中考数学总复习 第五章 基本图形综合测试题
2020中考数学复习图形的性质基础练习题3(附答案) (1)

2020中考数学复习图形的性质基础练习题3(附答案)1.如图,在六边形ABCDEF 中,A B E F α∠+∠+∠+∠=,CP DP 、分别平分BCD CDE ∠∠、,则P ∠的度数为( )A .11802α-oB .11802α-oC .12α D .13602α-o 2.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点E ,F ,再以点E 为圆心,以EF 长为半径画弧,交弧①于点D ,画射线.OD 若26AOB ∠=o ,则BOD ∠的补角的度数为( )A .38oB .52oC .128oD .154o3.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于()A .6B .8C .9D .184.以长为8cm 、6cm 、10cm 、4cm 的四条线段中的三条线段为边,可以画出三角形的个数为( )A .1个B .2个C .3个D .4个5.如图,是某住宅小区平面图,点B 是某小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路.从居民楼点A 到“菜鸟驿站”点B 的最短路径是()A .A C G EB ----B .AC E B --- C .AD GE B ---- D .AF E B ---6.如图,将△ABC 绕点C 按逆时针方向旋转45°后得到△A ′B ′C ′,若∠A =45°,∠B ′=100°,则∠BCA ′的度数是( )A .10°B .15°C .20°D .25°7.下列图形中不可能是正多边形的是( )A .三角形B .正方形C .四边形D .梯形8.将正方形ABCD 与等腰直角三角形EFG 如图摆放,若点M 、N 刚好是AD 的三等分点,下列结论正确的是( )①△AMH ≌△NME ;②12AM BF =;③GH ⊥EF ;④S △EMN :S △EFG =1:16A .①②③④B .①②③C .①③④D .①②④9.如图,矩形ABCD 的外接圆O 与水平地面有唯一交点A ,圆O 的半径为4,且»BC=2»AB .若在没有滑动的情况下,将圆O 向右滚动,使得O 点向右移动了98π,则此时该圆与地面交点在( )上.A .»AB B .»BC C .»CD D .»DA10.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B ,C ,E 在同一条直线上,AE 与CD 交于点G ,AC 与BD 交于点F ,连接FG ,则下列结论: ①AE=BD ;②AG =BF ;③FG ∥BE ;④CF=CG.其中正确的结论为____________.11.指出命题“对顶角相等”的题设和结论,题设_____,结论_____.12.在半径为7cm 的圆中,若弦AB =7cm ,则弦AB 所对的圆周角的度数是_____ 13.如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,其中4,8AB BC ==,则AE 的长度为__________.14.已知在Rt △ABC 中,∠C =90°,BC =5,AC =12,E 为线段AB 的中点,D 点是射线AC 上的一个动点,将△ADE 沿线段DE 翻折,得到△A′DE ,当A′D ⊥AB 时,则线段AD 的长为_____.15.如图,已知AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠ADE =________;16.如图,已知:等腰Rt △ABC 中,∠BAC =90°,BC =2,E 为边AB 上任意一点,以CE 为斜边作等腰Rt △CDE ,连接AD ,下列说法:①∠BCE =∠AED ;3中正确的结论有_____.(填写所有正确结论的序号)17.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.18.如图,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 是对角线AC 上的一个动点,若AC =4,则PD +PE 的最小值为_____.19.如图,△ABC 中,∠ACB =90°,AB =5,AC =3,BC 为半圆O 的直径,将△ABC 沿射线CB 方向平移得到△A 1B 1C 1.当A 1B 1与半圆O 相切于点D 时,平移的距离的长为_____.20.如图,C 是线段AB 上一点,M 是AC 的中点,N 是CB 的中点,如果AB=10cm .求:MN 的长.21.计算:(1)50°24′×3+98°12′25″÷5;(2)100°23′42″+26°40′28″+25°30′16″×4.22.正方形网格中的每个小正方形边长都是1,(1)请在图中画出等腰△ABC ,使AB =AC 5BC 2;(2)在△ABC 中,AB 边上的高为 .23.如图,点C在射线OA上,射线CE平分∠ACD,射线OF平分∠COB,并与射线CD交于点F.(1)依题意补全图形;(2)若∠COB+∠OCD=180°,求证:∠ACE=∠COF.24.已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:(1)AE=DB;(2)△CMN为等边三角形.25.如图,在6×10的网格中,每个小正方形的边长均为1,每个小正方形顶点叫作格点,△ABC的三个顶点和点D,E,F,G,H,K均在格点上,现以D,E,F,G,H,K中的三个点为顶点画三角形.(1)在图①中画出一个三角形与△ABC全等,如△DEG;(2)在图②中画出一个三角形与△ABC面积相等但不全等,如△HFG.26.如图,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB 并延长交直线AD于点E.(1)如图,求∠QEP的度数;(2)如图,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.27.四边形ABCD中,AB=BC,∠B=∠C=90°,P是BC边上一点,AP⊥PD,E是AB 边上一点,∠BPE=∠BAP.(1)如图1,若AE=PE,直接写出CPPB=______;(2)如图2,求证:AP=PD+PE;(3)如图3,当AE=BP时,连BD,则PEBD=______,并说明理由.参考答案1.A【解析】【分析】由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD =720°①,由角平分线定义得出∠BCP =∠DCP ,∠CDP =∠PDE ,根据三角形内角和定理得出∠P+∠PCD+∠PDE =180°,得出2∠P+∠BCD+∠CDE =360°②,由①和②即可求出结果. 【详解】在六边形 A BCDEF 中,∠A+∠B+∠E+∠F+∠CDE+∠BCD =(6-2)×180°=720°①, Q CP 、DP 分別平分∠BCD 、∠CDE ,∴∠BCP =∠DCP ,∠CDP =∠PDE ,Q ∠P+∠PCD+∠PDE =180°,∴2(∠P+∠PCD+∠PDE)=360°,即2∠P+∠BCD+∠CDE =360°②, ①-②得:∠A+∠B+∠E+∠F-2∠P =360°,即α-2∠P =360°,∴∠P=12α-180°, 故选:A.【点睛】本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.2.C【解析】【分析】根据作一个角等于一直角的作法即可得出结论.【详解】由题意可得:26AOB AOD ∠=∠=o ,262652BOD o o o ∴∠=+=,BOD ∴∠的补角的度数18052128=-=o o o ,故选C .【点睛】本题考查的是余角与补角,熟知作一个角等于已知角的步骤是解答此题的关键.3.C【解析】【分析】作EH ⊥BC 于H ,根据角平分线的性质得到EH=DE=3,根据三角形的面积公式计算即可.【详解】解:作EH ⊥BC 于H ,∵BE 平分∠ABC ,CD 是AB 边上的高线,EH ⊥BC ,∴EH=DE=3,∴△BCE 的面积=12×BC×EH=9, 故选C . 【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】分成四种情况:①4cm ,6cm ,8cm ;②4cm ,6cm ,10cm ;③6cm ,8cm ,10cm ;④4cm ,8cm,10cm,∵4+6=10,∴②不能够成三角形,故只能画出3个三角形.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.D【解析】【分析】根据两点之间线段最短即可判断.【详解】从居民楼点A到“菜鸟驿站”点B的最短路径是A-E-B,故选D.【点睛】此题主要考查点之间的距离,解题的关键是熟知两点之间线段最短.6.A【解析】【分析】利用三角形内角和定理以及旋转不变性解决问题即可.【详解】由题意∠B=∠B′=100°,∠A=45°,∴∠ACB=180°﹣∠B﹣∠A=180°﹣100°﹣45°=35°,∵∠ACA′=45°,∴∠BCA′=∠ACA′﹣∠ACB=45°﹣35°=10°,故选:A.【点睛】本题考查三角形内角和定理,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D【解析】【分析】根据正多边形的性质依次判定各项后即可解答.【详解】选项A,三角形中的等边三角形是正三角形;选项B,正方形是正四边形;选项C,四边形中的正方形是正四边形;选项D,梯形的上底与下底不相等所以梯形不可能是正多边形.故选D.【点睛】本题考查了正多边形的性质,熟知每条边都相等、每个角都相等的多边形是正多边形是解决问题的关键.8.A【解析】【分析】利用三角形全等和根据题目设未知数,列等式解答即可.【详解】解:设AM=x,∵点M、N刚好是AD的三等分点,∴AM=MN=ND=x,则AD=AB=BC=3x,∵△EFG是等腰直角三角形,∴∠E=∠F=45°,∠EGF=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=∠BGN=∠ABF=90°,∴四边形ABGN是矩形,∴∠AHM=∠BHF=∠AMH=∠NME=45°,∴△AMH≌△NMH(ASA),故①正确;∵∠AHM=∠AMH=45°,∴AH=AM=x,则BH=AB﹣AH=2x,又Rt△BHF中∠F=45°,∴BF=BH=2x,AMBF=12,故②正确;∵四边形ABGN是矩形,∴BG=AN=AM+MN=2x,∴BF=BG=2x,∵AB⊥FG,∴△HFG是等腰三角形,∴∠FHB=∠GHB=45°,∴∠FHG=90°,即GH⊥EF,故③正确;∵∠EGF=90°、∠F=45°,∴EG=FG=BF+BG=4x,则S△EFG=12•EG•FG=12•4x•4x=8x2,又S△EMN=12•EN•MN=12•x•x=12x2,∴S△EMN:S△EFG=1:16,故④正确;故选A.【点睛】本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键. 9.B【解析】【分析】根据题意得出圆的周长以及圆转动的周数,进而得出与地面相切的弧.【详解】∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了98π,∴98π÷8π=12…2π,即圆滚动12周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点,»BC=2»AB,∴»AB=16×8π=43π<2π,»AB+»BC=12×8π=4π>2π,∴此时»BC与地面相切,∴此时该圆与地面交点在»BC上,故选B.【点睛】此题主要考查了旋转的性质以及圆的周长公式等知识,得出O点转动的周数是解题关键.10.①②③④【解析】【分析】首先由SAS判定△BCD≌△ACE,即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,则④正确,可得∠FCE=60°,可得△CFG是等边三角形,则可得∠CFG=∠FCB,则FG∥BE,可得③正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)∴CF=CG(④正确),且∠ACD=60°∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确)正确的有①②③④.【点睛】本题的关键是熟练掌握等边三角形的判定与性质,全等三角形的判定与性质,应用数形结合思想.11.两个角是对顶角,这两个角相等.【解析】【分析】根据命题的定义即可解答.【详解】对顶角相等.题设:两个角是对顶角;结论:这两个角相等;故答案为:两个角是对顶角,这两个角相等.【点睛】本题考查命题,熟悉命题的设定过程是解题关键.12.30°或150°【解析】【分析】弦所对的弧有优弧和劣弧,故弦所对的圆周角也有两个,它们的关系是互补关系;弦长等于半径时,弦所对的圆心角为60°,由此解答即可.【详解】如图,弦AB所对的圆周角为∠C,∠D,连接OA、OB,因为AB=OA=OB=7cm,所以,∠AOB=60°,根据圆周角定理知,∠C12∠AOB=30°,根据圆内接四边形的性质可知,∠D=180°﹣∠C=150°,所以,弦AB所对的圆周角的度数30°或150°.故答案为:30°或150°.【点睛】本题考查了圆内接四边形的性质、圆周角定理及等边三角形的判定与性质,解答此题时要注意一条弦所对的圆周角有两个,这两个角互为补角.13.5【解析】【分析】由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.【详解】由折叠的AE=EC,设AE=x,则EB=8-x∵矩形ABCD∴∠B=90°∴42+(8-x)2=x2∴x=5故AE=5.【点睛】本题考查的是折叠,熟练掌握勾股定理是解题的关键.14.133或394.【解析】【分析】①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题②同①的解题思路一样【详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB13,∵∠A=∠A,∴△ADH∽△ABC,∴DH AH ADBC AC AB==,即51213DH AH x==,解得:DH=513x,AH=1213x,∵E是AB的中点,∴AE=12AB=132,∴HE=AE﹣AH=132﹣1213x,由折叠的性质得:A'D=AD=x,A'E=AE=132,∴sin∠A=sin∠A'=1312521313`132xHEA E-==,解得:x=133;②如图2所示:设AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=132,DH=513x,∴A'H=A'D﹣DH=x﹣513=813x,∴cos∠A=cos∠A'=8`121313`132xA HA E==,解得:x=394;综上所述,AD的长为133或394.故答案为133或394.【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线15.60°【解析】【分析】直接利用平行线的性质以及角平分线的性质得出∠ADB=∠BDE,进而得出答案.【详解】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠BDE=12∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠ADE的度数为:60°.故答案为:60°.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.16.①③④【解析】【分析】首先根据已知条件看能得到哪些等量条件,然后根据得出的条件来判断各结论是否正确.【详解】∵△ABC、△DCE都是等腰Rt△,∴AB=AC=22,BC=2,CD=DE=22CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠B=∠DEC=45°,∴180°-∠BEC-45°=180°-∠BEC-45°;即∠AEC=∠BCE;故①正确;③∵CD AC EC BC=,∴CD CE AC BC=,由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故③正确;②由③知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故②错误;④△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时,AD=1;故S梯形ABCD=12(1+2)×1=32,故④正确;故答案为①③④.【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形的性质,平行线的判定,熟练掌握相似三角形的判定与性质是解题的关键.17.135【解析】【分析】根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+()2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.18.【解析】首先求得正方形的边长,从而可得到BE的长,然后连接BP则PD=BP,则PD+PE=PE +BP,故当点E、P、B在一条直线上时,PD+PE有最小值.【详解】解:如图所示:连接BP.∵在正方形ABCD中,AC=4,∴AB=22AC=22.∵△ABE为等边三角形,∴BE=AB=22.∵ABCD为正方形,∴PB=PD,∴PE+PD=PB+PE.∵PB+PE≥BE,∴当点E、P、B在一条直线上时,PD+PE有最小值,最小值=BE=22.故答案为22.【点睛】本题主要考查的是正方形的性质、等边三角形的性质、轴对称图形的性质,找出PD+PE取得最小值的条件是解题的关键.19.4 3【解析】【分析】连结OG,如图,根据勾股定理得到BC=4,根据平移的性质得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根据切线的性质得到OD⊥A1B1,根据相似三角形的性质即可得到结论.连结OG ,如图, ∵∠BAC =90°,AB =5,AC =3,∴BC =22AB AC -=4,∵Rt △ABC 沿射线CB 方向平移,当A 1B 1与半圆O 相切于点D ,得△A 1B 1C 1,∴CC 1=BB 1,A 1C 1=AC =3,A 1B 1=AB =5,∠A 1C 1B 1=∠ACB =90°,∵A 1B 1与半圆O 相切于点D ,∴OD ⊥A 1B 1,∵BC =4,线段BC 为半圆O 的直径,∴OB =OC =2,∵∠GEO =∠DEF ,∴Rt △B 1OD ∽Rt △B 1A 1C 1,∴11111OB OD A B A C =,即1253OB =,解得OB 1=103, ∴BB 1=OB 1﹣OB =103﹣2=43, 故答案为43.【点睛】本题考查了切线的性质,平移的性质、勾股定理和相似三角形的判定与性质,熟练掌握相关性质是解题的关键.20.5.【解析】【分析】根据中点的性质可得出MC=12AC ,CN=12CB ,根据图即可得出MN 的长度. 【详解】解:因为,M是AC的中点,N是CB的中点所以,MC=12AC,CN=12CB所以,MN=MC+CN=12AC+12CB=12(AC+CB) =12×10=5【点睛】本题主要考查了利用中点性质转化线段之间的倍分关系,长度带单位的一定注意不要漏掉长度的单位,比较简单.21.(1)170°50′29″.(2)229°5′14″.【解析】【分析】(1)先做乘除法,度与度,分与分,秒与秒对应相乘除,最后做加法;(2)先做乘法,然后做加法,度与度,分与分,秒与秒对应相加,秒的结果满60,则化为分,分的结果若满60,则转化为度.【详解】解:(1)50°24′×3+98°12′25″÷5;50°24′×3=150°72′98°12′25″÷5=19.6°2.4′5″=19°38′29″50°24′×3+98°12′25″÷5=150°72′+19°38″29″=170°50′29″;(2)100°23′42″+26°40′28″+25°30′16″×4.25°30′16″×4=100°120′64″=102°1′4″100°23′42″+26°40′28″+102°1′4″=228°64′74″= 229°5′14″【点睛】此类题是进行度、分、秒的加法、减法.乘除法计算,相对比较简单,注意以60为进制即可.22.(1)详见解析;(2.【解析】【分析】(1)利用数形结合的思想解决问题即可;(2)利用三角形的面积,构建方程求解即可. 【详解】(1)△ABC如图所示.(2)设CD⊥AB,∵S△ABC=12•AB•CD=4-12×2×1-12×2×1-12×1×1,∴35,35.【点睛】本题考查作图,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用面积法构建方程解决问题.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据题意补全图形即可;(2)根据角平分线的定义得到∠ACE=12∠ACD,∠COF=12∠COB.根据同角的补角相等得到∠ACE=∠COF.【详解】解:(1)补全图形,如图所示:(2)证明:∵CE平分∠ACD,OF平分∠COB,∴∠ACE=12∠ACD,∠COF=12∠COB.∵点C在射线OA上,∴∠ACD+∠OCD=180°.∵∠COB+∠OCD=180°,∴∠ACD=∠COB.∴∠ACE=∠COF.【点睛】本题考查了角的计算,角平分线的定义的运用,熟练掌握角平分线的定义是解题的关键.24.证明略【解析】【分析】证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB(SAS).∴AE=DB.(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∴△ACM≌△DCN(ASA).∴CM=CN.又∠DCN=60°,∴△CMN为等边三角形.【详解】请在此输入详解!25.(1)见解析;(2)见解析.【解析】【分析】(1)观察图形,根据△ABC的特征,利用全等三角形的判定方法即可得出符合题意的答案;(2)结合图形,根据三角形面积求法即可得出答案.【详解】(1)如图①所示,△DEF(或△KHE,△KHD)即为所求.(2)如图②所示,△KFH(或△KHG,△KFG)即为所求.【点睛】本题考查了格点的特征、全等三角形的判定方法及三角形的面积求法,熟练运用格点的特征是解决问题的关键.26.(1)60°,理由见解析;(2)BQ=26﹣22.【解析】【分析】(1)先证明出△CQB≌△CPA,即可得出∠QEP=60°;(2)作CH⊥AD于H,如图2,证明△ACP≌△BCQ,则AP=BQ,由∠DAC=135°,∠ACP=15°,得出AH=3,CH=33,即可得出PH=CH=33,即可得出结论.【详解】(1)如图1,∵PC=CQ,且∠PCQ=60°,则△CQB和△CPA中,PC QCPCQ ACB AC BC⎧⎪∠∠⎨⎪⎩===,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP =60°.(2)作CH⊥AD于H,如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,CA CB ACP BCQ CP CQ ⎧⎪∠∠⎨⎪⎩===∴△ACP ≌△BCQ (SAS ), ∴AP =BQ ,∵∠DAC =135°,∠ACP =15°,∴∠APC =30°,∠PCB =45°,∴△ACH 为等腰直角三角形,∴AH =CH =2AC =2×4=22 ,在Rt △PHC 中,PH =3CH =26,∴PA =PH ﹣AH =26﹣22,∴BQ =26﹣22.【点睛】本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质、等边三角形的性质和等腰直角三角形的性质.27.(131;(2)证明见解析;(3)22. 【解析】【分析】(1)首先证明∠P AB =30°,设PB =a ,可得AB =BC 3=,求出PC 即可解决问题;(2)如图2中,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .首先证明PE =PM ,再证明△ABP ≌△MND (ASA )即可解决问题;(3)如图3,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .首先证明DN =PB =AE ,EB =BM =CN ,设AE =PB =DN =x ,EB =BM =CN =y ,求出PE ,BD 即可解决问题.【详解】(1)如图1.∵AE =PE ,∴∠EAP =∠EP A .∵∠EPB =∠P AE ,∴∠EPB =∠P AE =∠EP A .∵∠B =90°,∴∠P AB +∠APB =90°,∴3∠P AE =90°,∴∠P AE =30°.设PB =a ,则AB =BC 3=a ,∴PC =BC ﹣PB 3=a ﹣a ,∴33PC a a PB a-==-1. 故答案为:31-.(2)如图2,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .∵AP ⊥DM ,∴∠APM =∠PBM =90°.∵∠P AE +∠APB =90°,∠APB +∠BPM =90°,∴∠P AE =∠BPM .∵∠EPB =∠P AE ,∴∠EPB =∠BPM .∵∠EPB +∠PEB =90°,∠BPM +∠PMB =90°,∴∠PEB =∠PMB ,∴PE =PM .∵∠CBM =∠BCN =∠N =90°,∴四边形BCNM 是矩形,∴BC =MN =AB ,BC ∥MN ,∴∠DMN =∠BPM =∠P AB .∵∠ABP =∠N =90°,∴△ABP ≌△MND (ASA ),∴P A =DM .∵DM =DP +PM =DP +PE ,∴P A =DP +PE .(3)如图3,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .由(2)可知:PE =PM ,△ABP ≌△MND ,四边形BCNM 是矩形,∴PB =DN ,设PB =DN =x ,∴AE =PB =DN =x .∵PE =PM ,PB ⊥EM ,∴EB =BM .∵BM =CN ,∴BE =BM =CN ,设BE =BM =CN =y ,则CD =x ﹣y ,BC =AB =x +y .在Rt △PBE 中,PE 22x y =+在Rt △DCB 中,BD 2222()()22x y x y x y =-++=+∴2222222x y PE BD x y +==+ 故答案为:22. 【点睛】本题考查了四边形综合题、直角梯形的性质、矩形的判定和性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.。
精选人教版七年级下册第五章《相交线与平行线》检测试题及答案(1)

人教版七年级数学下册第五章相交线与平行线章末复习卷人教版七年级数学下册第五章相交线与平行线章末复习卷一、选择题1.在同一平面内,下列判断中错误的是( )A.过一点有且只有一条直线与已知直线垂直B.垂直于已知线段并且经过这条线段中点的垂线只有一条C.垂直于已知直线的垂线只有一条D.连接直线外一点与直线上各点的所有线段中,垂线段最短2.在同一平面内,不重合的两条直线的位置关系是( )A.平行 B.相交C.平行或相交 D.平行、相交或垂直3.如图,,,∠,则∠的度数等于()A.B.C.D.4.如图,过点P作直线l的垂线和斜线,叙述正确的是( )A.都能作且只能作一条B.垂线能作且只能作一条,斜线可作无数条C.垂线能作两条,斜线可作无数条D.均可作无数条5.下列各图中,能画出AB∥CD的是( )A.①②③B.①②④C.③④D.①②③④6.下列说法不正确的是( )A.证实命题正确与否的推理过程叫做证明B.定理是命题,而且是真命题C.“对顶角相等”是命题,但不是定理D.要证明一个命题是假命题只要举出一个反例即可7.如图,下列说法错误的是(C )A. 若a∥b,b∥c,则a∥cB. 若∠1=∠2,则a∥cC. 若∠3=∠2,则b∥cD. 若∠3+∠5=180°,则a∥c8.如图,能判定AD∥BC的条件是( )A.∠3=∠2B.∠1=∠2C.∠B=∠DD.∠B=∠19.如图,将三角形ABC沿BC方向平移得到三角形DEF,若BC=4,EC=1,则平移的距离为( )A.7B.6C.4D.310.如图,点A在直线BG上,AD∥BC,AE平分∠GAD,若∠CBA=80°,则( )A.60°B.50°C.40°D.30°二、填空题11.如图,一张白色正方形纸片的边长是10cm,被两个宽为2cm的红色纸条氛围四个白色的长方形部分,则图中白色部分的面积.12..如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOD=(7x-100)°,则∠AOD的度数为13.长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,若使AB′∥BD,则折痕AF与AB的夹角∠BAF应为______.14.把命题“对顶角相等”改写成“如果……那么……”的形式: .15.如图所示,FE⊥CD,∠2=25°,猜想当∠1=______时,AB∥C D.16.如图,点D,E分别在AB,BC上,DE∥AC,AF∥BC,∠1=70°,则∠2= °.三、解答题'''; 17.(1)如图,平移三角形ABC,使点A平移到点A',画出平移后的三角形A B C(2)在(1)的条件下,指出点A,B,C 的对应点,并指出AB,BC,AC的对应线段和∠A,∠B, ∠C的对应角.18.如图所示,已知AO⊥BC于O,DO⊥OE,∠1=65°,求∠2的度数.19.如图,根据要求填空:(1)过点A作AE∥BC,交______于点E;(2)过点B作BF∥AD,交______于点F;(3)过点C作C G∥AD,交______________________;(4)过点D作DH∥BC,交BA的___________于点H.20.如图,现有以下三个条件:①AB∥CD,②∠B=∠C,③∠E=∠F.请你以其中两个作为题设,另一个作为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?若是真命题,请给予证明;若是假命题,请举出反例.22.阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.23. 如图,CB∥OA,∠C=∠A=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC∶∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.参考答案1-10 CCBBDCCDDCcm.11.【答案】64212.【答案】140°13.【答案】55°14.【答案】如果两个角是对顶角,那么这两个角相等15.【答案】65°16.【答案】1017.(1)如图所示.(2)点A ,B ,C 的对应点分别是点A B C ''',,,线段AB,BC ,AC 的对应线段分别是A B B C A C '''''',,,∠A,∠B ,∠ACB 的对应角分别A A B C A C B '''''''∠∠∠,,.18.解:∵AO ⊥BC 于O , ∴∠AOC=90°,又∠1=65°,∴∠AOE=90°﹣65°=25°.∵DO ⊥OE ,∴∠DOE=90°,∴∠2=∠DOE ﹣∠AOE=90°﹣25°=65°19.【答案】DC DC AB 的延长线于点G 延长线20.解析:(1)如果①②,那么③;如果①③,那么②;如果②③,那么①.(2)“如果①②,那么③”是真命题.证明如下:AB CD,B CDF.BC C=CDF,CE BF,E= F.,.AB CD,:. B CDF.E F,CE BF, C CDF,AB CD.∴∠=∠∠=∠∴∠∠∴∴∠∠∠=∠∠=∠∴∴∠=∠∴∥又,∥“如果①③那么②”是真命题证明如下:∥∥∥E=F CE BF C=CDF.B= C B=CDF AB CD∠∠∴∴∠∠∠∠∴∠∠∴“如果②③,那么①”是真命题.证明如下:, ∥,又,,∥22.解:过点P 作PE ∥AB.∵AB∥CD,∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).∴∠1+∠A=180°(两直线平行,同旁内角互补),∠2+∠C=180°(两直线平行,同旁内角互补).∴∠1+∠A+∠2+∠C=360°.又∵∠APC=∠1+∠2,∴∠APC+∠A+∠C=360°.如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.解:如图乙,过点P作PE∥AB.∵AB∥CD(已知),∴PE∥AB∥CD(平行于同一条直线的两条直线平行).∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).∵∠APC=∠EPA+∠EPC,∴∠APC=∠A+∠C(等量代换).如图丙,过点P作PF∥AB.∴∠FPA=∠A(两直线平行,内错角相等).∵AB∥CD(已知),∴PF∥CD(平行于同一条直线的两条直线平行).∴∠FPC=∠C(两直线平行,内错角相等).∵∠FPC-∠FPA=∠APC,∴∠C-∠A=∠APC(等量代换).23.解:(1)∵CB∥OA,∴∠AOC=180°-∠C=180°-100°=80°.∵OE平分∠COF,∴∠COE=∠EOF.∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°.(2)∠OBC∶∠OFC的值不变.理由如下:∵CB∥OA,∴∠AOB=∠OBC人教版七年级数学下册第五章相交线与平行线尖子生培优测试试卷一、单选题(共10题;共30分)1.下列句子中,不属于命题的是( )A. 正数大于一切负数吗?B. 两点之间线段最短C. 两点确定一条直线D. 会飞的动物只有鸟2.如图:已知∠1=40°,要使直线a∥b,则∠2=()A. 50°B. 40°C. 140°D. 150°3.如图,若∠1=50°,则∠2的度数为()A. 30°B. 40°C. 50°D. 90°4.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A. 30°B. 60°C. 80°D. 120°5.如图,直线l1∥l2,AB与直线l1垂直,垂足为点B,若∠ABC=37°,则∠EFC的度数为()A. 127°B. 133°C. 137°D. 143°6.如图,AB∥CD,EF⊥AB于E,若∠1=60°,则∠2的度数是()A. 35°B. 30°C. 25°D. 20°7.如图,∥,直线分别交、于点,,平分,已知,则=()A. B. C. D.8.下列图形可以由一个图形经过平移变换得到的是()A. B. C. D.9.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( ).A. △ABC与△DEF能够重合B. ∠DEF=90°C. AC=DFD. EC=CF10.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A. 16°B. 33°C. 49°D. 66°二、填空题(共6题;共24分)11.如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有________对;若∠BAC=50°,则∠EDF=________12.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=________°.13.如图交AB于点于点A,若,则________度14.如图,立方体棱长为2cm,将线段AC平移到A1C1的位置上,平移的距离是________cm.15.如图,直线a与直线b、c分别相交于点A、B,将直线b绕点A转动,当∠1=∠________时,c∥b16.如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________.三、解答题(共7题;共46分)17.如图所示,点E在直线DF上,点B在直线AC上,直线AF分别交BD,CE于点G,H.若∠AGB=∠EHF,∠C=∠D,请到断∠A与∠F的数量关系,并说明理由.18.如图,点A、B、C、D在一条直线上,EA⊥AD,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?19.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD 的位置关系,并说明理由.20.已知:如图,BE//CD,∠A=∠1. 求证:∠C=∠E .21.如图,已知AB∥CD,BC∥ED,请你猜想∠B与∠D之间具有什么数量关系,并说明理由.22.如图,EF∥CD,∠1=∠2,∠ACB=45°,求∠DGC的度数.23.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D 在GH上,求∠BDC的度数.答案一、单选题1. A2.B3.B4. A5. A6. B7. C8.B9.D 10.D二、填空题11.6;50°12.46 13.42 14.2;15.3 16.64°三、解答题17.解:∠A=∠F理由;∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF∴∠DGF=∠DGF,∴BD∥CE,∠C=∠ABD,∵∠D=∠C∴∠ABD=∠D∴AC∥DF,∴∠A=∠F18.解:CE∥DF,理由如下:∵AE⊥AD,BF⊥AD,∴∠A=∠FBD,∴AE∥BF,∴∠E=∠EGF,又∵∠E=∠F,∴∠EGF=∠F,∴CE∥DF19.解:延长MF交CD于点H∠1=90∠FH,2140∴∠CHF=1405-902=50°,∠CHF=∠2,AB∥CD20.证明:∵∠A=∠1,∴DE//AC .∴∠E=∠EBA .∵BE//CD ,∴∠EBA=∠C .∴∠C=∠E .21.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C,∵BC∥ED,∴∠C+∠D=180°,∴∠B+∠D=180°.22.解:∵EF∥CD,∴∠2=∠3,∵∠1=∠2, ∴∠1=∠3, ∴DG ∥BC ,∴∠DGC=180°﹣∠ACB=135°.23.解:∵EF ∥GH , ∴∠ABD+∠FAC=180°, ∴∠ABD=180°﹣72°=108°, ∵∠ABD=∠ACD+∠BDC ,∴∠BDC=∠ABD ﹣∠ACD=108°﹣58°=50°.人教版七年级数学下册 第五章 相交线与平行线 单元综合能力提升测试卷含答案一、选择题(每小题3分,共36分)1、如图,直线AB ,CD 相交于点O ,若∠1+∠2=100°,则∠BOC 等于( )A.130°B.140°C.150°D.160°2、若α和β是同旁内角,且α=50°时,则β的度数为( ) A.50°B.130°C.50°或130°D.无法确定3、如图,已知∥,直线分别交、于点、,平分,若°,则的度数为( )A.10°B.15°C.20°D.35°4、将命题“对顶角相等”写成“如果……,那么……”的形式,正确的是( ) A.如果两个角相等,那么它们是对顶角 B.如果两个角是对顶角,那么它们相等C.如果对顶角,那么相等D.如果两个角不是对顶角,那么这两个角不相等5、如图,与∠1是同旁内角的是( )AB CD MN AB CD M N NG MND ∠170∠=2∠A.∠2B.∠3C.∠4D.∠56、如图,AB//CD,∠AGE=1280,HM平分∠EHD,则∠MHD的度数是()A.460B.230C.260D.2407、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠4=∠5C.∠2=∠3D.∠2+∠4=180°8、如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°9、如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()A.30°B.60°C.90°D.120°10、如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°11、如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN 翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°12、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40ºD.30º二、填空题(每小题4分,共24分)13、如图,将△ABC沿B C′方向平移4cm,得到△A′B′C′,那么CC′= cm.14、将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是______.15、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=40°,则∠AEF=.16、如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.17、如图,AB∥CD,∠B=160°,∠D=120°,则∠E=_________18、如图①:MA1∥NA2,图②:MA1∥NA3,图③:MA1∥NA4,图④:MA1∥NA5,…,则第n个图中的∠A1+∠A2+∠A3+…+∠A n+1= °(用含n的代数式表示).三、解答题(60分)19、(7分)完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3______又∵HG∥CD(已知)∴∠2=∠4∵AB∥CD(已知)∴∠BEF+______=180°______又∵EG平分∠BEF(已知)∴∠1=∠______又∵FG平分∠EFD(已知)∴∠2=∠______∴∠1+∠2=(______)∴∠1+∠2=90°∴∠3+∠4=90°______即∠EGF=90°.20、(8分)如图是一个汉字“互”字,其中,∥,∠1=∠2,∠=∠.求证:∠=∠.21、(10分)如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠3=80°.(1)试证明∠B=∠ADG;(2)求∠BCA的度数.22、(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.23、(12分)如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.24、(13分)如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.参考答案1、A;2、D.3、D.4、B5、A.6、C7、C8、C9、B.10、B11、D12、D13、4;14、36°.15、答案为:110°;16、480 ;17、400;18、180°n;19、答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.20、证明:延长交于点∵∥∴∠1=∠3又∵∠1=∠2∴∠2=∠3∴∥∴∠=∠又∵∠=∠∴∠=∠21、(1)证明:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴BC∥DG,∴∠B=∠ADG;(2)解:∵DG∥BC,∴∠3=∠BCG,∵∠3=80°,∴∠BCA=80°.22、解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.23、 (1) DC∥AB;(2)求∠PFH=26 º。
《好题》初中七年级数学下册第五章《相交线与平行线》经典测试(含答案)

一、选择题1.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,其中真命题的个数是( )A .4个B .3个C .2个D .以上都不对B 解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题; ④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.2.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键.3.关于平移后对应点所连的线段,下列说法正确的是( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A .①③B .②③C .③④D .①②C 解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C .【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.4.下列说法正确的是( )A .命题一定是正确的B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D 、基本事实是真命题,此项说法错误;故选:B .【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.5.能说明命题“若a b >,则22a b >”是假命题的一个反例..可以是( ) A .0a =,1b =-B .2a =,1b =C .2a =-,1b =-D .0a =,2b = A 解析:A【分析】选取的a 的值满足a b >,但不满足22a b >即可.【详解】解:当a =0,b =﹣1时,满足a >b ,但不满足22a b >,故A 选项符合题意; 当a =2,b =1时,满足a >b ,也满足22a b >,故B 选项不符合题意;当a =﹣2,b =﹣1时,不满足a >b ,故C 选项不符合题意;当a =0,b =2时,不满足a >b ,故D 选项不符合题意;故选:A .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-= D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.7.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3B解析:B【分析】 通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A 错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.8.能说明命题“若a>b,则3a>2b“为假命题的反例为()A.a=3,b=2 B.a=﹣2,b=﹣3 C.a=2,b=3 D.a=﹣3,b=﹣2B 解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a>b时,3a=2b,∴命题“若a>b,则3a>2b”为假命题,故选:B.【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0DD.若数a使得a a解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.二、填空题11.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒ 34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质.12.用一组a,b的值说明命题“若a b>,则22>”是错误的,这组值可以是a=____,a bb= ____1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a解析:1(答案不唯一) -2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.55或20【分析】根据平行线性质得出∠A+∠B=180°①∠A=∠B②求出∠A=3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A与∠B的两边分别平行∴∠A+∠B=180°①∠A=∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.40°【分析】先根据对顶角相等的性质得出∠1=∠2即可求出α的度数【详解】解:∵∠1与∠2是对顶角∠2=50°∴∠1=∠2∵∠2=50°∴α+10°=50°∴α=40°故答案为:40°【点睛】本题考 解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.15.用反证法证明“一个三角形中最大的内角不小于60”时,第一步我们要先假设:______.答案不唯一例如一个三角形中最大的内角小于【分析】根据反证法的步骤从命题的反面出发假设出结论【详解】解:∵用反证法证明在一个三角形中最大的内角不小于60°∴第一步应假设结论不成立即假设最大的内角小于6 解析:答案不唯一,例如一个三角形中最大的内角小于60【分析】根据反证法的步骤,从命题的反面出发假设出结论.【详解】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故答案为:最大的内角小于60°.【点睛】本题考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.16.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE ∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC ,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE ∥CF ,∴∠4=∠ADF ,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.18.如图,CB∥OA,∠B=∠A=100°,E、F在CB上,且满足∠FOC=∠AOC,OE平分∠BOF,若平行移动AC,当∠OCA的度数为_____时,可以使∠OEB=∠OCA.60°【分析】设∠OCA=a∠AOC=x利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a∠AOC=x已知CB∥OA∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.19.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.60或120【分析】根据题意分两种情况如图所示(见解析)再分别根据平行线的性质即可得【详解】由题意分以下两种情况:(1)如图1(两直线平行同位角相等)(两直线平行内错角相等);(2)如图2(两直线平 解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),60PDB CPD ∴=∠=∠︒(两直线平行,内错角相等);(2)如图2,//,//PC OB PD OA ,60AOB PDB ∴=∠=∠︒(两直线平行,同位角相等),180120C P B P D D ∠=︒-∴∠=︒(两直线平行,同旁内角互补);综上,CPD ∠的度数为60︒或120︒,故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.(n ﹣1)×180【分析】分别过P1P2P3作直线AB 的平行线P1EP2FP3G 由平行线的性质可得出:∠1+∠3=180°∠5+∠6=180°∠7+∠8=180°∠4+∠2=180°于是得到∠1+∠ 解析:(n ﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.解析:(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒,∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠,∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.22.如图,已知在每个小正方形的网格图形中,ABC 的顶点都在格点上,, , A B C 为格点.(1)先将ABC 先向左平移2个单位,再向上平移3个单位,请在图中画出平移后DEF ,(点A ,B ,C 所对应的顶点分别是D ,E ,F )(2)求出DEF 的面积;(3)连结 AD ,BE ,直接说出 AD 与BE 的关系(不需要理由).解析:(1)见解析;(2)8;(3)AD=BE且AD∥BE【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点D、E、F,再依次连接即可;(2)根据三角形的面积公式计算;(3)根据平移的性质回答.【详解】解:(1)如图,△DEF即为所作;(2)S△DEF=1442⨯⨯=8;(3)如图,由平移可知:AD=BE且AD∥BE.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.如图,已知∠1=∠2,∠A=29°,求∠C的度数.解析:∠C的度数是151°.【分析】根据对顶角相等,等量代换得∠1=∠3,根据同位角相等判断两直线平行,再由两直线平行得同旁内角互补则可解答.【详解】解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3∴AB∥CD∴∠A+∠C=180°,又∵∠A=29°∴∠C=151°答:∠C的度数是151°.【点睛】本题考查了对顶角的性质、平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.解析:(1)证明见解析;(2)30°【分析】(1)根据平行线的判定求出AE∥FG,根据平行线的性质得出∠A=∠2,求出∠A=∠1,根据平行线的判定得出即可;(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,根据∠D=∠3+50°和∠CBD=70°求出∠3=30°,根据平行线的性质得出∠C=∠3即可.【详解】(1)证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠2;又∵∠2=∠1,∴∠A=∠1,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=70°,∴∠3=30°,∵AB∥CD,∴∠C=∠3=30°.【点睛】本题考查了平行线的性质和判定,垂直定义等知识点,能灵活运用定理进行推理是解题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.平移三角形ABC,使点A移动到点A′,画出平移后的三角形A′B′C′.解析:见解析【分析】先分别确定A、B、C平移后的对应点A′、B′、C′,然后再顺次连接即可.【详解】解:如图:连接AA′,在AA′在一条直线上CC′=AA′,得到C′;再作BB′∥AA′且BB′=AA′,最后顺次连接得到△A′B′C′即为所求三角形.【点睛】本题主要考查了平移作图,根据题意确定A、B、C平移后的对应点A′、B′、C′是解答本题的关键.26.分别指出下列图中的同位角、内错角、同旁内角.解析:图1中同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.;图2中同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.【详解】解:如图1,同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.如图2,同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.【点睛】本题考查了同位角、内错角,同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.27.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.解析:证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D ∠=∠,∴D ABD ∠=∠,∴//AC DF ,∴A F ∠=∠.【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键. 28.如图所示,12180∠+∠=︒,A C ∠=∠,请说明//AD BC ,先填空,再把说理过程补充完整.解:2180CDB ∠+∠=︒,又12180∠+∠=︒,1CDB ∴∠=∠(______),//AB CD ∴(______),3C ∴∠=∠(______).请补充余下说理过程: 解析:填空和余下说理过程见解析.【分析】∠=∠,再根据平行线的判定与性质可得先根据平角的定义、同角的补角相等可得1CDB∠=∠,然后根据等量代换可得33C∠=∠,最后根据平行线的判定即可得.A【详解】2180∠+∠=︒,CDB∠+∠=︒,又121801CDB∴∠=∠(同角的补角相等),∴(同位角相等,两直线平行),//AB CDC∴∠=∠(两直线平行,内错角相等),3∠=∠(已知),A C∴∠=∠(等量代换),A3AD BC∴(同位角相等,两直线平行).//【点睛】本题考查了平角的定义、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。
鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题4(培优 含答案)

鲁教版2019-2020九年级数学第五章第一单元圆的有关性质单元综合练习题4(培优含答案)1.如图所示,AB为⊙O的直径,P点为其半圆上一点,∠POA=40°,C为另一半圆上任意一点(不含A、B),则∠PCB的度数为()A.50°B.60°C.70°D.80°2.三角形两边的长分别是8 和6,第三边的长是方程x2﹣12x+20=0 的一个实数根,则三角形的外接圆半径是( )A.4B.5C.6D.83.过A,B,C三点能确定一个圆的条件是()①AB=2,BC=3,AC=5;②AB=3,BC=3,AC=2;③AB=3,BC=4,AC= 5.A.①②B.①②③C.②③D.①③4.如图,△ABC是⊙O内接三角形,若∠C=30°,AB=3,则⊙O的半径为()A.3 D.65.已知∠ACB=90°,∠CAB=a,且sina=45,I为内心,则△ABC的内切圆半径r与△BIC的外接圆半径R之比为()6.如图1,把圆形井盖卡在角尺〔角的两边互相垂直,一边有刻度)之间,即圆与两条直角边相切,现将角尺向右平移10cm,如图2,OA边与圆的两个交点对应CD的长为40cm则可知井盖的直径是()A.25cmB.30cmC.50cmD.60cm7.下列说法中正确的是( )A .平分弦的直径垂直于弦,并且平分弦所对的两条弧B .圆是轴对称图形,每一条直径都是它的对称轴C .弦的垂直平分线过圆心D .相等的圆心角所对的弧也相等8.如图,在直径为82cm 的圆柱形油槽内装有一些油以后,油面宽80AB cm =,则油的最大深度为( )A .32cmB .31cmC .9cmD .18cm9.一个圆柱的侧面积为2120πcm ,高为10cm ,则它的底面圆的半径为________. 10.如图,AB 是O 的直径,点C 在O 上,OD //AC ,若BD 1=,则BC 的长为_______.11.如图,在Rt △ABC 中,∠BCA=900,∠BAC 的平分线交△ABC 外接圆于点D ,连接BD ,若AB=2AC=4。
上海市中考数学复习专题之三角形综合题

上海市中考数学复习专题之三角形综合题姓名:________ 班级:________ 成绩:________一、解答题 (共40题;共108分)1. (3分)(2019·高新模拟) 图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos∠MOP的值为________.2. (3分) (2017七下·枝江期中) 在平面直角坐标系中,A、B、C三点的坐标分别为:A(﹣5,5)、B(﹣3,0)、C(0,3).(1)①画出△ABC,它的面积为多少;②在△ABC中,点A经过平移后的对应点A′(1,6),将△ABC作同样的平移得到△A′B′C′,画出平移后的△A′B′C′,并写出B′、C′的坐标;(2)点P(﹣3,m)为△ABC内一点,将点P向右平移4个单位后,再向下平移6个单位得到点Q(n,﹣3),则m=________,n=________.3. (3分) (2019九上·南关期末) 图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到一个格点C,使∠ABC是锐角,且tan∠ABC=,并画出△ABC.(2)在图②中找到一个格点D,使∠ADB是锐角,且tan∠ADB=1,并画出△ABD.4. (3分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.5. (3分)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长6. (3分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC 于点F.求证:(1) AE=AF;(2) BE= (AB+AC).7. (3分) (2019九下·佛山模拟) 如图,正方形ABCD的边长为1,对角线AC、BD相交于点O,延长CB至点E,使CE=CA,连接AE,在AB上取一点N,使BN=BE,连接CN并延长,分别交BD、AE于点M、F,连接FO.(1)求证:△ABE≌△CBN;(2)求FO的长;8. (2分)如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.9. (3分)(2020·松滋模拟) 如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线;(2)若CD=2 ,BP=1,求⊙O的半径.10. (3分) (2017八下·抚宁期末) 如图,正方形ABCD中,点E、F分别是边BC、CD上的点,且BE=CF,求证:(1)AE=BF(2)AE⊥BF11. (3分) (2019七下·普陀期中) 如图,∠ABD和∠BDC的平分线交于E,BE的延长线交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)求证:∠2+∠3=90°.12. (3分)如图,直线AB过x轴上的一点A(2,0),且与抛物线y=ax2相交于B、C两点,点B的坐标为(1,1).(1)求直线AB和抛物线y=ax2的解析式;(2)求点C的坐标,求S△BOC;(3)若抛物线上在第一象限内有一点D,使得S△AOD=S△BOC,求点D的坐标.13. (2分)(2019·江北模拟) 一副直角三角板由一块含30°的直角三角板与一块等腰直角三角板组成,且含30°角的三角板的较长直角边与另一三角板的斜边相等(如图1)(1)如图1,这副三角板中,已知AB=2,AC=________,A′D=________(2)这副三角板如图1放置,将△A′DC′固定不动,将△ABC通过旋转或者平移变换可使△ABC的斜边BC 经过△A′DC′′的直角顶点D.方法一:如图2,将△ABC绕点C按顺时针方向旋转角度α(0°<α<180°)方法二:如图3,将△ABC沿射线A′C′方向平移m个单位长度方法三:如图4,将△ABC绕点A按逆时针方向旋转角度β(0°<β<180°)请你解决下列问题:①根据方法一,直接写出α的值②根据方法二,计算m的值;③根据方法三,求β的值.(3)若将△ABC从图1位置开始沿射线A′C′平移,设AA′=x,两三角形重叠部分的面积为y,请直接写出y与x之间的函数关系式和相应的自变量x的取值范围.14. (3分)(2018·无锡模拟) 在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).问题:(1)求∠ABC的度数;(2)求证:△AEB≌△ADC;(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.15. (3分) (2017七下·东城期中) 在平面直角坐标系中,有点,.(1)当点在第一象限的角平分线上时,的值为________.(2)若线段轴.①求点、的坐标.②若将线段 A B 平移至线段 E F ,点 A 、 B 分别平移至A ′ (x 1 ,3 x 1 + 1 ) ,B ′ (x 2 ,2 x 2 −3 ) ,求 A ′ 、 B ′ 的坐标.16. (3分) (2017八下·宁波期中) 如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE。
第五章相交线与平行线单元试卷测试卷 (word版,含解析)

第五章相交线与平行线单元试卷测试卷 (word 版,含解析)一、选择题1.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个2.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°3.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒4.如图,AB ∥CD ,∠1=120°,则∠2=( )A .50°B .70°C .120°D .130°5.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-6.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个7.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂直为点O ,∠BOD =50°,则∠COE =( )A .30°B .140°C .50°D .60°8.下列语句是命题的是( ) A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗?9.下列定理中有逆定理的是( ) A .直角都相等 B .全等三角形对应角相等 C .对顶角相等D .内错角相等,两直线平行10.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°11.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠412.如图,直线//a b ,直线AB AC ⊥,若150∠=,则2∠=( )A .50B .45C .40D .30二、填空题13.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.14.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.15.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.16.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.17.如图,已知直线//a b ,直线c 与a 、b 相交,且1135∠=︒,则2∠=______.18.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.19.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转. (1)①如图1,∠DPC = 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD 不动,三角板PAC 从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t 为多少时,这两个三角形是“孪生三角形”. (2)如图3,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速3°/秒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC 转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t 秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN +∠CPD 为定值,请选择你认为对的结论加以证明.22.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.23.()1如图1,//,40,130AB CD AEP PFD ∠=︒∠=︒.求EPF ∠的度数.小明想到了以下方法(不完整),请填写以下结论的依据: 如图1,过点P 作//,PM AB140AEP ∴∠=∠=︒( )//,AB CD (已知)//,PM CD ∴( )2180PFD ∴∠+∠=.( ) 130,PFD ∠=︒218013050∴∠=︒-︒=. 12405090∴∠+∠=︒+︒=.即90EPF ∠=.()2如图2,//,AB CD 点P 在,AB CD 外,问,,PEA PFC P ∠∠∠之间有何数量关系.请说明理由;()3如图3所示,在()2的条件下,已知,P a PEA ∠=∠的平分线和PFC ∠的平分线交于点,G 用含有a 的式子表示G ∠的度数是 ____.(直接写出答案,不需要写出过程) 24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系. 25.(1)方法感悟如图①所示,求证:BCF B F ∠=∠+∠.证明:过点C 作//CD EF//AB EF (已知)//CD AB ∴(平行于同一条直线的两条直线互相平行)1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )12B F ∴∠+∠=∠+∠ 即BCF B F ∠=∠+∠ (2)类比应用如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.证明: (3)拓展探究如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 26.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.27.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.) 又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.) ∴∠1+∠2=∠B+∠D(等式的性质1.) 即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.28.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由平行线的性质,可知与∠A 相等的角有∠ADC 、∠AFE 、∠EGC 、∠GCD . 【详解】∵AB ∥CD ,∴∠A=∠ADC ; ∵AB ∥EF ,∴∠A=∠AFE ; ∵AF ∥CG ,∴∠EGC=∠AFE=∠A ; ∵CD ∥EF ,∴∠EGC=∠DCG=∠A ;所以与∠A 相等的角有∠ADC 、∠AFE 、∠EGC 、∠GCD 四个,故选B.2.B解析:B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补),可求∠4=56°,然后借助平角的定义求得∠3=180°-∠2-∠4=36°.故选B考点:平行线的性质3.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.4.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.5.C解析:C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,︒--+,∴x=∠BCD+∠DCM=180αγβ故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.6.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.B解析:B【解析】试题解析:EO⊥AB,AOE∴∠=90,∠=∠=AOC BOD50,∴∠=∠+∠=+=5090140.COE AOC AOE故选B.8.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.D解析:D【分析】先写出各选项的逆命题,判断出其真假即可得出答案.【详解】A、直角都相等的逆命题是相等的角是直角,错误;B、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,错误;C、对顶角相等的逆命题是相等的角是对顶角,错误;D、逆命题为两直线平行,内错角相等,正确;故选D.【点睛】本题考查的是命题与定理的区别,正确的命题叫定理,错误的命题叫做假命题,关键是对逆命题的真假进行判断.10.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质11.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.12.C解析:C【分析】根据垂直的定义和余角的定义列式计算得到3∠,根据两直线平行,同位角相等可得23∠∠=.【详解】如图,直线AB AC ⊥,1390︒∴∠+∠=.150︒∠=,390140︒︒∴∠=-∠=,直线//a b ,2340︒∴∠=∠=,故选C .【点睛】本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.二、填空题13.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.14.2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=12n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋解析:2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得, n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 15.4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答解析:4【分析】观察图象,发现平移前后,B 、E 对应,C 、F 对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.16.30°【分析】先由AB//CD 得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键.17.45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵解析:45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵a//b∴∠2=∠3=45︒.故答案为:45︒【点睛】此题主要考查了平行线的性质以及邻补角的定义,熟练掌握“两直线平行,同位角相等”是解此题的关键.18.120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.19.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.20.15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD ,再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD ,再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC ∥DE ,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a ∥b ,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC 为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC ∥BD ,∠DBP =90°,∴∠CPN =∠DBP =90°,∵∠CPA =60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC∥BD时,PC BD∠PBD=90°,∵//,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当//AC DP,//∴∠=∠=︒,DPA PAC90∠+∠=︒-︒+︒=︒,1803090240DPN DPA∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,当//AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.当PD在MN下方时,如图,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=230,t-︒∠APN=3t.∴∠CPD=360CPA APN DPB BPN︒-∠-∠-∠-∠()360603301802t t=︒-︒--︒-︒-=90t︒-21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.22.(1)CPDαβ∠=∠+∠,理由见解析;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠;当点P在射线AM上时,CPDβα∠=∠-∠.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补;(2),PFC PEA P ∠=∠+∠理由见解析;(3)1.2G α∠=【分析】(1)根据平行线的性质与判断,即可解答.(2)过P 点作PN//AB ,则PN//CD ,根据平行线的性质得出∠PEA=∠NPE ,进而得到∠FPN=∠PFC ;(3)令AB 与PF 交点为O ,连接EF EF 如图3,在△GFE 中,利用三角形内角和定理进行计算,由(2)知∠PFC=∠PEA+∠P ,得到∠PEA=∠PFC −α,即可解答.【详解】解:(1)两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;两直线平行,同旁内角互补(2)PFC PEA P ∠=∠+∠理由如下:过点P 作//PN AB ,则//PN CD∴PEA NPE ∠=∠∵FPN NPE FPE ∠=∠+∠∴FPN ∠=PEA FPE ∠+∠∵//PN CD∴F FPN P C ∠=∠∴PFC PEA FPE ∠=∠+∠即PFC PEA P ∠=∠+∠.(3)令AB 与PF 交点为O ,连接EF 如图3,在GFE 中,180()G GFE GEF ∠=︒-∠+∠, ∵12GEF PEA OEF ∠=∠+∠,12GFE PFC OFE ∠=∠+∠, ∴1122GEF GFE PEA PFC OEF OFE ∠+∠=∠+∠+∠+∠, ∵由(2)知PFC PEA P ∠=∠+∠,∴C PEA PF α=∠-∠,而180180OF PF E OEF F E C O ∠+∠=-︒-∠∠=︒, ∴11()22GEF GFE PFC PFC α∠+∠=∠-+∠+11801802PFC α︒-∠=︒-, ∴11180()18018022G GEF GFE αα∠=︒-∠+∠=︒-︒+=. 故答案为:12G α∠=【点睛】 此题考查平行线的性质的运用,三角形内角和定理,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(2)见解析;(2)BCF F B ∠=∠-∠,BCF B F ∠=∠-∠.【分析】(2)过点C 作CD ∥AB ,由平行线的性质,得到180B BCD ∠+∠=︒,180DCF F ∠+∠=︒,即可得到结论成立;(3)①过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案; ②过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案;【详解】()2证明:过点C 作//CD AB//AB EF (已知)//CD EF ∴(平行于同一条直线的两条直线互相平行)180,180B BCD DCF F ∴∠+∠=︒∠+∠=︒(两相线平行,同旁内角补),∵BCF BCD DCF ∠=∠+∠,∴360B BCF F ∠+∠+∠=︒;(3)①过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠=∠+∠,∴BCF F B ∠=∠-∠;故答案为:BCF F B ∠=∠-∠;②过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠+∠=∠,∴BCF B F ∠=∠-∠.故答案为:BCF B F ∠=∠-∠.【点睛】本题考查了平行线的判定和性质,解题的关键是熟练掌握题意,以及掌握平行线的判定和性质进行证明.26.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF=∠FDC,∴∠FDC=∠DAB,∵∠FDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD =70°,即∠DQP =70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.27.类比探究:见解析;创新应用:(1):1105.∠=︒创新应用:(2):2150.∠=︒【分析】[类比探究]:如图,过E 作//,EF AB 结合已知条件得//,FE CD 利用平行线的性质可得答案,[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB 得到//,CD EF 利用平行线的性质可得答案,(2):由题意得://,AB CD 过E 作//,EG AB 得到 //,EG CD 利用平行线的性质可得答案.【详解】解:类比探究:如图,过E 作//,EF AB//,AB CD//,FE CD ∴//,EF AB180,B BEF ∴∠+∠=︒//,FE CD180,D DEF ∴∠+∠=︒360,B BEF DEF D ∴∠+∠+∠+∠=︒360.B BED D ∴∠+∠+∠=︒[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB//,CD EF ∴//,EF AB,B BEF ∴∠=∠//,CD EF,D DEF ∴∠=∠,B D BEF DEF BED ∴∠+∠=∠+∠=∠30,45,B D ∠=︒∠=︒75,BED ∴∠=︒90,AEB DEC ∠=∠=︒1360909075105.∴∠=︒-︒-︒-︒=︒(2):由题意得://,AB CD 过E 作//,EG AB//,EG CD ∴2180,GEQ ∴∠+∠=︒//,EG AB1180,GEF ∴∠+∠=︒1212360GEF GEQ FEQ ∴∠+∠+∠+∠=∠+∠+∠=︒ ,∠1=120o ,∠FEQ=90°,2150.∴∠=︒【点睛】本题考查平行公理及平行线的性质,掌握平行公理及平行线的性质是解题关键.28.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.。
备考2021年中考数学复习专题:图形的性质_尺规作图_作图—基本作图,填空题专训及答案
备考2021年中考数学复习专题:图形的性质_尺规作图_作图—基本作图,填空题专训及答案备考2021中考数学复习专题:图形的性质_尺规作图_作图—基本作图,填空题专训1、(2016北京.中考真卷) 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是________2、(2019本溪.中考真卷) 如图,是矩形的对角线,在和上分别截取,使;分别以为圆心,以大于的长为半径作弧,两弧在内交于点,作射线交于点,若,则点到的距离为________.3、(2018葫芦岛.中考真卷) 如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于 BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E 、F.若∠MON=60°,EF=1,则OA=________.4、(2017通州.中考模拟) 阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是________.5、(2017东城.中考模拟) 下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(i)分别以A,B为圆心,大于 AB的长为半径作弧,两弧相交于点C,D;(ii)作直线CD交AB于点O;(iii)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是________.6、(2017于洪.中考模拟) 在平行四边形ABCD中,连接AC,按以下步骤作图,分别以A、C为圆心,以大于 AC的长为半径画弧,两弧分别相交于点M、N,作直线MN交CD于点E,交AB于点F.若AB=6,BC=4,则△ADE的周长为_______ _.7、(2019朝阳.中考模拟) 在数学课上,老师提出如下问题:己知:直线l和直线外的一点P.求作:过点P作直线于点Q.己知:直线l和直线外的一点P.求作:过点P作直线于点Q.小华的作法如下:如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;第二步:连接PA、PB,作的平分线,交直线l于点Q.直线PQ即为所求作.如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;第二步:连接PA、PB,作的平分线,交直线l于点Q.直线PQ即为所求作.老师说:“小华的作法正确”.请回答:小华第二步作图的依据是________.8、(2017农安.中考模拟) 如图,在Rt△ABC中,∠B=90°,按如下步骤作图:①分别以点B、C为圆心,大于 AB的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,③连接BD,若AC=8,则BD的长为________.9、(2019新昌.中考模拟) 如图,在中,AD平分,按如下步骤作图:第一步,分别以点A、D为圆心,以大于的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若,,,求BD的长是________.10、(2017浙江.中考模拟) 如图,AB∥CD,以点B为圆心,小于DB长为半径作圆弧,分别交BA、BD于点E、F,再分别以点E、F,为圆心,大于长为半径作圆弧,两弧交于点G,作射线BG交CD于点H。
2021-2022学年基础强化鲁教版(五四制)六年级数学下册第五章基本平面图形重点解析试题(无超纲)
六年级数学下册第五章基本平面图形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若一个角为45°,则它的补角的度数为()A.55°B.45°C.135°D.125°∠三种方法表示同一个角的是()2、下列图形中,能用AOB∠,1∠,OA.B.C.D.3、木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()A.两点之间线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度叫做这两点之间的距离4、如图所示,点E 、F 分别是线段AC 、AB 的中点,若EF =2,则BC 的长为( )A .3B .4C .6D .85、若5318A '∠=︒,则A ∠的补角的度数为( )A .3642'︒B .3682'︒C .12642'︒D .12682'︒6、在数轴上,点M 、N 分别表示数m ,n .则点M 、N 之间的距离为||m n -.已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d .且2||||2,||1()5a cbcd a a b -=-=-=≠,则线段BD 的长度为( )A .4.5B .1.5C .6.5或1.5D .4.5或1.5 7、钟表上1时30分时,时针与分针所成的角是( )A .150︒B .120︒C .135︒D .以上答案都不对8、在一幅七巧板中,有我们学过的( )A .8个锐角,6个直角,2个钝角B .12个锐角,9个直角,2个钝角C .8个锐角,10个直角,2个钝角D .6个锐角,8个直角,2个钝角9、如图所示,下列表示角的方法错误的是( )A .∠1与∠AOB 表示同一个角B .图中共有三个角:∠AOB ,∠AOC ,∠BOCC .∠β+∠AOB =∠AOCD .∠AOC 也可用∠O 来表示10、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)∠=∠,依据是______.1、如图,直线CD经过点O,若OC平分∠AOB,则AOD BOD2、4635'︒的余角等于__________.3、在墙壁上用两枚钉子就能固定一根横放的木条,根据是_____________.4、转化0.15°为单位秒是______.5、如图,在平面内有A,B,C三点.请画直线AC,线段BC,射线AB,数数看,此时图中共有个钝角.三、解答题(5小题,每小题10分,共计50分)AB BC CD=,M为AD的中点.1、如图,B、C两点把线段AD分成三部分,::2:5:3(1)判断线段AB与CM的大小关系,说明理由.CM=,求AD的长.(2)若102、已知:如图,直线AB、CD相交于点O,∠EOC=90°,OF平分∠AOE.(1)若∠BOC=40°,求∠AOF的大小.(2)若∠COF=x°,求∠BOC的大小.3、如图1将线段AB,CD放置在直线l上,点B与点C重合,AB=10cm,CD=15cm,点M是线段AC的中点,点N是线段BD的中点.解答下列问题:(1)MN=(2)将图1中的线段AB沿DC延长线方向移动xcm至图2的位置.①当x=7cm时,求MN的长.②在移动的过程中,请直接写出MN,AB,CD之间的数量关系式.4、如图,已知点A,B,C,请按要求画出图形.(1)画直线AB 和射线CB ;(2)连结AC ,并在直线AB 上用尺规作线段AE ,使2AE AC ;(要求保留作图痕迹)5、已知∠AOB ,射线OC 在∠AOB 的内部,射线OM 是∠AOC 靠近OA 的三等分线,射线ON 是∠BOC 靠近OB 的三等分线.(1)如图,若∠AOB =120°,OC 平分∠AOB ,①补全图形;②填空:∠MON 的度数为 .(2)探求∠MON 和∠AOB 的等量关系.-参考答案-一、单选题1、C【解析】【分析】根据补角的性质,即可求解.【详解】解:∵一个角为45°,∴它的补角的度数为18045135︒-︒=︒ .故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.2、A【解析】【分析】根据角的表示的性质,对各个选项逐个分析,即可得到答案.【详解】A 选项中,可用AOB ∠,1∠,O ∠三种方法表示同一个角;B 选项中,AOB ∠能用1∠表示,不能用O ∠表示;C 选项中,点A 、O 、B 在一条直线上,∴1∠能用O ∠表示,不能用AOB ∠表示;D 选项中,AOB ∠能用1∠表示,不能用O ∠表示;故选:A .【点睛】本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.3、C【解析】【分析】结合题意,根据直线的性质:两点确定一条直线进行分析,即可得到答案.结合题意,匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是:两点确定一条直线故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线的性质,从而完成求解.4、B【解析】【分析】根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.【详解】解:E、F分别是线段AC、AB的中点,AC=2AE=2CE,AB=2AF=2BF,EF=AE﹣AF=22AE﹣2AF=AC﹣AB=2EF=4,BC=AC﹣AB=4,故选:B.【点睛】本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.5、C【解析】【分析】根据补角的性质,即可求解.解:∵5318A '∠=︒,∴A ∠的补角的度数为180180531812642A ''︒-∠=︒-︒=︒.故选:C【点睛】本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.6、C【解析】【分析】根据题意可知,A B 与C 的距离相等,分D 在A 的左侧和右侧两种情况讨论即可【详解】解:①如图,当D 在A 点的右侧时,2||||2,||1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-=, 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当D 在A 点的左侧时,2||||2,||1()5a cbcd a a b -=-=-=≠224AB AC a c ∴==-=, 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段BD 的长度为6.5或1.5故选C【点睛】本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.7、C【解析】【分析】钟表上12个大格把一个周角12等分,每个大格30°,1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.【详解】解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是4.5×30°=135°.故选:C .【点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动(112)°,并且利用起点时间时针和分针的位置关系建立角的图形. 8、B【解析】【分析】根据一副七巧板图形,查出锐角,直角和钝角的个数即可.【详解】5个等腰直角三角形,5个直角,10个锐角,1个正方形,4个直角,1个平行四边形,2个钝角,2个锐角,在一幅七巧板中根据12个锐角,9个直角,2个钝角.故选择B.【点睛】本题考查角的分类,平面图形,掌握角的分类,平面图形是解题关键.9、D【解析】【分析】根据角的表示方法表示各个角,再判断即可.【详解】解:A、∠1与∠AOB表示同一个角,正确,故本选项不符合题意;B、图中共有三个角:∠AOB,∠AOC,∠BOC,正确,故本选不符合题意;C、∠β表示的是∠BOC,∠β+∠AOB=∠AOC,正确,故本选项不符合题意;D、∠AOC不能用∠O表示,错误,故本选项符合题意;故选:D.【点睛】本题考查了对角的表示方法的应用,主要检查学生能否正确表示角.10、A【解析】【分析】根据两点之间线段最短的性质解答.【详解】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选:A.【点睛】此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.二、填空题1、等角的补角相等【解析】【分析】根据角平分线的定义和等角的补角相等解答即可.【详解】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC+∠AOD=180°,∠BOC+∠BOD=180°,∴∠AOD=∠BOD(等角的补角相等),故答案为:等角的补角相等.【点睛】本题考查角平分线的定义、补角,熟知等角的补角相等是解答的关键.︒2、4325'【解析】【分析】根据和为90°的两个角互为余角解答即可.【详解】︒,解:4635'︒的余角等于90°-4635'︒=4325'︒.故答案为:4325'【点睛】本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.3、两点确定一条直线【解析】【分析】根据两点确定一条直线,即可求解.【详解】解:在墙壁上用两枚钉子就能固定一根横放的木条,根据是两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.4、540秒【解析】【分析】先把度化为分,再把分化为秒即可.【详解】0.150.156********''''''︒=⨯==⨯=故答案为:540秒【点睛】本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.5、见详解,3【解析】【分析】直接根据直线、线段、射线的概念画出图形,再由角的概念解答即可.【详解】解:作图如下:由图可得,图中共有3个钝角,故答案为:3.此题考查的是角的概念、直线、射线和线段,掌握有公共端点是两条射线组成的图形叫做角是解决此题关键.三、解答题=,见解析1、 (1)AB CM(2)50【解析】【分析】AD=5x,表示出CM,(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=12即可求解;(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.(1)AB CM=.理由如下:设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,AD=5x,∴AM=DM=12∴CM=DM-CD=5x-3x=2x,∴AB=CM;(2)∵CM=10cm,CM=2x,∴2x=10,解得x=5,∴AD =10x =50cm .【点睛】本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.2、(1)25︒;(2)2702x ︒-︒【解析】【分析】(1)结合题意,根据平角和角度和差的性质计算得AOE ∠,再根据角平分线的性质计算,即可得到答案;(2)根据角度和差性质,计算得EOF ∠;根据角平分线的性质计算,即可得到答案.【详解】(1)∵∠EOC =90°,∠BOC =40°∴18050AOE BOC EOC ∠=︒-∠-∠=︒∵OF 平分∠AOE ∴252AOE AOF ∠∠==︒ ; (2)∵∠COF =x °,∠EOC =90°∴90EOF COF EOF x ∠=∠-∠=︒-︒∵OF 平分∠AOE∴22180AOE EOF x ∠=∠=︒-︒∴()1801802180902702BOC AOE EOC x x ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒.【点睛】本题考查了角的知识;解题的关键是熟练掌握角平分线、角度和差的性质,从而完成求解.3、 (1)12.5cm(2)①12.5cm;②MN =12(AB+CD)【解析】【分析】(1)利用线段的中点的性质解决问题即可;(2)①分别求出CM,CN,可得结论;②利用x表示出MC,CN,可得结论.(1)解:如图1中,∵点M是线段AC的中点,点N是线段BD的中点,∴BM=12AB=5(cm),BN=12CD=7.5(cm),∴MN=BM+BN=12.5(cm),故答案为:12.5cm;(2)①∵BC=7cm,AB=10cm,CD=15cm,∴AC=17(cm),BD=22(cm),∵点M是线段AC的中点,点N是线段BD的中点,∴CM=12AC=8.5(cm),BN=12BD=11(cm),∴CN=BN-BC=11-7=4(cm),∴MN=MC+CN=12.5(cm);②∵BC=x,∴AC=AB+x,BD=x+CD,∵点M是线段AC的中点,点N是线段BD的中点,∴CM=12AC=12(AB+x),BN=12BD=12(x+CD),∴MN=MC+BN-BC=12(AB+x)+12(x+CD)-x=12(AB+CD).【点睛】本题考查线段的中点等知识,解题的关键是掌握线段的中点的性质,属于中考常考题型.4、 (1)见解析(2)见解析【解析】【分析】(1)根据直线和射线的定义画图即可;(2)先连结AC,然后以点A圆心,以AC为半径,在直线AB上顺次截取2次即可;(1)如图所示;(2)如图所示,或【点睛】本题主要考查了作图知识及把几何语言转化为几何图形的能力,比较简单,直线向两方无限延伸,射线向一方无限延伸,而线段不延伸.也考查了作一条线段等于已知线段的尺规作图.5、 (1)①见解析;②80︒ (2)23MON AOB ∠=∠,见解析 【解析】【分析】(1)①根据∠AOB =120°,OC 平分∠AOB ,先求出∠BOC =∠AOC =60︒, 在根据OM 是∠AOC 靠近OA 的三等分线,求出∠AOM =20︒,根据ON 是∠BOC 靠近OB 的三等分线,∠BON =20︒,然后在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON 即可;②根据∠AOM =20︒,∠BON =20︒,∠AOB =120°,可求∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°即可;(2)根据OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.可求∠AOM =13AOC ∠,∠BON=13BOC ∠,可得()MON AOB AOM BON ∠=∠-∠+∠ 23AOB =∠. (1)①∵∠AOB =120°,OC 平分∠AOB ,∴∠BOC =∠AOC =6201AOB ∠=︒, ∵OM 是∠AOC 靠近OA 的三等分线,∴∠AOM =11602033AOC ∠=⨯︒=︒,∵ON 是∠BOC 靠近OB 的三等分线,∴∠BON =11602033BOC ∠=⨯︒=︒, 在∠AOB 内部,先画∠AOC =60°,在∠AOC 内部,画∠AOM =20°,在∠BOC 内部,画∠BON , 补全图形;②∵∠AOM =20︒,∠BON =20︒,∠AOB =120°,∴∠MON =∠AOB -∠AOM -∠BON =120°-20°-20°=80°,∴∠MON 的度数是80°,故答案为:80°(2)∠MON =23∠AOB .∵OM 是∠AOC 靠近OA 的三等分线, ON 是∠BOC 靠近OB 的三等分线.∴∠AOM =13AOC ∠,∠BON=13BOC ∠, ∴()MON AOB AOM BON ∠=∠-∠+∠ ,1()3AOB AOC BOC =∠-∠+∠, 13AOB AOB =∠-∠, 23AOB =∠.【点睛】本题考查画图,角平分线定义,等分角,掌握角平分线定义,等分角,根据角的度数画角是解题关键.。
2021中考数学专题05 瓜豆原理中最值问题
专题瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?P QAB C【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.N C B AQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?CB AQ P【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角) M N ααP QAB CP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN ) M NααAB C【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B CDE F2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22πC .1D .23、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.4、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.5、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B C DE F【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1E DCB ACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =, 所以CH =52,因此CG 的最小值为52. F HG 2G 1E DCB A 2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=222,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴PE=22AP=22CQ ,QF=22BQ , ∴PE+QF=22(CQ+BQ )=22BC=222, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12(PE+QF )=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C .3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】213【详解】ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +==22224652213AB BC +=+==故答案为:2134、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.【答案】62 【详解】解:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB =BC ′=6,∠ABC ′=90°,∴EE ′=AC 2266+2故答案为:625、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【答案】(1)见解析;(2)27【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt △ACF 中, ∴CF=22AC AF +=()22423+=27,∴CD=CF=27.专题 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
中考数学专题复习基础训练及答案(改好 53页)
目录第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲尺规作图第4讲图形的相似第5讲解直角三角形第三部分统计与概率第七章统计与概率第1讲统计第2讲概率实数易错清单1.用科学记数法表示较大或较小的数时指数n的确定.【例1】(湖北随州)2013年,我市以保障和改善民生为重点的“十件实事”全面完成,财政保障民生支出达74亿元,占公共财政预算支出的75%,数据74亿元用科学记数法表示为().A. 74×108元B. 7.4×108元C. 7.4×109元D. 0.74×1010元【解析】①本题考查了科学记数法的相关知识.一些较大的数,可以用a×10n的形式来表示,其中1≤a<10,n是所表示的数的整数位数减1.②a×10n中n所表示的数容易搞错.74亿元=7.4×109元.【答案】 C1.实数的运算,要先弄清楚按怎样的顺序进行,要注意负指数幂、零次幂和三角函数等在算式中的出现.2.实数计算中整体思想的运用.【例3】(2014.甘肃兰州)为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+ (2100)则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32014的值是.【解析】根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.设M=1+3+32+33+…+32014,①则3M=3+32+33+…+32015.②②-①得2M=32015-1,两边都除以2,得名师点拨1.能记住有理数、数轴、相反数、倒数、绝对值等概念,运用概念进行判断.2.能说明任意两个有理数之间的大小关系.3.能利用有理数运算法则熟练进行有理数的混合运算.4.利用科学记数法表示当下热点问题.5.能解释实数与数轴的一一对应关系.6.能利用估算思想估算一个无理数的大致大小.7.能利用运算律快速进行实数的运算.提分策略1.实数的运算.(1)在进行实数的混合运算时,首先要明确与实数有关的概念、性质、运算法则和运算律,要弄清按怎样的运算顺序进行.中考中常常把绝对值、锐角三角函数、二次根式结合在一起考查.(2)要注意零指数幂和负指数幂的意义.负指数幂的运算:a-p=(a≠0,且p是正整数),零指数幂的运算:a0=1(a≠0).【例1】计算:+(-1)0+2×(-3).【解析】根据零指数幂:a0=1(a≠0),以及负整数指数幂运算法则得出即可.【答案】原式=5+1-6=0.2.实数的大小比较.两个实数的大小比较方法有:(1)正数大于零,负数小于零;(2)利用数轴;(3)差值比较法;(4)商值比较法;(5)倒数法;(6)取特殊值法;(7)计算器比较法等.3.探索实数中的规律.关于数式规律性问题的一般解题思路:(1)先对给出的特殊数式进行观察、比较;(2)根据观察猜想、归纳出一般规律;(3)用得到的规律去解决其他问题.对数式进行观察的角度及方法:(1)横向观察:看等号左右两边什么不变,什么在变,以及变化的数字或式子间的关系;(2)纵向观察:将连续的几个式子上下对齐,观察上下对应位置的式子什么不变,什么在变,以及变化的数字或式子间的关系.【例3】观察下列等式:请解答下列问题:(1)按以上规律列出第5个等式:a5==;(2)用含n的代数式表示第n个等式:a n==(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.基础知识反馈卡·1.1时间:15分钟满分:50分一、选择题(每小题4分,共24分)1.-4的倒数是()A .4B .-4 C.14 D .-142.下面四个数中,负数是( ) A .-5 B .0 C .0.23 D .6 3.计算-(-5)的结果是( )A .5B .-5 C.15 D .-154.数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或-3 B .3 C .-3 D .6或-65.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( ) A .4.6×108 B .46×108 C .4.6×109 D .0.46×1010 6.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( ) A .-500元 B .-237元 C .237元 D .500元 二、填空题(每小题4分,共12分) 7.计算(-3)2=________.8.13-=______;-14的相反数是______.9.实数a ,b 在数轴上对应点的位置如图J1-1-1,则a ______b (填“<”、“>”或“=”).图J1-1-1答题卡题号1 2 3 4 5 6 答案7.__________ 8.__________ __________ 9.__________三、解答题(共14分) 10.计算:︱-2︱+(2+1)0--113⎛⎫ ⎪⎝⎭+tan60°.基础知识反馈卡·1.2时间:15分钟满分:50分一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)结果为()A.2x-3 B.2x+9 C.8x-3 D.18x-32.衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为()A.30元B.60元C.120元D.150元3.下列运算不正确的是()A.-(a-b)=-a+b B.a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a二、填空题(每小题4分,共24分)4.当a=2时,代数式3a-1的值是________.5.“a的5倍与3的和”用代数式表示是____________.6.当x=1时,代数式x+2的值是__________.7.某班共有x个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.8.图J1-2-1是一个简单的运算程序,若输入x的值为-2,则输出的数值为____________.输入x―→x2―→+2―→输出图J1-2-19.搭建如图J1-2-2(1)的单顶帐篷需要17根钢管,这样的帐篷按图J1-2-2(2)、(3)的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.图J1-2-2答题卡题号12 3答案4.____________5.____________6.____________7.____________8.____________9.____________三、解答题(共14分)10.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中x=2+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.计算2x +x 的结果是( ) A .3x 2 B .2x C .3x D .2x 2 2.x 3表示( )A .3xB .x +x +xC .x ·x ·xD .x +3 3.化简-2a +(2a -1)的结果是( ) A .-4a -1 B .4a -1 C .1 D .-1 4.下列不是同类项的是( )A .0与12 B .5x 与2yC .-14a 2b 与3a 2bD .-2x 2y 2与12x 2y 25.下列运算正确的是( )A .(-2)0=1B .(-2)-1=2 C.4=±2 D .24×22=28 二、填空题(每小题4分,共12分)6.单项式-x 3y 3的次数是________,系数是________.7.计算:3-2=__________.8.计算(ab )2的结果是________.答题卡题号1 2 3 4 5 答案6.__________ __________7.__________ 8.__________三、解答题(共18分)9.先化简,再求值:3(x -1)-(x -5),其中x =2.时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.把多项式x2-4x+4分解因式,所得结果是()A.x(x-4)+4 B.(x-2)(x+2)C.(x-2)2D.(x+2)22.下列因式分解错误的是()A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23.利用因式分解进行简便计算:7×9+4×9-9,正确的是()A.9×(7+4)=9×11=99 B.9×(7+4-1)=9×10=90C.9×(7+4+1)=9×12=108 D.9×(7+4-9)=9×2=184.下列各等式中,是分解因式的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)C.10x2-5x=5x(2x-1)D.x2-16x+3x=(x+4)(x-4)+3x5.如果x2+2(m-1)x+9是完全平方式,那么m的结果正确的是()A.4 B.4或2C.-2 D.4或-2二、填空题(每小题4分,共16分)6.因式分解:a2+2a+1=______________.7.因式分解:m2-mn=____________.8.因式分解:x3-x=____________.9.若把代数式x2-2x-3化为(x-m)2+k的形式,其中m,k为常数,则m+k=____________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.时间:15分钟 满分:50分一、选择题(每小题4分,共16分)1.若分式32x -1有意义,则x 的取值范围是( )A .x ≠12B .x ≠-12C .x >12D .x >-122.计算1x -1-xx -1的结果为( )A .1B .2C .-1D .-23.化简a -1a ÷a -1a2的结果是( )A.1a B .a C .a -1 D.1a -14.化简1x -1x -1可得( )A.1x 2-x B .-1x 2-x C.2x +1x 2-x D.2x -1x 2-x 二、填空题(每小题4分,共24分)5.化简:a a -b -ba -b =__________.6.化简x (x -1)2-1(x -1)2的结果是____________. 7.若分式x +12x -2的值为0,那么x 的值为__________.8.若分式-12a -3的值为正,则a 的取值范围是__________.9.化简x (x -1)2-1x -1的结果是__________.10.化简2x 2-1÷1x -1的结果是__________.答题卡题号1 2 3 4 答案5.____________6.____________7.____________8.____________ 9.____________ 10.____________ 三、解答题(共10分)11.先化简,再求值:21211a a a -⎛⎫- ⎪+-⎝⎭÷1a +1,其中a =3+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.3最接近的整数是( ) A .0 B .2 C .4 D .5 2.|-9|的平方根是( ) A .81 B .±3 C .3 D .-3 3.下列各式中,正确的是( ) A.(-3)2=-3 B .-32=-3 C.(±3)2=±3 D.32=±34.对任意实数a ,下列等式一定成立的是( ) A.a 2=a B.a 2=-a C.a 2=±a D.a 2=|a |5.下列二次根式中,最简二次根式( )A.15B.0.5C. 5D.50二、填空题(每小题4分,共12分) 6.4的算术平方根是__________. 7.实数27的立方根是________. 8.计算:12-3=________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________三、解答题(每小题9分,共18分) 9.计算:|2 2-3|-212-⎛⎫- ⎪⎝⎭+18.10.计算:212-⎛⎫⎪⎝⎭-2cos45°+(3.14-π)0+128+(-2)3.基础知识反馈卡·2.1.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.方程5x -2=12的解是( )A .x =-13B .x =13C .x =12D .x =22.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x =13B .2(x +1)+3x =13C .2x +3(x +1)=13D .2x +3(x -1)=133.二元一次方程组20x y x y +=⎧⎨-=⎩,的解是( )A.02x y =⎧⎨=⎩,B.11x y =⎧⎨=⎩,C.20x y =⎧⎨=⎩,D.11x y =-⎧⎨=-⎩,4.有下列各组数:①22x y =⎧⎨=⎩,;②21x y =⎧⎨=⎩,;③22x y =⎧⎨=-⎩,;④16x y =⎧⎨=⎩,,其中是方程4x +y =10的解的有( )A .1个B .2个C .3个D .4个5.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2 900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程组是( )A. 14250802900x y x y ⎧+=⎪⎨⎪+=⎩,B.158********x y x y +=⎧⎨+=⎩,C. 14802502900x y x y ⎧+=⎪⎨⎪+=⎩,D.152********x y x y +=⎧⎨+=⎩, 二、填空题(每小题4分,共16分) 6.方程3x -6=0的解为__________.7.已知3是关于x 的方程3x -2a =5的解,则a 的值为________.8.在x +3y =3中,若用x 表示y ,则y =______;若用y 表示x ,则x =______.9.对二元一次方程2(5-x )-3(y -2)=10,当x =0时,y =__________;当y =0时,x =________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ __________ 9.__________ __________ 三、解答题(共14分)10.解方程组: 281.x y x y +=⎧⎨-=⎩,基础知识反馈卡·2.1.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.分式方程2x -42+x=0的根是( )A .x =-2B .x =0C .x =2D .无实根2.分式方程12x 2-9-2x -3=1x +3的解为( )A .3B .-3C .无解D .3或-33.分式方程xx -3=x +1x -1的解为( )A .x =1B .x =-1C .x =3D .x =-34.有两块面积相同的试验田,分别收获蔬菜900 kg 和1 500 kg.已知第一块试验田每亩收获蔬菜比第二块少300 kg ,求第一块试验田每亩收获蔬菜多少千克?设第一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A.900x +300=1 500xB.900x =1 500x -300C.900x =1 500x +300D.900x -300=1 500x 5.解分式方程1x -1=3(x -1)(x +2)的结果为( )A .1B .-1C .-2D .无解 二、填空题(每小题4分,共16分)6.方程xx +2=3的解是________.7.方程1x -1=4x 2-1的解是________.8.请你给x 选择一个合适的值,使方程2x -1=1x -2成立,你选择的x =________________________________________________________________________.9.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解方程:3x -2=2x +1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.已知x =1是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .-3 B .3 C .0 D .0或32.已知一元二次方程x 2-4x +3=0的两根为x 1,x 2, 则x 1·x 2的值为( ) A .4 B .3 C .-4 D .-3 3.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5 D.-1+524.用配方法解一元二次方程x 2+4x =5时,此方程可变形为( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=9 D .(x -2)2=95.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x .根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1-x )=121C .100(1+x )2=121D .100(1-x )2=121 二、填空题(每小题4分,共16分)6.一元二次方程3x 2-12=0的解为__________. 7.方程x 2-5x =0的解是__________.8.若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2+ x 1·x 2的值是________.9.关于x 的一元二次方程kx 2-x +1=0有两个不相等的实数根,则k 的取值范围是_____________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若a <b ,则下列各式中一定成立的( )A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc2.不等式x -1>0的解集是( )A .x >1B .x <1C .x >-1D .x <-13.不等式10,324x x x ->⎧⎨>-⎩的解集是( )A .x <1B .x >-4C .-4<x <1D .x >14.如图J2-2-1,数轴上表示的是下列哪个不等式组的解集( )图J2-2-1A.5,3x x ≥-⎧⎨>-⎩B.5,3x x >-⎧⎨≥-⎩C.5,3x x <⎧⎨<-⎩D.5,3x x <⎧⎨>-⎩5.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A .30x +50>280B .30x -50≥280C .30x -50≤280D .30x +50≥280 二、填空题(每小题4分,共16分)6.若不等式ax |a -1|>2是一元一次不等式,则a =______________.7.把不等式组的解集表示在数轴上,如图J2-2-2,那么这个不等式组的解集是______________.图J2-2-28.已知不等式组321,0x x a +≥⎧⎨-<⎩无解,则实数a 的取值范围是______________.9.不等式组10,240x x -≤⎧⎨+>⎩的整数解是__________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解不等式组34,26x x +>⎧⎨<⎩并把解集在如图J2-2-3的数轴上表示出来.图J2-2-3基础知识反馈卡·3.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.点M (-2,1)关于y 轴对称的点的坐标是( )A .(-2,-1)B .(2,1)C .(2,-1)D .(1,-2) 2.在平面直角坐标系中,点M (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如果点P (a,2)在第二象限,那么点Q (-3,a )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.点M (-3,2)到y 轴的距离是( ) A .3 B .2 C .3或2 D .-3 5.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1) C .(4,1) D .(0,1) 二、填空题(每小题4分,共16分)6.已知函数y =2x,当x =2时,y 的值是________.7.如果点P (2,y )在第四象限,那么y 的取值范围是________.8.小明用50元钱去购买单价为5元的某种商品,他剩余的钱y (单位:元)与购买这种商品的件数x (单位:件)之间的关系式为__________________.9.如图J3-1-1,将正六边形放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(-1,0),则点E 的坐标为________.图J3-1-1答题卡题号1 2 3 4 5 答案6.________________7.________________ 8.________________ 9.________________ 三、解答题(共14分)10.在图J3-1-2的平面直角坐标系中,描出点A (0,3),B (1,-3),C (3,-5),D (-3,-5),E (3,2),并回答下列问题:(1)点A 到原点O 的距离是多少?(2)将点C 向x 轴的负方向平移6个单位,它与哪个点重合? (3)点B 分别到x 、y 轴的距离是多少?(4)连接CE ,则直线CE 与y 轴是什么关系?图J3-1-2基础知识反馈卡·3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.直线y=x-1的图象经过象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知一次函数y=3x+b的图象经过第一、二、三象限,则b的值可以是() A.-2 B.-1C.0 D.24.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()5.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2) B.(-1,-2)C.(2,1) D.(1,-2)二、填空题(每小题4分,共16分)6.写出一个具体的y随x的增大而减小的一次函数解析式________.7.已知一次函数y=2x+1,则y随x的增大而________(填“增大”或“减小”).8.(1)若一次函数y=ax+b的图象经过第一、二、三象限,则a____0,b____0;(2)若一次函数y=ax+b的图象经过二、三、四象限,则a____0,b____0.9.将直线y=2x-4向上平移5个单位后,所得直线的表达式是____________.答题卡题号1 2 3 4 5 答案6.________7.________8.(1)______ ______ (2)______ ______ 9.____________三、解答题(共14分)10.已知直线l 1∶y 1=-4x +5和直线l 2∶y 2=12x -4.(1)求两条直线l 1和l 2的交点坐标,并判断交点落在哪一个象限内;(2)在同一个坐标系内画出两条直线的大致位置,然后利用图象求出不等式-4x +5>12x-4的解.基础知识反馈卡·3.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是( )A .k >12B .k <12C .k =12D .不存在2.下列各点中,在函数y =-6x图象上的是( )A .(-2,-4)B .(2,3)C .(-1,6) D.1,32⎛⎫- ⎪⎝⎭3.对于反比例函数y =1x,下列说法正确的是( )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.已知如图J3-3-1,A 是反比例函数y =kx的图象上的一点,AB ⊥x 轴于点B ,且△ABO 的面积是2,则k 的值是( )图J3-3-1A .2B .-2C .4D .-45.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )二、填空题(每小题4分,共16分)6.如图J3-3-2,已知点C 为反比例函数y =-6x上的一点,过点C 向坐标轴引垂线,垂足分别为A ,B ,那么四边形AOBC 的面积为____________.图J3-3-2 图J3-3-3 图J3-3-47.如图J3-3-3,点P 是反比例函数y =-4x上一点,PD ⊥x 轴,垂足为D ,则S △POD=__________.8.(2012年江苏盐城)若反比例函数的图象经过点P (-1,4),则它的函数关系是________. 9.如图J3-3-4所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________.答题卡题号1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.如图J3-3-5,已知直线y =-2x 经过点P (-2,a ),点P 关于y 轴的对称点P ′在反比例函数y =kx(k ≠0)的图象上.图J3-3-5(1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.基础知识反馈卡·3.4时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.抛物线y =-(x +2)2+3的顶点坐标是( ) A .(2,-3) B .(-2,3) C .(2,3) D .(-2,-3)2.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位 3.二次函数y =x 2-2x -3的图象如图J3-4-1.当y >0时,自变量x 的取值范围是( ) A .-1<x <3 B .x <-1 C .x >3 D .x <-1或x >3图J3-4-1图J3-4-24.如图J3-4-2,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A .1B .2C .3D .45.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( ) A .y =(x -2)2+1 B .y =(x +2)2+1 C .y =(x -2)2-3 D .y =(x +2)2-3 二、填空题(每小题4分,共16分)6.将二次函数y =x 2-4x +5化为y =(x -h )2+k 的形式,则y =__________.7.将抛物线y =x 2+1向下平移2个单位,则此时抛物线的解析式是____________. 8.若二次函数y =-x 2+2x +k 的部分图象如图J3-4-3,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=3,另一个解x 2=________.图J3-4-39.y=2x2-bx+3的对称轴是直线x=1,则b的值为________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),求该抛物线的表达式.基础知识反馈卡·4.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下面四个图形中,∠1与∠2是对顶角的图形为()2.如图J4-1-1,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.120°D.150°图J4-1-1图J4-1-23.一只因损坏而倾斜的椅子,从背后看到的形状如图J4-1-2,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是()A.75°B.115°C.65°D.105°4.如图J4-1-3,AB∥CD,∠C=65°,CE⊥BE,垂足为点E,则∠B的度数为() A.15°B.25°C.35°D.75°图J4-1-3图J4-1-45.将一直角三角板与两边平行的纸条如图J4-1-4所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)6.线段AB=4 cm,在线段AB上截取BC=1 cm,则AC=__________cm.7.有如下命题:①三角形三个内角的和等于180°;②两直线平行,同位角相等;③矩形的对角线相等;④相等的角是对顶角.其中属于假命题的有__________.8.如图J4-1-5,请填写一个适当的条件:____________,使得DE∥AB.图J4-1-5图J4-1-69.如图J4-1-6,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=________度.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-1-7,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.图J4-1-7基础知识反馈卡·4.2.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列各组线段能组成三角形的一组是()A.5 cm,7 cm,12 cm B.6 cm,8 cm,10 cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,8 cm2.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线3.如图J4-2-1,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()图J4-2-1A.BC=EF B.∠A=∠DC.AC∥DF D.AC=DF4.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线的交点()A.高B.角平分线C.中线D.垂直平分线5.下列说法中不正确的是()A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等二、填空题(每小题4分,共16分)6.如图J4-2-2,要测量的A,C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E,F,量得E,F两点间的距离等于23米,则A,C两点间的距离为__________米.图J4-2-27.如图J4-2-3,△ABC≌△ABD,且△ABC的周长为12,若AC=4,AB=5,则BD =________.图J4-2-3图J4-2-4图J4-2-5 8.将一副三角尺按如图J4-2-4所示放置,则∠1=________度.9.已知:如图J4-2-5,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________°.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-6,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.图J4-2-6基础知识反馈卡·4.2.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.有一个内角是60°的等腰三角形是()A.钝角三角形B.等边三角形C.直角三角形D.以上都不是2.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形3.如图J4-2-7,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于() A.3 cm B.4 cm C.1.5 cm D.2 cm图J4-2-7图J4-2-84.如图J4-2-8,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC 为()A.55°B.65°C.75°D.85°5.边长为4的正三角形的高为()A.2 B.4 C. 3 D.2 3二、填空题(每小题4分,共16分)6.如图J4-2-9,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠A=________度,∠B=________度.图J4-2-97.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是____________.8.已知等腰三角形的一个内角为80°,则另两个角的度数是______________.9.如图J4-2-10,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC 边上一点,且BE=BP,CP=CF,则∠EPF=________度.图J4-2-10答题卡题号1234 5答案6.________________________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-11,已知在直角三角形ABC中,∠C=90°,BD平分∠ABC且交AC 于点D,∠BAC=30°.(1)求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BP A的度数.图J4-2-11基础知识反馈卡·4.3.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.平行四边形一边长是6厘米,周长是28厘米,则这条边的邻边长为()A.22厘米B.16厘米C.11厘米D.8厘米2.如图J4-3-1所示,在□ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()图J4-3-1A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD3.若一个多边形的内角和等于900°,则这个多边形的边数是()A.6 B.7 C.8 D.94.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A B C D5.下列条件中,不能判别四边形是平行四边形的是()A.一组对边平行且相等B.两组对边分别相等C.两条对角线垂直且相等D.两条对角线互相平分二、填空题(每小题4分,共16分)6.五边形的外角和等于________度.7.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是________.8.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是________.9.如果一个多边形的内角和与外角和相等,则此多边形是________.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-2,已知E,F是四边形ABCD的对角线AC上的两点,AE=CF,BE =DF,BE∥DF.求证:四边形ABCD是平行四边形.图J4-3-2基础知识反馈卡·4.3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2.如图J4-3-3,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40图J4-3-3图J4-3-4图J4-3-5 3.如图J4-3-4,把矩形ABCD沿EF对折,若∠1=60°,则∠AEF等于()A.115°B.130°C.120°D.65°4.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 5.如图J4-3-5,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB =4 cm,则AC的长为()A.4 cm B.8 cm C.12 cm D.4 5 cm二、填空题(每小题4分,共16分)6.如图J4-3-6,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=5,则图中阴影部分的面积为________.图J4-3-67.如图J4-3-7,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD =8 cm,则这个菱形的面积是________cm2.图J4-3-7 图J4-3-88.如图J4-3-8所示,已知□ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明□ABCD是矩形的有____________(填写序号).9.已知四边形ABCD中,∠A=∠B=∠C=90°,添加条件_____________________,此四边形即为正方形(填一个即可).答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-9,矩形ABCD中,已知对角线AC与BD交于点O,△OBC的周长为16,其中BC=7,求矩形对角线AC的长.图J4-3-9基础知识反馈卡·4.3.3时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列说法正确的是()A.平行四边形是一种特殊的梯形B.等腰梯形的两底角相等C.等腰梯形可能是直角梯形D.有两邻角相等的梯形是等腰梯形2.如图J4-3-10,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是()A.40°B.45°C.50°D.60°图J4-3-10 图J4-3-113.下面命题错误的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形4.有一等腰梯形纸片ABCD(如图J4-3-11),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形5.如图J4-3-12,等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,则图中相等的线段共有()图J4-3-12A.2对B.3对C.4对D.5对二、填空题(每小题4分,共16分)6.如图J4-3-13,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.图J4-3-137.等腰梯形的中位线长是15 ,一条对角线平分一个60°的底角,则梯形的周长为______.8.如图J4-3-14,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是________.图J4-3-149.顺次连接等腰梯形四边中点所得的四边形是________形.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.已知:如图J4-3-15,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.图J4-3-15基础知识反馈卡·5.1时间:15分钟 满分:50分一、选择题(每小题4分,共16分)1.如图J5-1-1,点A ,B ,C 都在⊙O 上,若∠AOB =40°,则∠C =( ) A .20° B .40° C .50° D .80°图J5-1-1 图J5-1-2 图J5-1-3 图J5-1-42.如图J5-1-2,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,如果∠BOC =70°,那么∠A 的度数为( )A .70°B .35°C .30°D .20°3.如图J5-1-3,⊙O 的弦AB 垂直平分半径OC ,若AB =6,则⊙O 的半径为( )A. 2 B .2 2 C.22 D.624.如图J5-1-4,∠AOB =100°,点C 在⊙O 上,且点C 不与点A ,B 重合,则∠ACB 的度数为( )A .50°B .80°或50°C .130°D .50°或130° 二、填空题(每小题4分,共20分) 5.如图J5-1-5,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A ,B 两点,点P 在优弧AB 上,且与点A ,B 不重合,连接P A ,PB ,则∠APB 的大小为 ________度.图J5-1-5 图J5-1-6 图J5-1-76.如图J5-1-6,AB 是⊙O 的弦,OC ⊥AB 于点C ,若AB =8 cm ,OC =3 cm ,则⊙O 的半径为________cm.7.如图J5-1-7,⊙O 的弦CD 与直径AB 相交,若∠BAD =50°,则∠ACD =______. 8.如图J5-1-8,在⊙O 的内接四边形ABCD 中,若∠BCD =110°,则∠BOD =______度.图J5-1-8 图J5-1-99.如图J5-1-9,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,若BD =BC ,则∠D =________度.答题卡题号123 4答案5.________6.________7.________8.________9.________三、解答题(共14分)10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图J5-1-10,污水水面宽度为60 cm,水面至管道顶距离为10 cm,问:修理人员应准备内径多大的管道?图J5-1-10基础知识反馈卡·5.2时间:15分钟满分:50分一、选择题(每小题4分,共24分)1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A B C D2.如图J5-2-1,四边形ABCD内接于⊙O,若∠C=30°,则∠A的度数为()图J5-2-1A.36°B.56°C.72°D.144°3.若线段OA=3,⊙O的半径为5,则点A与⊙O的位置关系为()A.点在圆外B.点在圆上C.点在圆内D.不能确定4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离6.如图J5-2-2,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为()图J5-2-2A.3 cmB.4 cmC.6 cmD.8 cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 基本图形 一、选择题(每小题3分,共30分) 1.下列命题中,假命题是(D) A. 平行四边形是中心对称图形 B. 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等 C. 对于简单的随机样本,可以用样本的方差去估计总体的方差 D. 若x2=y2,则x=y 2.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件(B) A. ∠BAC=∠BAD B. AC=AD或BC=BD C. AC=AD且BC=BD D. 以上都不正确
(第2题图) (第3题图) 3.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=(A) A. 5 cm B. 10 cm C. 15 cm D. 20 cm 4.将一把直尺与一块三角尺按如图的方式放置,若∠1=40°,则∠2的度数为(D) A. 125° B. 120° C. 140° D. 130°
(第4题图) (第5题图) 5.如图,在坐标平面上,△ABC与△DEF全等,其中A,B,C的对应顶点分别为D,E,F,且AB=BC=5.若点A的坐标为(-3,1),B,C两点在直线y=-3上,D,E两点在y轴上,则点F到y轴的距离为(C) A. 2 B. 3 C. 4 D. 5 6.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为5.25 cm2,则此方格纸的面积为(B) A. 11 cm2 B. 12 cm2 C. 13 cm2 D. 14 cm2 2
(第6题图) (第7题图) 7.如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC,BC为直径画半圆,则图中阴影部分的面积为(A) A. -4 B. 10π-4 C. 10π-8 D. -8 8.如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM,ON分别交AB,BC于点E,F,且∠EOF=90°,BO,EF交于点P.有下列结论:
(第8题图) ①图形中全等的三角形只有两对;②正方形ABCD的面积等于四边形OEBF面积的4倍;③BE+BF=2OA;④AE2+CF2=2OP·OB.其中正确的结论有(C) A. 1个 B. 2个 C. 3个 D. 4个 9.如图,在正方形ABCD中,AB=3 cm,动点M自A点出发沿AB方向以每秒1 cm的速度运动,同时动点N自A点出发沿折线AD→DC→CB以每秒3 cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(s),则下列图象中能大致反映y与x之间函数关系的是(B)
(第9题图) 3
10.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为(C)
(第10题图) A. 222012 B. 222013
C. 122012 D. 122013 二、填空题(每小题4分,共24分) 11.已知直线l1,l2,l3互相平行,直线l1与l2的距离是4 cm,直线l2与l3的距离是6 cm,那么直线l1与l3的距离是10_cm或2_cm. 12.如图,已知矩形ABCD的边长分别为a,b,连结其对边中点,得到四个矩形,顺次连结矩形AEFG各边中点,得到菱形I1;连结矩形FMCH对边中点,又得到四个矩形,顺次连结矩形FNPQ各边中点,得到菱形I2……如此操作下去,得到菱形In,则In的面积
是122n+1ab.
(第12题图) 13.如图,若将边长为2 cm的两个互相重合的正方形纸片沿对角线AC翻折成等腰直角三角形后,再抽出一个等腰直角三角形沿AC移动.若重叠部分△A′PC的面积是1 cm2,则移动的距离AA′等于22-2_cm. 4
(第13题图) (第14题图) 14.如图,点P是矩形ABCD内的任意一点,连结PA,PB,PC,PD,得到△PDA,△PAB,△PBC,△PCD,设它们的面积分别是S1,S2,S3,S4,给出如下结论:
①S1+S2=S3+S4; ②S2+S4=S1+S3; ③若S3=2S1,则S4=2S2; ④若S1=S2,则点P在矩形的对角线上. 其中正确的结论的序号是__②④__(把所有正确结论的序号都填在横线上).
15.如图,矩形OABC在第一象限,OA,OC分别与x轴,y轴重合,面积为6.矩形与双曲线y=kx(x>0)交BC于点M,交BA于点N,连结OB,MN.若2OB=3MN,则k=__2__.
(第15题图) 16.如图,边长为n的正方形OABC的边OA,OC分别在x轴和y轴的正半轴上,A1,A2,A3,…,An-1为OA的n等分点,B1,B2,B3,…Bn-1为CB的n等分点,连结A1B1,A2B2,A3B3,…,An
-1Bn-1,分别交y=1nx2(x≥0)于点C1,C2,C3,…,Cn-1,当B25C25=8C25A25时,则n=53.
(第16题图) 三、解答题(本题有8小题,共66分) 17.(本题6分)已知:∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(A,B,C不与点O 重合),连结AC交射线OE于点D.设∠OAC=x°. (1)如图①,若AB∥ON,则 ①∠ABO的度数是__20°__; ②当∠BAD=∠ABD时,x=__120__;当∠BAD=∠BDA时,x=__60__. (2)如图②,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由. 5
(第17题图) 解:(1)①∵∠MON=40°,OE平分∠MON, ∴∠AOB=∠BON=20°. ∵AB∥ON,∴∠ABO=∠BON=20°. ②∵∠BAD=∠ABD,∴∠BAD=20°. ∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=120°. ∵∠BAD=∠BDA,∠ABO=20°,∴∠BAD=80°. ∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=60°. (2)①当点D在线段OB上时, 若∠BAD=∠ABD,则x=20; 若∠BAD=∠BDA,则x=35; 若∠ADB=∠ABD,则x=50. ②当点D在射线BE上时,∵∠ABE=110°,且三角形的内角和为180°, ∴只有∠BAD=∠BDA,此时x=125. 综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50,125. 18.(本题6分)如图:已知BC平分∠ACD,且∠1=∠2,求证:AB∥CD.
(第18题图) 证明:∵BC平分∠ACD, ∴∠1=∠BCD, ∵∠1=∠2, ∴∠2=∠BCD, ∴AB∥CD(内错角相等,两直线平行). 19.(本题6分)如图,在正方形ABCD中,点P在AD上,且不与A,D重合,BP的垂直平分线分别交CD,AB于E,F两点,垂足为Q,过点E作EH⊥AB于点H.
(第19题图) (1)求证:HF=AP. (2)若正方形ABCD的边长为12,AP=4,求线段EQ的长 6
解:(1)证明:∵EQ⊥BO,EH⊥AB, ∴∠EQN=∠BHM=90°. ∵∠EMQ=∠BMH, ∴△EMQ∽△BMH, ∴∠QEM=∠HBM. ∵四边形ABCD为正方形, ∴∠A=90°=∠ABC,AB=BC. 又∵EH⊥AB,∴EH=BC. ∴AB=BC. 在△APB与△HFE中,
∵∠ABP=∠HEF,∠PAB=∠FHE,AB=EH, ∴△APB≌△HFE, ∴HF=AP. (2)由勾股定理,得BP=AP2+AB2=42+122=410. ∵EF是BP的垂直平分线,
∴BQ=12BP=210,
∴QF=BQ·tan∠FBQ=BQ·tan∠ABP=210×412=2103. 由(1)知,△APB≌△HFE, ∴EF=BP=410,
∴EQ=EF-QF=410-2103=10103. 20.(本题8分)阅读下面材料: 小明遇到这样一个问题:如图①,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.
(第20题图) 小明发现:分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图②). 7
请回答: (1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__a__. (2)求正方形MNPQ的面积. (3)参考小明思考问题的方法,解决问题: 如图③,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的
垂线,得到等边△RPQ.若S△RPQ=33,则AD的长为__23__. 解:(1)a. (2)∵四个等腰直角三角形面积的和为a2,正方形ABCD的面积也为a2.
∴S正方形MNPQ=S△ARE+S△BSF+S△GCT+S△HDW=4S△ARE=4×12×12=2.
(3)23. 21.(本题8分)联想三角形外心的概念,我们可引入如下概念: 定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心. 举例:如图①,若PA=PB,则点P为△ABC的准外心.
(1)应用:如图②,CD为等边三角形ABC的高,准外心P在高CD上,且PD=12AB,求∠APB的度数.
(第21题图) (2)探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长. 解:(1)若PB=PC,连结PB,则∠PCB=∠PBC. ∵CD为等边三角形的高, ∴AD=BD,∠PCB=30°.
∴∠PBD=∠PBC=30°.∴PD=33DB=36AB.
这与已知PD=12AB矛盾,∴PB≠PC. 若PA=PC,连结PA,同理可得PA≠PC. 若PA=PB,由PD=12AB,得PD=BD, ∴∠DPB=45°.故∠APB=90°.