3.2 独立性检验的基本思想及其初步应用

合集下载

2020版高中数学 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用学案 新人教A版选修2-3

2020版高中数学 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用学案 新人教A版选修2-3

§3.2 独立性检验的基本思想及其初步应用学习目标 1.了解分类变量的意义.2.了解2×2列联表的意义.3.了解随机变量K 2的意义.4.通过对典型案例分析,了解独立性检验的基本思想和方法.知识点一 分类变量及2×2列联表思考 山东省教育厅大力推行素质教育,增加了高中生的课外活动时间,某校调查了学生的课外活动方式,结果整理成下表:体育 文娱 合计 男生 210 230 440 女生 60 290 350 合计270520790如何判定“喜欢体育还是文娱与性别是否有联系”?答案 可通过表格与图形进行直观分析,也可通过统计分析定量判断. 梳理 (1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量. (2)列联表①定义:列出的两个分类变量的频数表,称为列联表. ②2×2列联表一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(也称为2×2列联表)为下表.y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +d知识点二 等高条形图1.与表格相比,图形更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.2.如果通过直接计算或等高条形图发现aa +b 和cc +d相差很大,就判断两个分类变量之间有关系.知识点三 独立性检验1.定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.2.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量.3.独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.(2)利用公式计算随机变量K2的观测值k.(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.1.列联表中的数据是两个分类变量的频数.( √)2.事件A与B的独立性检验无关,即两个事件互不影响.( ×)3.K2的大小是判断事件A与B是否相关的统计量.( √)类型一等高条形图的应用例1 为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:组别阳性数阴性数总计铅中毒病人29736对照组92837总计383573试画出列联表的等高条形图,分析铅中毒病人和对照组的尿棕色素阳性数有无差别,铅中毒病人与尿棕色素为阳性是否有关系?考点定性分析的两类方法题点利用图形定性分析解等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.由图可以直观地看出铅中毒病人与对照组相比,尿棕色素为阳性的频率差异明显,因此铅中毒病人与尿棕色素为阳性有关系.反思与感悟在等高条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例aa+b,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例cc+d.两个比例的值相差越大,X与Y有关系成立的可能性就越大.跟踪训练1 网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?考点定性分析的两类方法题点利用图形定性分析解根据题目所给的数据得到如下2×2列联表:经常上网不经常上网总计不及格80120200及格120680800总计200800 1 000得出等高条形图如图所示:比较图中阴影部分的高可以发现经常上网不及格的频率明显高于经常上网及格的频率,因此可以认为经常上网与学习成绩有关.类型二独立性检验例2 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100根据表中数据,问是否在犯错误的概率不超过0.05的前提下认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.考点独立性检验及其基本思想题点独立性检验的方法解 将2×2列联表中的数据代入公式计算,得K 2的观测值k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(60×10-20×10)270×30×80×20=10021≈4.762. 因为4.762>3.841,所以在犯错误的概率不超过0.05的前提下认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.反思与感悟 (1)独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足ad -bc ≈0,因此|ad -bc |越小,关系越弱;|ad -bc |越大,关系越强. (2)独立性检验的具体做法①根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界α,然后查表确定临界值k 0.②利用公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算随机变量K 2的观测值k .③如果k ≥k 0,推断“X 与Y 有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够的证据支持结论“X 与Y 有关系”. 跟踪训练2 某省进行高中新课程改革已经四年了,为了解教师对新课程教学模式的使用情况,某一教育机构对某学校的教师关于新课程教学模式的使用情况进行了问卷调查,共调查了50人,其中有老教师20人,青年教师30人.老教师对新课程教学模式赞同的有10人,不赞同的有10人;青年教师对新课程教学模式赞同的有24人,不赞同的有6人.(1)根据以上数据建立一个2×2列联表;(2)判断是否有99%的把握说明对新课程教学模式的赞同情况与教师年龄有关系. 考点 独立性检验及其基本思想 题点 独立性检验的方法 解 (1)2×2列联表如下所示:(2)假设“对新课程教学模式的赞同情况与教师年龄无关”. 由公式得K 2=50×(10×6-24×10)234×16×20×30≈4.963<6.635,所以没有99%的把握认为对新课程教学模式的赞同情况与教师年龄有关. 类型三 独立性检验的综合应用例3 (2017·全国Ⅱ改编)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关.箱产量<50 kg箱产量≥50 kg旧养殖法新养殖法附:P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).考点独立性检验思想的应用题点分类变量与统计、概率的综合性问题解(1)记B表示事件“旧养殖法的箱产量低于50 kg”,C表示事件“新养殖法的箱产量不低于50 kg”,由P (A )=P (BC )=P (B )P (C ),则旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62,新养殖法的箱产量不低于50 kg 的频率为(0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66,则事件A 的概率估计值为P (A )=P (B )P (C )=0.62×0.66=0.409 2, ∴A 发生的概率为0.409 2.(2)根据箱产量的频率分布直方图得到列联表:则K 2=200×(62×66-38×34)2100×100×96×104≈15.705,由15.705>6.635,故有99%的把握认为箱产量与养殖方法有关. 反思与感悟 两个分类变量相关关系的判断(1)等高条形图法:在等高条形图中,可以估计满足条件X =x 1的个体中具有Y =y 1的个体所占的比例aa +b,也可以估计满足条件X =x 2的个体中具有Y =y 1的个体所占的比例cc +d.两个比例的值相差越大,X 与Y 有关系成立的可能性就越大.(2)观测值法:通过2×2列联表,先计算K 2的观测值k ,然后借助k 的含义判断“两个分类变量有关系”这一结论成立的可信程度.跟踪训练3 为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为23.(1)请将上面的2×2列联表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关?说明你的理由;(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X ,求X 的分布列与均值. 考点 独立性检验思想的应用题点 分类变量与统计、概率的综合性问题 解 (1)列联表补充如下:喜爱打篮球不喜爱打篮球合计 男生 22 6 28 女生 10 10 20 合计321648(2)由K 2=48×(220-60)228×20×32×16≈4.286.因为4.286>3.841,所以,能在犯错误的概率不超过0.05的前提下认为喜爱打篮球与性别有关. (3)喜爱打篮球的女生人数X 的可能取值为0,1,2. 其概率分别为 P (X =0)=C 210C 220=938,P (X =1)=C 110C 110C 220=1019,P (X =2)=C 210C 220=938,故X 的分布列为X 0 1 2 P9381019938X 的均值为E (X )=0+1019+919=1.1.某机构调查中学生的近视情况,了解到某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A .平均数 B .方差 C .回归分析 D .独立性检验 考点 独立性检验及其基本思想 题点 独立性检验的思想 答案 D2.对于分类变量X 与Y 的随机变量K 2的观测值k ,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大考点独立性检验及其基本思想题点独立性检验的思想答案 B解析k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,k越小,“X与Y有关系”的可信程度越小.3.用等高条形图粗略估计两个分类变量是否相关,观察下列各图,其中两个分类变量关系最强的是( )考点定性分析的两类方法题点利用图形定性分析答案 D解析由等高条形图易知,D选项两个分类变量关系最强.4.若在研究吸烟与患肺癌的关系中,通过收集、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是( )A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有考点独立性检验及其基本思想题点独立性检验的方法答案 D解析独立性检验的结论是一个统计量,统计的结果只是说明事件发生的可能性的大小,具体到一个个体,则不一定发生.5.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得的数据.总成绩好 总成绩不好 总计 数学成绩好 478 a490 数学成绩不好39924423 总计b c913(1)计算a ,b ,c 的值;(2)文科学生总成绩不好与数学成绩不好有关系吗? 考点 独立性检验及其基本思想 题点 独立性检验的方法解 (1)由478+a =490,得a =12. 由a +24=c ,得c =12+24=36. 由b +c =913,得b =913-36=877. (2)计算随机变量K 2的观测值k =913×(478×24-399×12)2490×423×877×36≈6.233>5.024,因为P (K 2≥5.024)≈0.025,所以在犯错误的概率不超过0.025的前提下,认为文科学生总成绩不好与数学成绩不好有关系.1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有相关关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有相关关系. 2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K 2的值,如果K 2的值很大,说明假设不合理.K 2越大,两个分类变量有关系的可能性越大.一、选择题1.下面是一个2×2列联表:y 1 y 2总计 x 1 a21 73 x 2825 33 总计b46106则表中a ,b 的值分别为( ) A .94,96 B .52,50 C .52,60D .54,52考点 分类变量与列联表 题点 求列联表中的数据 答案 C2.为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算得K 2=7.01,则认为“喜欢乡村音乐与性别有关系”的把握约为( ) A .0.1% B .1% C .99% D .99.9% 考点 独立性检验及其基本思想 题点 独立性检验的方法 答案 C解析 易知K 2=7.01>6.635,对照临界值表知,有99%的把握认为喜欢乡村音乐与性别有关系.3.在独立性检验中,两个分类变量“X 与Y 有关系”的可信度为99%,则随机变量K 2的观测值k 的取值范围是( ) A .[3.841,5.024) B .[5.024,6.635) C .[6.635,7.879) D .[7.879,10.828)考点 分类变量与列联表 题点 求观测值 答案 C4.高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如下列联表:则随机变量K 2的观测值约为( ) A .0.600 B .0.828 C .2.712D .6.004考点 分类变量与列联表 题点 求观测值 答案 A解析 根据列联表中的数据,可得随机变量K 2的观测值k =90×(11×37-34×8)245×45×19×71≈0.600.故选A.5.在2×2列联表中,两个比值相差越大,两个分类变量有关系的可能性就越大,那么这两个比值为( )A.a a +b 与c c +d B.a c +d 与c a +b C.aa +d 与cb +cD.ab +d 与ca +c考点 定性分析的两类方法 题点 利用图形定性分析 答案 A 解析 由题意,⎪⎪⎪⎪⎪⎪a a +b -c c +d =⎪⎪⎪⎪⎪⎪ac +ad -ac -bc (a +b )(c +d )=⎪⎪⎪⎪⎪⎪ad -bc (a +b )(c +d ),因为|ad -bc |的值越大,两个分类变量有关系的可能性就越大,故选A.6.有两个分类变量X ,Y ,其列联表如下所示,其中a,15-a 均为大于5的整数,若在犯错误的概率不超过0.05的前提下认为X ,Y 有关,则a 的值为( ) A .8 B .9 C .8或9D .6或8考点 分类变量与列联表 题点 求列联表中的数据 答案 C解析 根据公式,得K 2的观测值 k =65×[a (30+a )-(15-a )(20-a )]220×45×15×50=13×(13a -60)220×45×3×2>3.841,根据a >5且15-a >5, a ∈Z ,求得当a =8或9时满足题意.7.某班主任对全班50名学生进行了作业量的调查,数据如下表:则推断“学生的性别与认为作业量大有关”这种推断犯错误的概率不超过( ) A .0.01 B .0.025 C .0.005 D .0.001 考点 独立性检验及其基本思想 题点 独立性检验的方法答案 B解析 由公式得K 2的观测值k =50×(18×15-8×9)226×24×27×23≈5.059>5.024.∵P (K 2≥5.024)=0.025,∴犯错误的概率不超过0.025. 二、填空题8.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K 2的观测值k >6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________. 考点 独立性检验及其基本思想 题点 独立性检验的思想 答案 ③解析 K 2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确. 9.某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,具体数据如下表:为了判断主修统计专业是否与性别有关系,根据表中的数据,得到K 2=50×(13×20-10×7)223×27×20×30≈4.844,因为K 2>3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性最大为__________.考点 独立性检验及其基本思想 题点 独立性检验的方法 答案 5%解析 因为K 2>3.841,所以有95%的把握认为主修统计专业与性别有关,出错的可能性为5%.10.2014年世界杯期间,某一电视台对年龄高于40岁和不高于40岁的人是否喜欢西班牙队进行调查,对高于40岁的调查了50人,不高于40岁的调查了50人,所得数据制成如下列联表:若工作人员从所有统计结果中任取一个,取到喜欢西班牙队的人的概率为35,则有超过________的把握认为年龄与西班牙队的被喜欢程度有关.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).考点 独立性检验及其基本思想 题点 独立性检验的方法 答案 95%解析 设“从所有人中任意抽取一个,取到喜欢西班牙队的人”为事件A ,由已知得P (A )=q +35100=35,所以q =25,p =25,a =40,b =60.K 2=100×(25×35-25×15)240×60×50×50=256≈4.167>3.841.故有超过95%的把握认为年龄与西班牙队的被喜欢程度有关. 三、解答题11.研究人员选取170名青年男女大学生的样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;男生110名在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?分别用条形图和独立性检验的方法判断. 考点 定性分析的两类方法 题点 利用图形定性分析解 建立性别与态度的2×2列联表如下:根据列联表中所给的数据,可求出男生中作肯定态度的频率为110=0.2,女生中作肯定态度的频率为2260≈0.37.作等高条形图如图,其中两个深色条形的高分别表示男生和女生中作肯定态度的频率,比较图中深色条形的高可以发现,女生中作肯定态度的频率明显高于男生中作肯定态度的频率,因此可以认为性别与态度有关系.根据列联表中的数据得到K 2的观测值k =170×(22×38-22×88)2110×60×44×126≈5.622>5.024.因此,在犯错误的概率不超过0.025的前提下认为性别和态度有关系.12.某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表所示:喜欢 不喜欢 合计 大于40岁 20 5 25 20岁至40岁10 20 30 合计302555(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6名市民作为一个样本,从中任选2人,求恰有1位大于40岁的市民和1位20岁至40岁的市民的概率. 考点 独立性检验思想的应用题点 分类变量与统计、概率的综合性问题解 (1)由公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )得,观测值k ≈11.978>7.879,所以有99.5%以上的把握认为喜欢“人文景观”景点与年龄有关.(2)由题意知抽取的6人中大于40岁的市民有4个,20岁至40岁的市民有2个,分别记为B 1,B 2,B 3,B 4,C 1,C 2,从中任选2人的基本事件有(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,B 4),(B 2,C 1),(B 2,C 2),(B 3,B 4),(B 3,C 1),(B 3,C 2),(B 4,C 1),(B 4,C 2),(C 1,C 2),共15个,其中恰有1位大于40岁的市民和1位20岁至40岁的市民的事件有(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(B 4,C 1),(B 4,C 2),共8个,所以恰有1位大于40岁的市民和1位20岁至40岁的市民的概率为815.四、探究与拓展13.假设有两个分类变量X 和Y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其中2×2列联表为:y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +da +b +c +d对同一样本,以下数据能说明X 与Y 有关的可能性最大的一组是( ) A .a =5,b =4,c =3,d =2 B .a =5,b =3,c =4,d =2 C .a =2,b =3,c =4,d =5 D .a =3,b =2,c =4,d =5考点 分类变量与列联表 题点 求列联表中的数据 答案 D解析 对于同一样本,|ad -bc |越小,说明x 与y 相关性越弱,而|ad -bc |越大,说明x 与y 相关性越强,通过计算知,对于A ,B ,C 都有|ad -bc |=|10-12|=2.对于选项D ,有|ad -bc |=|15-8|=7,显然7>2. 14.2017年世界第一届轮滑运动会(the first edtion of Roller Games)在南京举行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者.调查发现,男、女志愿者分别有10人和6人喜爱轮滑,其余不喜爱.得到2×2列联表如下.(1)根据2×2列联表,判断能否在犯错误的概率不超过0.10的前提下认为性别与喜爱轮滑有关? (2)从女志愿者中抽取2人参加接待工作,若其中喜爱轮滑的人数为ξ,求ξ的分布列和均值. 考点 独立性检验思想的应用题点 独立性检验与线性回归方程、均值的综合应用解 (1)假设:是否喜爱轮滑与性别无关.由已知数据可求得K 2的观测值为 k =30×(10×8-6×6)216×14×16×14≈1.157 5<2.706.因此不能在犯错误的概率不超过0.10的前提下认为喜爱轮滑与性别有关. (2)喜爱轮滑的人数ξ的可能取值为0,1,2, 则P (ξ=0)=C 06C 28C 214=2891=413,P (ξ=1)=C 16C 18C 214=4891,P (ξ=2)=C 26C 08C 214=1591.所以喜爱轮滑的人数ξ的分布列为4 13+1×4891+2×1591=67.所以喜爱轮滑的人数ξ的均值为E(ξ)=0×。

独立性检验的基本思想及其初步应用(说课)

独立性检验的基本思想及其初步应用(说课)

上 网 学查 生阅 课卡 前方 预统 习计 量
这种利用随机变量K2来判断“两个类 变量有关系”的方法,称为独立性检验。
教学过程
“独立性检验”的具体做法步骤为:
第一步:根据实际问题需要的可信程度确定临界值 k 0; 第二步:利用公式计算随机变量K 2的观测值 k ; 第三步:比较 k 与k 0 的大小得出结论。 表3-11 临界值表
人教版普通高中课程标准实验教科书选修2一3
教学反思
说 课 内 容
教材分析
教学过程
课程标准
学情分析
教法设计
目标分析
教材分析
学情分析
目标分析
教法设计
教学内容
教 材 分 析
本节课是人教版普 通高中课程标准实验教 科书,选修2-3第三章第 二节第一课时,通过对 典型案例的探究,了解 独立性检验的基本思想、 方法及其初步应用。
制 定 教 学 目 标
教材分析
学情分析
目标分析
教法设计
知识与技能
目 标 分 析
通过对典型案例的探究,了解独立性 检验的基本思想,会对两个分类变量进 行独立性检验,明确独立性检验的基本 步骤,并能解决实际问题。
教材分析
学情分析
目标分析
教法设计
过程与方法
目 标 分 析
通过设置问题,引导学生自主 发现、合作探究、归纳展示、质疑 对抗,使学生成为课堂主体。
1、分类变量 学生展示探究成果
2、列联表
3、等高条形图 4、卡方统计量
本节课教学,通过设置问 题,引导学生自主发现。
P( K 2 k )
0.50 0.445 0.05 3.841
0.40 0.708 0.025 5.024

人教版 高中数学 3.2独立性检验的基本思想及其初步应用课时作业 选修2-3

人教版 高中数学 3.2独立性检验的基本思想及其初步应用课时作业  选修2-3

人教版高中数学精品资料高中数学 3.2独立性检验的基本思想及其初步应用课时作业 新人教A 版选修2-3一、选择题1.在2×2列联表中,两个比值________相差越大,两个分类变量之间的关系越强( ) A .a a +b 与c c +d B .a c +d 与c a +b C .aa +d 与cb +cD .ab +d 与ca +c[答案] A [解析]aa +b 与cc +d相差越大,说明ad 与bc 相差越大,两个分类变量之间的关系越强.2.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是( ) A .三维柱形图 B .二维条形图 C .等高条形图 D .独立性检验[答案] D[解析] 前三种方法只能直观地看出两个分类变量x 与y 是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.3.(2014·洛阳市高二期中)若用独立性检验的方法,我们得到能有99%的把握认为变量X 与Y 有关系,则( )A .K 2≥2.706 B .K 2≥6.635 C .K 2<2.706 D .K 2<6.635[答案] B4.假设有两个分类变量X 与Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:( ) A .a =5,b =4,c =3,d =2 B .a =5,b =3,c =4,d =2 C .a =2,b =3,c =4,d =5D .a =2,b =3,c =5,d =4[答案] D [解析] 比较|aa +b -cc +d|.选项A 中,|59-35|=245;选项B 中,|58-46|=124;选项C 中,|25-49|=245;选项D 中,|25-59|=745.故选D .5.某卫生机构对366人进行健康体检,其中某项检测指标阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,有________________的把握认为糖尿病患者与遗传有关系.( )A .99.9%B .99.5%C .99%D .97.5%[答案] D[解析] 可以先作出如下列联表(单位:人): 糖尿病患者与遗传列联表k =-2109×257×33×333≈6.067>5.024.故我们有97.5%的把握认为糖尿病患者与遗传有关系.6.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A .①B .①③C .③D .②[答案] C[解析] ①推断在100个吸烟的人中必有99人患有肺病,说法错误,排除A 、B ,③正确.排除D,选C.二、填空题7.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:K2=-223×27×20×30≈4.844,因为K2≥3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________.[答案]5%[解析]∵k>3.841,所以有95%的把握认为主修统计专业与性别有关,出错的可能性为5%.8.吃零食是中学生中普遍存在的现象.吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表给出性别与吃零食的列联表[答案]有[解析]k=n ad-bc2a +b c+d a+c b+d=-217×68×45×40=98260002080800≈4.700>3.841.故约有95%的把握认为“吃零食与性别”有关.9.调查者通过随机询问72名男女中学生喜欢文科还是理科,得到如下列联表(单位:名):性别与喜欢文科还是理科列联表[答案] 有[解析] 通过计算K 2的观测值k =-236×36×44×28≈8.42>7.879.故我们有99.5%的把握认为中学生的性别和喜欢文科还是理科有关系.三、解答题10.(2015·潍坊市五县高二期中)为调查某社区居民的业余生活状况,研究这一社区居民在-时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:(1)与性别有关系”?(2)将此样本的频率作为总体的概率估计值,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X .求X 的数学期望和方差.附:K 2=n a +bc +d a +cb +d.[解析] (1)根据样本提供的2×2列联表得K 2=-260×20×20×60≈8.889>6.635;所以有99%的把握认为“在-时间段居民的休闲方式与性别有关”.(2)由题意得,X ~B (3,56),所以E (X )=3×56=52,D (X )=3×56×(1-56)=512.一、选择题 11.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一条直线的回归方程为y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线y ^=b ^x +a ^必过点(x -,y -);④在一个2×2列联表中,由计算得K 2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( )A .0B .1C .2D .3本题可以参考独立性检验临界值表:[答案][解析] 一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y ^=3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归直线y ^=b ^x +a ^必过点(x -,y -),③正确;因为K 2=13.079>10.828,故有99%的把握确认这两个变量有关系,④正确,故选B .12.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n ad -bc 2a +bc +d a +cb +d算得,K 2=-260×50×60×50≈7.8.附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”[答案] A[解析]根据独立性检验的定义,由K2≈7.8>6.635可知,有99%以上把握认为“爱好该项运动与性别有关”.13.某调查机构调查教师工作压力大小的情况,部分数据如表:( ) A.0.01 B.0.05C.0.10 D.0.005[答案] B[解析]K2=n ad-bc2a +b a+c c+d d+b=-2 87×13×65×35≈4.9>3.841,因此,在犯错误的概率不超过0.05的前提下,认为工作压力大与不喜欢教师职业有关系.14.(2014·江西理,6)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1 表2表3 表4A.成绩B.视力C.智商D.阅读量[答案] D[解析]A中,K2=-220×32×16×36=131440;B中,K2=-220×32×16×36=637360;C中,K2=-220×32×16×36=1310;D中,K2=-220×32×16×36=3757160.因此阅读量与性别相关的可能性最大,所以选D.二、解答题15.打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据,试问:每一晚都打鼾与患心脏病有关吗?[解析]=24,d=1355,a+b=254,c+d=1379,a+c=54,b+d=1579,n=1633.∴K2=n ad-bc2a+b c+d a+c b+d=-2254×1379×54×1579=68.033.∵68.033>10.828.∴有99%的把握说每一晚都打鼾与患心脏病有关.16.(2015·唐山一中高二期末)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计,其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:(1)根据以上两个直方图完成下面的2×2列联表:(2)根据(1)[解析](1)(2)由(1)K 2=-220×30×27×23≈4.844.∵K 2≈4.844>3.841,∴有95%的把握认为学生的数学成绩与性别之间有关系. (3)成绩在[130,140]的学生中男生有50×0.008×10=4人,女生有50×0.004×10=2人,从6名学生中任取2人,共有C 26=15种选法,若选取的都是男生,共有C 24=6种选法; 故所求事件的概率P =1-C 24C 26=35.17.(2015·东北三校二模)微信是现代生活进行信息交流的重要工具,对某城市年龄在20岁至60岁的微信用户进行有关调查发现,有13的用户平均每天使用微信时间不超过1小时,其他人都在1小时以上;若将这些微信用户按年龄分成青年人(20岁至40岁)和中年人(40岁至60岁)两个阶段,那么其中34是青年人;若规定:平均每天使用微信时间在1小时以上为经常使用微信,经常使用微信的用户中有23是青年人.(1)现对该市微信用户进行“经常使用微信与年龄关系”的调查,采用随机抽样的方法选取容量为180的一个样本,假设该样本有关数据与调查结果完全相同,列出2×2列联表.(2) (3)从该城市微信用户中任取3人,其中经常使用微信的中年人人数为X ,求出X 的期望.附:K 2=n ad -bc 2a +bc +d a +cb +d.[解析](2)K 2=-2135×45×120×60≈13.333>10.828,所以有99.9%的把握认为经常使用微信与年龄有关.(3)从该市微信用户中任取一人,取到经常使用微信的中年人的概率为40180=29,依题意:X ~B ⎝ ⎛⎭⎪⎫3,29,所以:E (X )=3×29=23.。

课时作业20:§3.2 独立性检验的基本思想及其初步应用

课时作业20:§3.2 独立性检验的基本思想及其初步应用

§3.2 独立性检验的基本思想及其初步应用层级一学业水平达标1.以下关于独立性检验的说法中,错误的是()A.独立性检验依赖于小概率原理B.独立性检验得到的结论一定准确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判断两事物是否相关的唯一方法2.观察下列各图,其中两个分类变量之间关系最强的是()3.在列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大()A.aa+b与dc+d B.ca+b与ac+dC.aa+b与cc+d D.aa+b与cb+c4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是()A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大5.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理种子未处理总计得病32101133不得病61213274总计93314407A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的6.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”或“无关”) 7.如果根据性别与是否爱好运动的列联表得到K2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________.8.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A 与B 有关;当________时,认为没有充分的证据显示事件A 与B 是有关的.9.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人. (1)根据以上数据列出2×2列联表;(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?10.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计 男生 a b =5 女生 c =10 d 合计50已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关;请说明理由. 附参考公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0) 0.150.100.050.025 0.010 0.0050.001k 0 2.072 2.706 3.841 5.024 6.635 7.879 10.828层级二 应试能力达标1.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性中有1 560名持反对意见,2 452名女性中有1 200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力()A.平均数与方差B.回归直线方程C.独立性检验D.概率2.对于独立性检验,下列说法正确的是()A.K2>3.841时,有95%的把握说事件A与B无关B.K2>6.635时,有99%的把握说事件A与B有关C.K2≤3.841时,有95%的把握说事件A与B有关D.K2>6.635时,有99%的把握说事件A与B无关3.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验()A.H0:男性喜欢参加体育活动B.H0:女性不喜欢参加体育活动C.H0:喜欢参加体育活动与性别有关D.H0:喜欢参加体育活动与性别无关4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:由此表得到的正确结论是()A.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”5.若两个分类变量X与Y的列联表为:则“X与Y之间有关系”.6.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:的结论________(填“能”或“不能”).7.甲、乙两机床加工同一种零件,抽检得到它们加工后的零件尺寸x(单位:cm)及个数y,如下表:由表中数据得y关于x的线性回归方程为y=-91+100x(1.01≤x≤1.05),其中合格零件尺寸为1.03±0.01(cm).完成下面列联表,并判断是否有99%的把握认为加工零件的质量与甲、乙有关?8.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.参考答案层级一学业水平达标1.【答案】B【解析】根据独立性检验的原理可知得到的结论是错误的情况是小概率事件,但并不一定是准确的. 2.【答案】D【解析】在四幅图中,D 图中两个阴影条的高相差最明显,说明两个分类变量之间关系最强,故选D . 3.【答案】C【解析】由等高条形图可知a a +b 与c c +d的值相差越大,|ad -bc |就越大,相关性就越强. 4.【答案】B【解析】K 2的观测值k 越大,“X 与Y 有关系”的可信程度越大.因此,A 、C 、D 都不正确. 5.【答案】B 【解析】由K 2=407×(32×213-61×101)293×314×133×274≈0.164<2.706,即没有把握认为是否经过处理跟是否生病有关. 6.【答案】有关【解析】∵K 2的观测值k =27.63,∴k >10.828,∴在犯错误的概率不超过0.001的前提下认为打鼾与患心脏病是有关的. 7.【答案】5%【解析】∵P (K 2≥3.841)≈0.05.∴判断性别与是否爱好运动有关,出错的可能性不超过5%. 8.【答案】k >3.841 k ≤2.706【解析】当k >3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A 与B 有关,当k ≤2.706时认为没有充分的证据显示事件A 与B 是有关的. 9.解:(1)由已知可列2×2列联表:(2)k =540×(20×260-200×60)2220×320×80×460≈9.638.∵9.638>6.635,因此,在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.10.解:(1)列联表补充如下:(2)∵K 2=50×(20×15-10×5)230×20×25×25≈8.333>7.879,∴有99.5%的把握认为喜爱打篮球与性别有关.层级二 应试能力达标1.【答案】C【解析】由于参加调查的人按性别被分成了两组,而且每一组又被分成了两种情况,判断有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力. 2.【答案】B【解析】由独立性检验的知识知:K 2>3.841时,有95%的把握认为“变量X 与Y 有关系”;K 2>6.635时,有99%的把握认为“变量X 与Y 有关系”.故选项B 正确. 3.【答案】D【解析】独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时的K 2应该很小,如果K 2很大,则可以否定假设,如果K 2很小,则不能够肯定或者否定假设. 4.【答案】C【解析】由2×2列联表得到a =45,b =10,c =30,d =15.则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100. 代入K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得K 2的观测值k =100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841.所以在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”. 5.【答案】1%【解析】由题意可得K 2的观测值k =(10+15+40+16)×(10×16-40×15)2(10+15)×(40+16)×(10+40)×(15+16)≈7.227, ∵P (K 2≥6.635)≈1%, 所以“x 与y 之间有关系”出错的可能性为1%. 6.【答案】1.779 不能【解析】根据列联表中的数据,可以求得K 2的观测值k =392×(39×167-29×157)268×324×196×196≈1.779.K 2<2.072的概率为0.85.作出这两种手术对病人又发作心脏病的影响有差别的结论. 7.解:x =1.03,y =a +495,由y ^=-91+100x 知,a +495=-91+100×1.03,所以a =11,由于合格零件尺寸为1.03±0.01 cm ,故甲、乙加工的合格与不合格零件的数据表为:所以K 2=n ((a +b )(c +d )(a +c )(b +d )=60×(24×18-6×12)230×30×36×24=10,因K 2=10>6.635,故有99%的把握认为加工零件的质量与甲、乙有关. 8.解:(1)将2×2列联表中的数据代入公式计算,得 K 2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.(其中a i 表示喜欢甜品的学生,i =1,2.b j 表示不喜欢甜品的学生,j =1,2,3)Ω由10个基本事件组成,且这些基本事件的出现是等可能的. 用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.事件A 是由7个基本事件组成,因而P (A )=710.。

独立性检验的基本思想及其初步应用学案

独立性检验的基本思想及其初步应用学案

3.2.1 《独立性检验的基本思想及其初步应用》学案【学习目标】1.了解利用列联表、等高条形图来判断两个分类变量之间是否有关系。

2.了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。

【学习重点】了解独立性检验的基本思想及实施步骤。

【学习难点】K的含义。

独立性检验的基本思想;随机变量2【教学过程】一、情境引入,提出问题请看视频:问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?二、阅读教材,探究新知1.分类变量2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。

得出结论:还有其它方法来判断吸烟和患肺癌有关呢? 3.等高条形图等高条形图能说明什么呢?三、小组讨论,合作交流问题2、你有多大程度判断吸烟与患肺癌有关?用什么方法进行检验呢? 探究:bc ad -的大小能说明了什么?探究:2K 的大小能说明什么?探究:632.5691987421487817)209942497775(99652≈⨯⨯⨯⨯-⨯⨯=k 这个值到底能告诉我们什么呢?四、形成概念,重点精讲独立性检验“独立性检验”的具体做法步骤为:第一步:;第二步:;第三步:。

k:在实际应用中,要在获取样本数据之前通过下表确定临界值表3-11 临界值表五、新知运用,归纳展示为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取500名学生,得到如下列联表:单位:人能够有95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?六、课堂检测,节节达标1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A.若635.62K ,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有 99个患肺病。

2020高中数学 第三章 统计案例 .2 独立性检验的基本思想及其初步应用讲义

2020高中数学 第三章 统计案例 .2 独立性检验的基本思想及其初步应用讲义

3。

2 独立性检验的基本思想及其初步应用知识点分类变量及2×2列联表1.分类变量变量的不同“值"表示个体所属的错误!不同类别,像这样的变量称为分类变量.2.列联表(1)定义:列出的两个分类变量的错误!频数表,称为列联表.(2)2×2列联表一般地,假设有两个分类变量X和Y,它们的取值分别为错误!{x1,x2}和错误!{y1,y2},其样本频数列联表(也称为2×2列联表)为下表.y1y2总计x1a b a+bx2c d c+d总计a+c b+d a+b+c+d知识点等高条形图(1)等高条形图与表格相比,更能直观地反映出两个分类变量间是否错误!相互影响,常用等高条形图展示列联表数据的错误!频率特征.(2)观察等高条形图发现错误!和错误!相差很大,就判断两个分类变量之间错误!有关系.知识点独立性检验1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2的值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.1.判一判(正确的打“√”,错误的打“×”)(1)分类变量中的变量与函数中的变量是同一概念.( )(2)列联表频率分析法、等高条形图可初步分析两分类变量是否有关系,而独立性检验中K2取值则可通过统计表从数据上说明两分类变量的相关性的大小.( )(3)独立性检验的方法就是反证法.()答案(1)×(2)√(3)×2.做一做(1)为了调查高中生的性别与是否喜欢踢足球之间有无关系,一般需要收集以下数据________.(2)若观测值k≈7.8,得到的正确结论是在犯错误的概率不超过________的前提下认为“爱好该项运动与性别有关”.(3)独立性检验中,假设H0:变量x与变量y没有关系.则在H0成立的情况下,估计概率P(K2≥6。

独立性检验的基本思想及初步应用教案

独立性检验的基本思想及初步应用教学目标:1. 了解独立性检验的基本思想及其在实际问题中的应用。

2. 学会使用假设检验方法判断两个分类变量之间是否具有独立性。

3. 掌握利用独立性检验解决实际问题的基本步骤。

教学内容:第一章:独立性检验的基本思想1.1 独立性检验的定义1.2 独立性检验的基本原理1.3 独立性检验的应用场景第二章:列联表与卡方检验2.1 列联表的定义及制作2.2 卡方检验的原理及计算2.3 卡方检验的判断标准第三章:假设检验方法3.1 假设检验的定义及类型3.2 独立性检验的假设条件3.3 独立性检验的步骤及注意事项第四章:实际问题中的应用4.1 案例一:产品质量检验4.2 案例二:消费者偏好调查4.3 案例三:疾病与性别关系的分析第五章:总结与拓展5.1 独立性检验在实际问题中的应用范围5.2 独立性检验的局限性5.3 独立性检验与其他统计方法的比较教学方法:1. 讲授:讲解独立性检验的基本思想、原理及应用。

2. 案例分析:分析实际问题,引导学生运用独立性检验解决问题。

3. 小组讨论:分组讨论案例,培养学生的合作与交流能力。

4. 练习与反馈:布置课后习题,及时了解学生掌握情况,给予针对性的指导。

教学评估:1. 课后习题:检验学生对课堂内容的掌握程度。

2. 案例分析报告:评估学生在实际问题中运用独立性检验的能力。

3. 课堂表现:观察学生在课堂讨论、提问等方面的参与度。

教学资源:1. 教材:独立性检验相关章节。

2. 案例材料:产品质量检验、消费者偏好调查、疾病与性别关系等实际问题。

3. 计算器:用于计算卡方值及概率。

教学时数:1. 共计4课时,每课时45分钟。

2. 分配如下:第一章1课时,第二章1课时,第三章1课时,第四章1课时。

第六章:多组独立性检验6.1 多组独立性检验的定义6.2 多组独立性检验的方法6.3 多组独立性检验的应用案例第七章:非参数检验7.1 非参数检验的定义及意义7.2 非参数检验方法简介7.3 独立性检验与非参数检验的比较第八章:独立性检验的软件操作8.1 统计软件的选择与操作8.2 独立性检验的软件实现8.3 结果解读与分析第九章:独立性检验在实际问题中的应用案例分析9.1 案例一:市场调查与分析9.2 案例二:教育公平性研究9.3 案例三:医学研究中的应用第十章:总结与展望10.1 独立性检验在统计学中的地位与作用10.2 独立性检验的发展趋势10.3 独立性检验在未来的挑战与机遇教学方法:1. 讲授:讲解多组独立性检验、非参数检验及软件操作相关知识。

独立性检验的基本思想及其初步应用教学设计-【通用,经典教学资料】

3.2.1 《独立性检验的基本思想及其初步应用》教学设计【教学目标】1.知识与技能:通过对典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能解决实际问题。

2.过程与方法:通过设置问题,引导学生自主发现、合作探究、归纳展示、质疑对抗,使学生成为课堂主体。

3.情感、态度与价值观:通过本节课学习,让学生体会统计方法在决策中的作用;合作探究的学习过程,使学生感受发现、探索的乐趣及成功展示的成就感,培养学生学习数学知识的积极态度。

【教学重点】了解独立性检验的基本思想及实施步骤。

【教学难点】独立性检验的基本思想;随机变量2K的含义。

【学情分析】本节课是在学习了统计、回归分析的基本思想及初步应用后,利用独立性检验进一步分析两个分类变量之间是否有关系,为以后学习统计理论奠定基础。

【教学方式】多媒体辅助,合作探究式教学。

【教学过程】一、情境引入,提出问题请看视频:[设计意图说明]好的课堂情景引入,能激发学生的求知欲,是新问题能够顺利解决的前提之一。

问题1、你认为吸烟与患肺癌有关系吗?怎样用数学知识说明呢?[设计意图说明]提出问题,引导学生自主探究,指明方向,步步深入。

二、阅读教材,探究新知1.分类变量对于性别变量,其取值为男和女两种:[设计意图说明]利用图像向学生展示变量的不同取值,更加形象的表示分类变量的概念。

这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量。

生活中有很多这样的分类变量如:是否吸烟宗教信仰国籍民族……2.列联表为研究吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果:表3—7 吸烟与患肺癌列联表单位:人不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965究每个分类变量只取两个值,这样的列联表称为22 列联表)。

问题1、吸烟与患肺癌有关系吗?由以上列联表,我们估计①在不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比例为。

独立性检验的基本思想及其初步应用

§3.2独立性检验的基本思想及其初步应用学习目标 1.了解独立性检验的基本思想、方法及其简单应用.2.理解判断两个分类变量是否有关系的常用方法、独立性检验中K2的含义及其实施步骤(重、难点).知识点1两个分类变量之间关联关系的定性分析1.分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.这里的“变量”和“值”都应作为“广义”的变量和值进行理解,它们取的不一定是具体的数值.2.列联表列出的两个分类变量的频数表,称为列联表.假设两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(也称为2×2列联表)为:y1y2总计x1 a b a+bx2 c d c+d总计a+c b+d a+b+c+d3.两个分类变量之间关联关系的定性分析的方法(1)频率分析法:通过对样本的每个分类变量的不同类别事件发生的频率大小进行比较来分析分类变量之间是否有关联关系.通常通过列联表列出两个分类变量的频数表来进行分析.(2)图形分析法:与表格相比,图形更能直观地反映出两个分类变量间是否互相影响,常用等高条形图展示列联表数据的频率特征.【预习评价】(1)下面是一个2×2列联表:y1y2总计x1 a 2173x282533总计 b 46则表中a,b处的值分别为()A.94,96B.52,50C.52,60D.54,52(2)根据如图所示的等高条形图可知吸烟与患肺病关系(填“有”或“没有”).知识点2独立性检验1.定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.2.K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.(2)利用公式计算随机变量K2的观测值k.(3)如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.【预习评价】(1)在吸烟与患肺病这两个分类变量是否相关的判断中,下列说法中正确的是()①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在在犯错误的概率不超过0.01前提下,认为吸烟与患肺病有关系时,我们说若某人吸烟,则他有99%的可能患有肺病;③从统计量中得知在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.A.①B.①③C.③D.②(2)某班主任对全班50名学生进行了作业量的调查,数据如下表:认为作业量大认为作业量不大总计男生18927女生81523总计262450则推断“学生的性别与认为作业量大有关”这种推断犯错误的概率不超过()A.0.01B.0.005C.0.025D.0.001题型一利用等高条形图判断两个分类变量是否有关系【例1】为考察某种药物预防疾病的效果进行动物试验,得到如下列联表:患病未患病总计服用药104555未服用药203050总计3075105试用等高条形图分析服用药和患病之间是否有关系.规律方法(1)本题采用数形结合法通过条形图直观地看出差异,得出结论. (2)应用等高条形图判断两变量是否相关的方法在等高条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例aa+b,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例cc+d.“两个比例的值相差越大,H1成立的可能性就越大.”【训练1】网络对现代人的生活影响较大,尤其是对青少年,为了解网络对中学生学习成绩的影响,某地区教育主管部门从辖区初中生中随机抽取了1 000人调查,发现其中经常上网的有200人,这200人中有80人期末考试不及格,而另外800人中有120人不及格.利用图形判断学生经常上网与学习成绩有关吗?方向1 有关“相关的检验”【例2-1】某校对学生课外活动进行调查,结果整理成下表:用你所学过的知识进行分析,能否在犯错误的概率不超过0.005的前提下,认为“喜欢体育还是文娱与性别有关系”?方向2有关“无关的检验”【例2-2】为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.分析学生选报文、理科与对外语的兴趣是否有关?规律方法(1)独立性检验的关注点在2×2列联表中,如果两个分类变量没有关系,则应满足ad-bc≈0,因此|ad -bc|越小,关系越弱;|ad-bc|越大,关系越强.(2)独立性检验的具体做法①根据实际问题的需要确定允许推断“两个分类变量有关系”犯错误的概率的上界α,然后查表确定临界值k0.②利用公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算随机变量K2的观测值k.③如果k>k0,推断“X与Y有关系”这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够的证据支持结论“X与Y有关系”.【训练2】打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据:根据独立性检验,能否在犯错误的概率不超过0.001的前提下认为每一晚都打鼾与患心脏病有关系?题型三独立性检验的综合应用【例3】某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间(单位:时)的样本数据.(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图),其中样本数据的分组区间为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否认为“该校学生的每周平均体育运动时间与性别有关”.附:P(K2≥k0)0.1000.0500.0100.005k0 2.706 3.841 6.6357.879K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).规律方法(1)解答此类题目的关键在于正确利用K2=n(ad-bc)2计算k的值,再用它与临界值k0的大小作比(a+b)(c+d)(a+c)(b+d)较来判断假设检验是否成立,从而使问题得到解决.(2)此类题目规律性强,解题比较格式化,填表计算分析比较即可,要熟悉其计算流程,不难理解掌握.【训练3】某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分成绩优秀的人数如下表所示,能否在犯错误的概率不超过0.001的前提下认为数学成绩优秀与物理、化学、总分成绩优秀有关系?物理优秀化学优秀总分优秀数学优秀228225267数学非优秀14315699注:该年级在此次考试中数学成绩优秀的有360人,非优秀的有880人.课堂达标1.观察下列各图,其中两个分类变量x,y之间关系最强的是()2.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:偏爱蔬菜 偏爱肉类 总计50岁以下 4 8 12 50岁以上 16 2 18 总计201030则可以说其亲属的饮食习惯与年龄有关的把握为( ) A.90%B.95%C.99%D.99.9%3.为了判断高中学生的文理科选修是否与性别有关系,随机调查了50名学生,得到如下2×2列联表:理科 文科 男 13 10 女720已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =50×(13×20-10×7)223×27×20×30≈4.844.可认为选修文理科与性别有关系的可能性不低于 . 4.根据下表计算:不看电视 看电视 男 37 85 女35143K 2的观测值k ≈ (保留3位小数).5.在109个人身上试验某种药物预防感冒的作用,得到如下列联表:感冒 未感冒 总计 服用药1146 57 未服用药 213152总计3277109则有多大把握认为该药有效?课堂小结1.列联表与等高条形图列联表由两个分类变量之间频率大小差异说明这两个变量之间是否有关联关系,而利用等高条形图能形象直观地反映它们之间的差异,进而推断它们之间是否具有关联关系.2.对独立性检验思想的理解独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.基础过关1.对两个分类变量A,B的下列说法中正确的个数为()①A与B无关,即A与B互不影响;②A与B关系越密切,则K2的值就越大;③K2的大小是判定A与B是否相关的唯一依据A.0B.1C.2D.32.高二第二学期期中考试,按照甲、乙两个班学生的数学成绩优秀和及格统计人数后,得到如下列联表:优秀及格总计甲班113445乙班83745总计197190则随机变量K2的观测值约为()A.0.600B.0.828C.2.712D.6.0043.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理种子未处理总计根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的4.2013年6月11日,中国的“神舟十号”发射成功,由此许多人认为中国进入了航天强国之列,也有许多人持反对意见,为此进行了调查.在参加调查的3 648名男性公民与3 432名女性公民中,持反对意见的男性有1 843人、女性有1 672人,在运用这些数据说明中国“神十”发射成功是否与中国进入航天强国有关系时,用下列最具说服力.①回归直线方程;②平均数与方差;③独立性检验.5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是(填序号).①没有充足的理由认为课外阅读量大与作文成绩优秀有关;②有0.5%的把握认为课外阅读量大与作文成绩优秀有关;③有99.9%的把握认为课外阅读量大与作文成绩优秀有关;④有99.5%的把握认为课外阅读量大与作文成绩优秀有关.6.在研究某种药物对“H1N1”病毒的治疗效果时,进行动物试验,得到以下数据,对150只动物服用药物,其中132只动物存活,18只动物死亡,对照组150只动物进行常规治疗,其中114只动物存活,36只动物死亡.(1)根据以上数据建立一个2×2列联表;(2)试问该种药物对治疗“H1N1”病毒是否有效?7.在一次恶劣天气的飞行航程中调查男女乘客在飞机上晕机的情况如下表所示,根据此资料是否能在犯错误的概率不超过0.05的前提下认为在恶劣天气飞行中男人比女人更容易晕机?能力提升8.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定“X与Y有关系”的可信程度.如果K2≥5.024,那么就有把握认为“X与Y有关系”的百分比为()A.25%B.75%C.2.5%D.97.5%9.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2表3表4A.成绩B.视力C.智商D.阅读量10.下表是关于男婴与女婴出生时间调查的列联表:那么,A=,B=,C=,D=,E=.11.在研究性别与吃零食这两个分类变量是否有关系时,下列说法中正确的是(填序号).①若K2的观测值k=6.635,则我们在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系,那么在100个吃零食的人中必有99人是女性;②由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,如果某人吃零食,那么此人是女性的可能性为99%;③由独立性检验可知在犯错误的概率不超过0.01的前提下认为吃零食与性别有关系时,是指每进行100次这样的推断,平均有1次推断错误.12.随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人的休闲方式是运动,而女性中只有13的人的休闲方式是运动. (1)完成下列2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动? 13.(选做题)某学校为了解该校高三年级学生在市一练考试的数学成绩情况,随机从该校高三文科与理科各抽取50名学生的数学成绩,作出频率分布直方图如图,规定考试成绩在[120,150]内为优秀.(1)由以上频率分布直方图填写下列2×2列联表.若按是否优秀来判断,是否有99%的把握认为该校的文理科数学成绩有差异.文科理科总计优秀非优秀总计5050100(2)某高校派出2名教授对该校随机抽取的学生成绩中一练数学成绩在140分以上的学生进行自主招生面试,每位教授至少面试一人,每位学生只能被一位教授面试.若甲教授面试的学生人数为ξ,求ξ的分布列和均值.。

高中数学 3.2 独立性检验的基本思想及其初步应用课后

【课堂新坐标】(教师用书)2013-2014学年高中数学 3.2 独立性检验的基本思想及其初步应用课后知能检测新人教A版选修2-3一、选择题1.对于独立性检验,下列说法正确的是( )A.X2>3.841时,有95%的把握说事件A与B无关B.X2>6.635时,有99%的把握说事件A与B有关C.X2≤3.841时,有95%的把握说事件A与B有关D.X2>6.635时,有99%的把握说事件A与B无关【解析】由独立性检验的知识知:X2>3.841时,有95%的把握认为“变量X与Y有关系”;X2>6.635时,有99%的把握认为“变量X与Y有关系”.故选项B正确.【答案】 B2.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验( )A.H0:男性喜欢参加体育活动B.H0:女性不喜欢参加体育活动C.H0:喜欢参加体育活动与性别有关D.H0:喜欢参加体育活动与性别无关【解析】独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时的K2应该很小,如果K2很大,则可以否定假设,如果K2很小,则不能够肯定或者否定假设.【答案】 D3.在列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )A.aa+b与dc+dB.ca+b与ac+dC.aa+b与cc+dD.aa+b与cb+c【解析】由等高条形图可知aa+b与cc+d的值相差越大,|ad-bc|就越大,相关性就越强.【答案】 C4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大【解析】K2的观测值k越大,“X与Y有关系”的可信程度越大.因此,A、C、D都不正确.【答案】 B5.(2012·三明高二检测)为了考察中学生的性别与是否喜欢数学课程之间的关系,在某校学生中随机抽取了50名学生,得到如下列联表:喜欢数学不喜欢数学合计男131023女72027合计203050根据表中数据,得到k=223×27×20×30≈4.844>3.841,你认为性别与是否喜欢数学课程之间有关系,这种判断犯错误的概率不超过( )A.0 B.0.05C.0.01 D.1【解析】∵4.844>3.841,根据临界值表可知,认为性别与是否喜欢数学有关系,这种判断犯错误的概率不超过0.05.【答案】 B二、填空题6.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计20至40岁401858大于40岁152742总计 55 45 100填“是”或“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以,经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是7.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________.【解析】 ∵P (k 2≥3.841)≈0.05.∴判断性别与是否爱好运动有关,出错的可能不超过5%. 【答案】 5%8.若两个分类变量X 与Y 的列联表为:y 1y 2总计 x 1 10 15 25 x 240 16 56 总计503181则“X 与Y【解析】 由列联表的数据,可求得随机变量K 2的观测值k =81×10×16-40×15225×56×50×31≈7.227>6.635.因为P (K 2≥6.635)≈0.01,所以“X 与Y 之间有关系”出错的概率仅为0.01. 【答案】 0.01 三、解答题9.打鼾不仅影响别人休息,而且可能与患某种疾病有关.下表是一次调查所得的数据.试问:每晚都打鼾与患心脏病有关吗?用图表分析.患心脏病 未患心脏病合计 每晚都打鼾 30 224 254 不打鼾 24 1 355 1 379 合计541 5791 633【解】 比例为0.12;同理不打鼾人群中未患心脏病的比例为0.98,即患有心脏病的比例为0.02.作出等高条形图(如下图).从该图中可以看出:打鼾样本中患心脏病的比例明显多于不打鼾样本中患心脏病的比例.因此可以认为“打鼾与患心脏病有关”.10.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.(1)根据以上数据列出2×2列联表;(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?【解】 (1)由已知可列2×2列联表:患胃病 未患胃病 总计 生活规律 20 200 220 生活不规律 60 260 320 总计80460540(2)K 2k =540×20×260-200×602220×320×80×460≈9.638.∵9.638>6.635,因此,在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.11.有两个分类变量x 与y ,其一组观测值如下面的2×2列联表所示:y 1 y 2x 1 a20-a x 215-a30+a其中a,15-a 均为大于5的整数,则a 取何值时,在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系?【解】 查表可知,要使在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系,则k ≥2.706,而k =65×[a 30+a -20-a 15-a ]220×45×15×50=65×65a -300220×45×15×50=13×13a -60260×90.由k ≥2.706得a ≥7.19或a ≤2.04.又a >5且15-a >5,a ∈Z ,即a =8或9.故a 为8或9时,在犯错误的概率不超过0.1的前提下认为x 与y 之间有关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档