寸和单位长度摩擦 阻力。 根据表2-2-3输送含有轻矿物粉尘的空气时, 风管内最小风速为,垂直风管12m/s、水平 风管14m/s.
考虑到除尘器及风管漏风,取5%的漏风
系数,管段6及7的计算量为


6300×1.05=6615m3/h. 管段1 有水平风管,初定流速为14m/s。根据 Q1=1500m/h(0.42m3/s)、V1=14m/s所选管 径按通风管道 统一规格调整为 D1=200mm:实际流速V1=13.4m3/S;由图2-31查得,Rml=12.5Pa/m。 同理可查得管段3、5、6、7的管径及比摩阻, 具体结果见表2-3-5。 4.确定管段2、4的管径及单位长度摩擦力,

机械循环空调系统水力计算书

机械循环空调系统水力计算书

管段编号每个分支管负荷(kW)各支管汇总管负荷Q (kW)供水温度tg (℃)回水温度th (℃)供回水温差△t=(tg-th)(℃)流量G=Q*3600/4.186*△t*ρ(m^3/h 管径d (mm)管长L (m)流速ν=4*G/(3600*π*d 2)(m/s)比摩阻R=λ*Pd/d (Pa/m)沿程损失△Py=R*L(Pa)局部阻力系数ξ动压Pd=ρv 2)/2(Pa)局部损失△Pj=ξ*Pd(Pa)管道总损失△Py+△Pj(Pa)120207125 3.44035060.4863870.32682421.960920118.27222365.4442787.405220407125 6.88066560.5755970.25536421.53222165.6415331.2831752.815332*********.3216560.86339155.0907930.54422372.6935745.38691675.93142080712513.7618060.7599793.18625559.11751288.7505288.7505847.868520100712517.2028060.94996144.3036865.82172451.1726902.34531768.167620120712520.64210060.7295765.09549390.57291266.1124266.1124656.6854720140712524.08210060.8511688.02528.121362.2086362.2086890.3286820160712527.52310060.97276114.3845686.30711473.0888473.08881159.396920180712530.9631006 1.09435144.1888865.13262598.7531197.5062062.6391020200712534.40312560.778255.87628335.25771302.7768302.7768638.03451120220712537.84312560.8560267.34326404.05951366.36366.36770.41951220240712541.28412560.9338579.87629479.25771435.9986435.9986915.25641320260712544.72412520 1.0116793.475321869.50620511.692810233.8612103.36小计928757.1918271.1227028.31适用对象:一般公共建筑空调冷冻水系统机械循环空调系统水力计算书项目地点信息:一、空调水力计算:1、计算依据本计算方法理论依据是陆耀庆编著的《实用供热空调设计手册》和电子工业部第十设计研究院主编的《空气调节设计手册》。

空调水管水力计算书 精品

空调水管水力计算书 精品
3
174.787
524.361
1000.318
1个合流三通ξ=3
31
8.1003
1.417
DN20
1
1.11
1091.89
1091.89
10
605.548
6055.483
7147.373
1个截止阀ξ=10
32
8.1003
1.417
DN20
1
1.11
1091.89
1091.89
10
605.548
6055.483
3
1455.784
4367.352
6527.105
1个分流三通ξ=3
4
87.2283
15.259
DN70
1
1.167
263.977
263.977
3
669.671
2009.012
2272.989
1个分流三通ξ=3
5
79.128
13.842
DN70
1.8
1.059
217.876
392.177
3
551.07
12
5.1906
0.908
DN20
5
0.711
456.037
2280.184
12
248.646
2983.747
5263.931
1个弯头ξ=1,1个截止阀ξ=11
13
10.3755
1.815
DN40
3
0.382
57.359
172.077
3
71.691
215.072
387.149
1个合流三通ξ=3

自-空调管道的水力计算

自-空调管道的水力计算

管道的阻力计算流体在管内流动时,由于其黏性剪切力及涡流的存在,不可避免的会消耗一定的机械能,这种机械能的消耗不仅包括了流体流经直管段的沿程阻力,还包括了因流体运动方向改变而引起的局部阻力。

一、阻力的基本知识(一)沿程阻力流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力。

流体在水平等径管中稳定流动时,阻力损失表现为压力降低,即h f=p1−P2ρg =∆pγ(1-1)式中λ——摩擦系数,它与流体的性质、流速、流态以及管道的粗糙度有关。

与雷诺数Re和管壁粗糙度ε有关,可实验测定,也可计算得出。

影响阻力损失的因素很多,比如流体的密度ρ及黏度μ;管径d,管长l,管壁粗糙度ε;流体的流速u 等。

利用公式可表示为:∆p=f(d,l,μ,ρ,u,ε)(1-2)利用这些因素之间的关系,可以将公式(1-1)变成:h f=∆pγ=λldu,2g(1-3)该公式的特点是将求阻力损失问题转化为求无量纲阻力系数问题,比较方便。

同时将沿程损失表达为流速水头的倍数形式比较恰当。

因此,该公式适用于计算各种流态下的管道沿程阻力。

流体为层流时,λ=64/Re;湍流时λ是Re及相对粗糙度的函数,由实验或查表得到。

但对于湍流流体而言,目前尚无完善的理论方法对其进行求解,需采用一定的实验研究其规律。

(二)局部阻力局部阻力流体的边界在局部地区发生急剧变化时,迫使主流脱离管道边壁而形成漩涡,流体质点间产生剧烈的碰撞,由于实际流体粘性作用,碰撞中的部分能量会不断地变为热能而逸散在流体之中,从而使流体的机械能减小。

局部阻力损失产生于某些局部地方,比如管径的改变(突扩、突缩、渐扩、渐缩等),方向的改变(弯管),再者装置了某些配件(阀门、量水表等)。

局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

1当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号d e 表示。

空调风系统水力计算书范本

空调风系统水力计算书范本

空调风系统水力计算书一、 计算依据《实用供热空调设计手册》第二版 风系统基本参数:气温(℃): 20 ; 大气压力(Pa): 843.8 ; 管材:薄钢板; 绝对粗糙度(mm):0.16;干管推荐流速上限(m/s):10. 干管推荐流速下限(m/s):4..;支管推荐流速上限(m/s):6.; 支管推荐流速下限(m/s):2.;运动粘度(m^2/s):1.57E-05二、 计算公式1. 沿程阻力(Pa)22v d l P m ρλ⋅⋅=∆2. 局部阻力(Pa)22v P j ρζ⋅=∆三、 计算结果1、 PFY.B3(1)-1排风系统1.1 根据地下室空调风管平面图,该风系统最不利环路的水力计算如下:负二层排风管(PFY .B2(4)-1)水力计算表1.2 风系统阻力计算对于地下负二层排风管(PFY.B2(4)-1):P=沿程阻力+局部阻力+末端风口阻力+消声器阻力=64.7+180.1+30+50=324.8Pa风机压头校核:324.8*1.1=357Pa<400Pa,风机选型满足要求。

2、XF.(2)C1-1新风系统2.1根据空调风管平面图,该风系统最不利环路的水力计算如下:商业C新风管(XF.(2)C1-1)水力计算表2.2风系统阻力计算商业C新风管(XF.(2)C1-1):P=沿程阻力+局部阻力+消声器阻力=19.7+202+50=272Pa风机压头校核:272*1.1=299Pa<300Pa,风机选型满足要求。

3、风机单位风量耗功率计算(1)计算公式W S=P/(3600×ηCD×ηF)式中:W S—风道系统单位风量耗功率[W/(m³/h)];P—空调机组的余压或通风系统风机的风压(Pa); ηCD—电机及传动效率(%),ηCD取0.855;ηF—风机效率(%),按设计图中标注的效率选择。

(2)计算结果选取PFY.B3(1)-1系统为例,则W S=P/(3600η)=500/(3600*0.855*0.75)=0.22。

制冷课程设计

1、设计任务 (3)2、制冷供冷方案确定 (5)2.1制冷方案 (5)2.2供冷方案 (5)2.3排热方案 (5)3、空调制冷系统的总装机容量的确定及制冷设备的选型 (6)3.1空调制冷系统的总装机容量 (6)3.2制冷机类型的选择 (6)3.3制冷机型号、容量、台数的确定 (8)4、冷却水、冷冻水管路系统的设计及计算 (9)4.1 冷却塔的选型 (9)4.1.1 冷却塔的种类 (9)4.2 冷冻站的布置 (11)4.3 冷冻水、冷却水管路系统的设计计算 (12)4.3.1 冷冻水、冷却水系统的水流量 (12)4.3.2 冷冻水、冷却水管路系统的水力计算 (12)4.3.3 冷冻水泵的选择 (16)4.3.4 冷却水泵的选择 (16)5、其它辅助设备的选择 (16)5.1水系统的水质控制 (16)5.2水系统的补水量及补水位置确定 (17)5.3冷冻水系统的定压方式定压设备的选择 (17)5.4分水器、集水器 (18)6、制冷设备和管道的保温 (18)6.1需要保温的设备和管道 (18)6.2 设备和管道的保温要求 (18)6.3 保温材料的选择 (19)6.4保温层厚度的确定 (19)6.5保温结构的做法 (20)7、制冷机房的通风 (20)7.1机房通风的规定 (20)7.2机房通风的计算 (21)8、设计总结 (21)9、参考文献 (22)1、设计任务1.1设计题目南京市某公共建筑空调用冷源工程设计1.2设计目的本课程设计是《制冷技术》课程的重要教学环节之一,通过这一环节达到了解常规空调用冷源设计的内容、程序和基本原则,学习设计计算的基本步骤和方法,巩固《制冷技术》课程的理论知识,熟悉相关的规范,培养独立工作能力和解决实际工程问题的能力。

1.3设计内容和要求整个设计要求完成南京市某公共建筑空调用冷冻站的全部设计,内容包括:制冷设备选型、容量大小、水力计算、水泵选择、保温材料及厚度的确定等,做到经济合理,满足冷量的要求;应将设计成果整理成设计计算说明书,其中包括:原始资料、设计方案、计算公式、数据来源、设备类型、主要设备材料表;设计成果还应能用工程图纸表达出来,要求绘出该冷冻站的平面布置图、有关的剖面图及系统原理图。

水力计算说明书

水力计算说明书一.风管水力计算风管压力损失计算的根本任务是解决如下两个问题:设计计算和校核计算。

确定好设备布置、风量、管道走向等之后,应经济合理地确定风管的断面尺寸,以保证实际风量符合设计要求;计算系统总阻力,以确定风机的型号及相应的电机;计算风机及相应电机是否满足要求。

本设计中,风管压力损失计算根据《实用供热空调设计手册》风管计算方法来确定。

水力计算的方法及步骤如下:(1)计算步骤:①绘制空调系统轴测图,并对各段风管进行编号,标注。

②设定风管内的合理流速。

③根据各风管的风量和选择的流速确定各管段的断面尺寸,计算沿程阻力和局部阻力。

④与最不利环路并联的管路的阻力平衡计算。

为了保证各送风点达到预期的风量,必须进行阻力平衡计算。

一般的空调系统要求并联管路之间的不平衡率应不超过15%。

若超出上述规定,则应采用下面几种方法使其阻力平衡。

①在风量不变的情况下,调整支管管径;②在支管断面尺寸不变情况下,适当调整支管风量; ③在风量不变的情况下,在支管加平衡阀。

(2)系统总阻力的计算计算风管的压力损失:通过对风管的沿程压力损失和局部压力损失的计算,最终确定风管的尺寸。

①矩形风管截面积:3600×=V LS其中:L 为风管的流量,单位:m³/hV 为风管假定的流速,单位:m/s ,本设计中取V=9m/s ②沿程压力损失:L R P m m =Δ其中:R m 为单位长度的比摩阻, Pa/mL 为管长,m③局部压力损失:2ρξp 2m v =其中:ξ为局部阻力系数;ρ为空气的密度,kg/m 3ν与ξ对应的风道断面平均速度,m/s 。

④风管的压力损失s j m P P P P ΔΔΔΔ++= 其中,sP Δ为风系统设备阻力,Pa 。

(2)计算最不利环路的压力损失 计算结果如下:各机组出口送风管管径汇总风管管径空调机组楼层设备型号 送风量m3/h 制冷量KW 机组管径 长*宽 实际流速 覆盖区域散流器个数负一层KBG50-4 8623.8 135 630*320 11.13 9 KBG80-6 8623.8 135 800*320 10.65 9 KBG120-4 11498.4 180 1000*400 9.98 12 KBG70-4 7665.6 120 800*320 10.45 8 KBG70-4 5749.2 90 630*320 11.09 6 KBG80-4 8623.8 135 800*320 10.87 9 KBG60-4 5749.2 90 630*320 11.02 6 KBG80-4 5749.2 90 630*320 10.78 6 KBG70-4 7665.6 120 630*320 10.34 8 KBG70-4 7665.6 120 630*320 10.75 8 KBG70-4 7665.6 120 630*320 10.35 8 KBG100M-4 14373 225 1000*400 9.57 15 KBG140-4 14373 225 1000*400 9.43 15 KBG70-4 7665.6 120 630*320 10.57 8 KBG70M-4 4791 75 630*320 11.01 5 一层KBG120-6 15264.2 229.6 800*400 12.02 14 KBG120-4 15264.2 229.6 1000*400 11.93 14 KBG80-4 9812.7 147.6 1000*320 10.83 9 KBG80-4 11993.3 180.4 800*320 11.59 11 KBG80-4 10903 164 630*320 12.45 10 KBG80-49812.7147.6800*32010.379KBG80-4 10903 164 800*320 11.21 10二、三、四层KBG120-6 14028 208.8 800*320 10.98 12 KBG120-4 15197 226.2 1000*320 9.84 13 KBG120-4 17535 261 1000*400 9.43 15 KBG100M-4 14028 208.8 1000*400 9.24 12 KBG100-6 17535 261 1000*320 9.57 15 KBG100-4 11690 174 1000*400 9.62 10 KBG100-6 18704 278.4 800*320 11.06 16五层KBG80-6 17075 408 800*320 13.04 10 KBG80-6 15367.5 367.2 800*320 12.51 9 KBG120-6 15367.5 367.2 1000*400 11.69 9 KBG100-6 13660 326.4 800*320 12.7 8 KBG100-6 17075 408 800*320 12.07 10新风机组一层KBG50N-4 15921 180 800*320 12.23 11 KBG60N-4 39079 441.2 800*320 13.07 17全热换热器一层CHA-D8000 15921 180 800*320 12.23 10 CHA-D8000 39079 441.2 800*320 13.07 11二层CHA-D8000 54359 809 800*320 11.93 11 CHA-D8000 54359 809 800*320 12.56 11三层CHA-D8000 54359 809 800*320 12.73 11 CHA-D8000 54359 809 800*320 12.99 11四层CHA-D8000 62778 1866 800*320 13.51 11 CHA-D8000 62778 1866 800*320 11.96 11五层CHA-D000 378 1866 630*320 13.51 0 CHA-D8000 78546 1866 800*450 11.96 12水力计算结果分支1最不利路径水力计算表最不利阻力(Pa)458编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 25270 10.95 矩形1000 400 12.73 15.84 88.23 104.072 21235.5 1.03 矩形800 320 7.62 0.71 71.26 71.973 7890 3.4 矩形800 320 6.99 2.32 122.53 124.844 5607 3.4 矩形800 320 4.23 0.78 21.99 22.775 1105 1.38 矩形320 250 6.77 2.72 113.72 116.446 1105 3.4 矩形320 250 2.64 1 5.88 6.887 1105 0.15 矩形320 200 2.64 0.04 11.43 11.47分支1水力计算表编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 2728 10.95 矩形1000 400 12.73 15.84 88.23 104.072 2635 1.03 矩形800 320 7.62 0.71 71.26 71.973 21235.5 3.4 矩形800 320 6.99 2.32 122.53 124.844 7890 3.4 矩形800 320 4.23 0.78 21.99 22.775 5607 3.4 矩形800 320 4.74 1.32 55.72 57.046 1105 3.4 矩形500 320 4.33 1.43 13.97 15.417 1105 1.22 矩形500 320 4.33 0.85 12.16 138 1105 3.5 矩形320 250 3.39 1.9 8.26 10.169 569 0.15 矩形320 250 3.39 0.08 18.72 18.810 569 0.25 矩形320 250 3.39 0.14 30.02 30.1611 1103 1.38 矩形500 320 4.33 0.96 11.7 12.66分支1平衡分析表18.72 18.8编号不平衡率总阻力并联最不利阻力平衡阀阻力2 0 354.37 354.37 03 0 282.4 282.4 0分支2最不利路径水力计算表最不利阻力(Pa)646编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 34267 1.35 矩形1000 400 16.25 3.12 143.78 146.92 34267 1.35 矩形1000 320 15.98 3.03 0 3.033 3567 0.76 矩形630 320 10.58 2.99 277.63 280.624 2307 1.54 矩形630 250 10.16 6.54 126.68 133.235 1105 0.96 矩形320 250 6.77 1.9 57.14 59.046 569 1.4 矩形320 250 2.64 0.41 5.88 6.297 569 1.05 矩形320 250 2.64 0.31 4.87 5.188 569 0.15 矩形320 250 2.64 0.04 11.43 11.47分支2水力计算表编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 34267 1.35 矩形1000 400 16.25 3.12 143.78 146.92 34267 1.35 矩形1000 320 15.98 3.03 0 3.033 3567 0.76 矩形800 320 10.16 2.11 17.47 19.584 2307 3.4 矩形630 320 5.42 2.51 72.78 75.295 1105 3.4 矩形500 250 4.33 2.36 1.65 4.016 569 0.94 矩形320 250 3.39 0.51 8.26 8.777 569 0.15 矩形320 250 3.39 0.08 18.72 18.88 569 1.16 矩形320 250 3.39 0.63 12.55 13.189 569 0.15 矩形320 250 3.39 0.08 18.72 18.810 569 0.94 矩形400 250 2.71 0.3 22.92 23.2211 569 0.15 矩形500 250 2.17 0.03 7.67 7.712 569 1.16 矩形400 250 2.71 0.37 22.92 23.2913 569 0.15 矩形500 250 2.17 0.03 7.67 7.714 569 1.16 矩形500 250 2.17 0.22 15.08 15.31分支2平衡分析表编号不平衡率总阻力并联最不利阻力平衡阀阻力2 0 498.85 498.85 0分支3最不利路径水力计算表最不利阻力(Pa)304编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 2728 1.08 矩形1000 400 8.13 0.74 82.83 83.582 2635 1.92 矩形1000 320 8.13 1.31 0 1.313 21235.5 7.89 矩形800 320 5.5 2.94 2.67 5.614 7890 1.45 矩形800 320 4.84 0.5 0 0.55 5607 3.4 矩形630 320 4.78 1.3 1.82 3.126 1105 3.4 矩形630 320 5.37 2.2 2.4 4.67 1105 3.4 矩形200 200 13.54 38.14 21.41 59.568 1105 1.11 矩形200 200 6.77 3.34 67.4 70.749 569 0.15 矩形200 200 6.77 0.45 74.89 75.34分支3水力计算表编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 2728 1.08 矩形1000 400 8.13 0.74 82.83 83.582 2635 7.89 矩形800 320 5.5 2.94 2.67 5.613 21235.5 1.45 矩形800 320 4.84 0.5 0 0.54 7890 3.4 矩形630 320 4.78 1.3 1.82 3.125 5607 3.4 矩形630 320 5.37 2.2 2.4 4.66 1105 3.4 矩形200 200 13.54 38.14 21.41 59.567 1105 1.11 矩形200 200 6.77 3.34 67.4 70.748 1105 0.15 矩形200 200 6.77 0.45 74.89 75.349 569 1.1 矩形200 200 6.77 3.3 81.54 84.8410 569 1.29 矩形320 250 5.29 1.36 34.19 35.5611 1103 0.17 矩形320 250 2.64 0.05 5.88 5.9312 569 1.02 矩形320 250 2.64 0.3 4.87 5.1713 569 0.15 矩形320 250 2.64 0.04 11.43 11.4714 569 0.25 矩形320 200 2.64 0.07 16.84 16.9215 569 1.11 矩形250 200 3.39 0.6 22.16 22.77分支3平衡分析表编号不平衡率总阻力并联最不利阻力平衡阀阻力2 0 220.78 220.78 03 0 219.46 219.46 04 0.63 80.36 219.46 139.1分支4最不利路径水力计算表最不利阻力(Pa)684编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 2728 0.73 矩形1000 320 15.44 1.52 301.8 303.322 1987 4.56 矩形800 302 15.44 9.56 0 9.563 986 1.05 矩形650 320 11.1 1.17 155.91 157.084 569 3.4 矩形500 320 9.75 2.95 7.6 10.55分支4水力计算表编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 2728 0.73 矩形1000 320 15.44 1.52 301.8 303.322 1987 4.56 矩形800 302 15.44 9.56 0 9.563 986 1.05 矩形650 320 11.1 1.17 155.91 157.084 569 3.4 矩形500 320 9.75 2.95 7.6 10.555 569 3.4 矩形500 320 8.4 2.22 5.71 7.936 569 3.4 矩形500 320 7.04 1.59 34.2 35.797 569 3.4 矩形320 200 7.11 1.81 4 5.818 569 3.4 矩形320 200 6.77 1.87 31.34 33.229 569 3.4 矩形320 200 5.08 1.09 2.26 3.35分支4平衡分析表编号不平衡率总阻力并联最不利阻力平衡阀阻力2 0 380.7 380.7 03 0 371.15 371.15 04 0.42 216.45 371.15 154.7分支5最不利路径水力计算表最不利阻力(Pa)518编号G(kg/h) L(m) 形状D/W(mm) H(mm) υ(m/s)ΔPy(Pa)ΔPj(Pa)ΔP(Pa)1 2831 3.4 矩形1000 400 6.5 1.37 3.43 4.83 1769.25 3.4 矩形800 320 6.35 1.66 3.17 4.834 1258 1.69 矩形320 250 7.93 3.82 171.02 174.845 1258 3.7 矩形320 250 5.29 3.91 17.94 21.866 569 3.4 矩形320 250 2.64 1 5.88 6.887 569 0.15 矩形320 250 2.64 0.04 11.43 11.47分支5水力计算表编号 G(kg/h) L(m) 形状 D/W(mm) H(mm) υ(m/s) ΔPy(Pa) ΔPj(Pa) ΔP(Pa) 1 2831 3.4 矩形 1000 320 6.77 1.65 3.7 5.35 2 1769.25 3.4 矩形 800 320 6.35 1.66 3.17 4.83 3 1258 3.4 矩形 800 320 4.23 0.78 1.66 2.44 4 1258 3.4 矩形 800 320 4.23 1.27 44.75 46.01 5 569 0.91 矩形 320 250 5.29 0.97 68.73 69.7 6 569 1.69 矩形 320 250 7.93 3.82 171.02 174.84 7 491 3.7 矩形 320 250 5.29 3.91 17.94 21.86 8 491 3.4 矩形 320 250 2.64 1 5.88 6.88 9 491 0.15矩形 320 250 2.640.0411.43 11.47 分支5平衡分析表编号 不平衡率 总阻力 并联最不利阻力 平衡阀阻力 2 0 275.55 275.55 0 3 0 269.78 269.78 040.42155.55269.78114.24二.水管水力计算空调水系统水管管径由下式确定:式中 0m ——管道中水流量,s m 3; v ——管道中水流速,s m 。

空调冷热水温度、水力计算和管路平衡

空调冷热水温度、水力计算和管路平衡舒适性空调的冷热媒参数的确定舒适型空调的冷热媒参数,应考虑对冷热源装置、末端设备、循环水泵功率的影响等因素的确定,并应保证技术可靠、经济合理:1、 空调冷水供回水温差不应小于5℃;冷水机组直接供冷系统的空调冷水供回水温度可按冷水机组空调额定工况取7/12℃;循环水泵功率较大的工程,宜适当降低供水温度,加大供回水温差,但应校核降低水温对冷水机组性能系数和制冷量的影响。

2、 采用蓄冷装置的供冷系统,空调冷水供水温度应根据采用的蓄冷介质和蓄冷、取冷方式等参考表5.8.1确定;当采用冰蓄冷装置能获得较低的供水温度时,应奖励加大供回水温差;3、 采用换热器加热空调热水时,其空调热水供水温度宜采用60~65℃,供回水温差不应小于10℃;4、 采用直燃式冷(温)水机组、空气源热泵、地源热泵等作为热源,供回水温度和温差应按设备要求确定;5、 当空调冷水或热水采用大温差时,应校核流量减少对采用定型盘管的末端设备(如风机盘管等)传热系数和传热量的影响,所用的风机盘管机组的性能应经过测试。

空调系统的水流量1、 计算管段的水量应按下式计算:tQ G ∆=163.1(5.8.2) 式中 G ——计算管段的水量(m 3/h);Q ——计算管段的空调符合(kW );t ∆——供回水温差(℃)。

2、 计算管段的水量可按所接空气处理机组和风机盘管的额定流量的叠加值进行简化计算,当其总水量达到与水泵流量相等时,干管水流量值不再增加。

空调冷水系统的阻力计算1、 管道每米长摩擦阻力可按下式计算:85.187.485.1105s j h i q d C H --=(5.8.3-1)式中i H ——计算管段的比摩阻(kPa/m );d ——管道计算内径(m );q ——设计秒流量(m 3/s );C ——海澄-威廉系数,钢管闭式系统取C=120,开式系统取C=100。

2、 比摩阻宜控制在100~300Pa/m ,不应大于400Pa/m ;且空调房间内空调管道流速不宜超过表5.8.3-1的限值。

空调风系统水力计算书范本

空调风系统水力计算书一、 计算依据《实用供热空调设计手册》第二版 风系统基本参数:气温(℃): 20 ; 大气压力(Pa): 843.8 ; 管材:薄钢板; 绝对粗糙度(米米):0.16;干管推荐流速上限(米/s):10. 干管推荐流速下限(米/s):4..;支管推荐流速上限(米/s):6.; 支管推荐流速下限(米/s):2.;运动粘度(米^2/s):1.57E-05二、 计算公式1. 沿程阻力(Pa)22v d l P m ρλ⋅⋅=∆2. 局部阻力(Pa)22v P j ρζ⋅=∆三、 计算结果1、 PFY.B3(1)-1排风系统1.1 根据地下室空调风管平面图,该风系统最不利环路的水力计算如下:负二层排风管(PFY.B2(4)-1)水力计算表1.2 风系统阻力计算对于地下负二层排风管(PFY.B2(4)-1):P=沿程阻力+局部阻力+末端风口阻力+消声器阻力=64.7+180.1+30+50=324.8Pa风机压头校核:324.8*1.1=357Pa<400Pa,风机选型满足要求.2、XF.(2)C1-1新风系统2.1根据空调风管平面图,该风系统最不利环路的水力计算如下:商业C新风管(XF.(2)C1-1)水力计算表2.2风系统阻力计算商业C新风管(XF.(2)C1-1):P=沿程阻力+局部阻力+消声器阻力=19.7+202+50=272Pa风机压头校核:272*1.1=299Pa<300Pa,风机选型满足要求.3、风机单位风量耗功率计算(1)计算公式W S=P/(3600×ηCD×ηF)式中:W S—风道系统单位风量耗功率[W/(米³/h)]; P—空调机组的余压或通风系统风机的风压(Pa); ηCD—电机及传动效率(%),ηCD取0.855;ηF—风机效率(%),按设计图中标注的效率选择.(2)计算结果选取PFY.B3(1)-1系统为例,则W S=P/(3600η)=500/(3600*0.855*0.75)=0.22附件:工程施工现场应急预案及安全保证措施一、编制原则1、以人为本,安全第一原则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号G(m³/s)L(m)d(mm)DN(mmm)v(m/s)R(Pa/m)Pd(Pa)Py(Pa)
10.1152652502.21162416580
20.1142652502.21162416464
30.2233063502.32562640768
40.110.52652502.2116241658
50.110.52652502.2116241658
60.110.52362003.5116241658
70.110.52362003.5116241658
80.2233063502.31262640378
90.2223063502.31262640252
100.2253063502.31262640630
110.22153063502.312626401890
120.2273063502.31262640882
130.2223063502.31262640252
140.2253063502.31262640630
150.2233063502.31262640378
160.2213063502.31262640126
170.1112652502.21162416116
180.110.52652502.2116241658
7636

冷却水系统管径、流速及沿程阻力计算表
Pj(Pa)△P(Pa)
0.3724.81304.8
0.3724.81188.8
1.784699.25467.2
0.1241.6299.6
1.12657.62715.6
0.81932.81990.8
0.1241.6299.6
0.1264642
0.892349.62601.6
0.992613.63243.6
6.9418321.620211.6
0.992613.63495.6
0.892349.62601.6
5.31399214622
0.37921170
0.1264390
0.1241.6357.6
0.61449.61507.6
56473.664109.6

相关文档
最新文档