2019年高考数学艺术生百日冲刺专题16算法复数推理与证明测试题20190307376

合集下载

人教版2019年高考数学艺术生百日冲刺专题05平面向量测试题20190307365

人教版2019年高考数学艺术生百日冲刺专题05平面向量测试题20190307365

专题5平面向量测试题命题报告:高频考点:平面向量的基本概念,平面向量的运算,平面向量的数量积的运算,平面向量是数量积运算,平面向量与三角函数、解析几何的综合,平面向量与平面几何的综合等。

考情分析:本单元在高考中主要以客观题形式出现,难度较低,再解答题中,主要课程向量的工具性的作用,一般在解答题中不单独命题。

重点推荐:第12题,考查向量和不等式的交汇,有一定难度。

考查学生解决问题的能力。

一.选择题1.(2018•洛阳三模)已知平面向量,,,若,则实数k的值为( )A.B.C.2D.【答案】:B【解析】∵平面向量,,,∴=(2+k,﹣1+k),∵,∴,解得k=.∴实数k的值为.故选:B.2.已知A,B,C为圆O上的三点,若=,圆O的半径为2,则=( )A.﹣1B.﹣2C.1D.2【答案】:D【解析】如图所示,=,∴平行四边形OABC是菱形,且∠AOC=120°,又圆O的半径为2,∴=2×2×cos60°=2.故选:D.3.(2018•宝鸡三模)已知不共线向量,,,则=( )A.B.C.D.【答案】:A【解析】∵,∴﹣=﹣4=1,∴=5,∴==4﹣2×5+9=3,∴=,故选:A.4.(2018•安宁区校级模拟)已知向量=(1,1),=(2,﹣3),若k﹣2与垂直,则实数k的值为( )A.﹣1B.1C.2D.﹣2【答案】:A5.设是非零向量,则是成立的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分又不必要条件【答案】B【解析】由可知:方向相同,表示方向上的单位向量所以成立;反之不成立.故选B6.(2018•西宁一模)如图在边长为1的正方形组成的网格中,平行四边形ABCD的顶点D被阴影遮住,请找出D点的位置,计算的值为( )A.10B.11C.12D.13【答案】:B【解析】:以A为原点,建立如图所示的坐标系,则A(0,0),B(4,1),C(6,4),平行四边形ABCD,则=,设D(x,y),∴(4,1)=(6﹣x,4﹣y),∴4=6﹣x,1=4﹣y,解得x=2,y=3,∴D(2,3),∴•=2×4+3×1=11,故选:B.格中的位置如图所示,则•()= .【答案】:3【解析】如图建立平面直角坐标系,则=(1,3),=(3,﹣1)﹣(1,1)=(2,﹣2),=((3,2)﹣(5,﹣1)=(﹣2,3),∴=(0,1),∴=(1,3)•(0,1)=3.故答案为:3.16.(2018•红桥区一模)在△ABC中,点D满足=,当点E在射线AD(不含点A)上移动时,若=λ+μ,则λ+的最小值为 .【思路分析】根据题意画出图形,利用、表示出,再利用表示出,求出λ与μ,利用基本不等式求出的最小值.【答案】【解析】:如图所示,△ABC中,,∴=+=+=+(﹣)=+,又点E在射线AD(不含点A)上移动,设=k ,k>0,∴=+,又,∴,∴=+≥2=,当且仅当k=时取“=”;∴λ+的最小值为.故答案为:.三.解答题17.如图,在△ABC中,AO是BC边上的中线;已知AO=1,BC=3.设=,=.(Ⅰ)试用,表示,;(Ⅱ)求AB2+AC2的值.【解析】:(Ⅰ)在△ABC中,AO是BC边上的中线,设=,=.所以:,则:=.=.…………4分18.如图,已知向量.(1)若∥,求x与y之间的关系;(2)在(1)的条件下,若有,求x,y的值以及四边形ABCD的面积.【思路分析】(1)由∥,结合向量平行的坐标表示可得(x+4)y﹣(y﹣2)x=0,可求x,y的关系,(2)由有,结合(1)的关系式可求x,y的值,代入四边形的面积公式可求【解析】:(1)∵,又,∴x(y﹣2)﹣y(x+4)=0⇒x+2y=0①…………4分(2)∵,又⊥,∴(x+6)(x﹣2)+(y+1)(y﹣3)=0⇒x2+y2+4x﹣2y﹣15=0②;由①,②得或,当时,,,则;当时,,,则;综上知.…………12分19.如图,直角梯形ABCD中,||=2,∠CDA=,=2,角B为直角,E为AB的中点,=λ(0≤λ≤1).(1)当λ=时,用向量,表示向量;(2)求||的最小值,并指出相应的实数λ的值.【思路分析】(1)利用三角形法则即可得出结论;(2)表示出的表达式,结合二次函数的性质求出其模的最小值即可.【解析】:(1)当λ=时,直角梯形ABCD中,||=2,∠CDA=,=2,角B为直角,E为AB中点,=,∵=[(﹣)+(+)]=(﹣++)=+;…………5分(2)∵直角梯形ABCD,||=2,∠CDA=,=2,角B为直角,E为AB中点,=λ,(0≤λ≤1),∵=(+)=[(﹣)+(+)]=[﹣λ+(1﹣λ)+]=[+(1﹣2λ)]=+,∴=++(1﹣2λ)•=4λ2﹣7λ+=4+,∵0≤λ≤1,∴当λ=时,有最小值,∴||有最小值.…………12分20.(2018秋•新罗区校级月考)在如图所示的直角坐标系xOy中,点A,B是单位圆上的点,且A(1,0),.现有一动点C在单位圆的劣弧上运动,设∠AOC=α.(Ⅰ)若tanα=2,求的值;(Ⅱ)若,其中x,y∈R,求x+y的取值范围.【思路分析】(Ⅰ)利用三角函数的定义及向量数量积可求得;(Ⅱ)利用向量的坐标运算可将x和y用α表示,从而转化为三角函数求值域可求得.【解析】:(Ⅰ)∵且tanα=2,∴sinα=,cosα=∴•=|||cos∠BOC=cos()=cos cosα+sin sinα=﹣×+=;…………5分(Ⅱ)∵,∴B(﹣,),又∵∠AOC=α,∴C(cosα,sinα)由=x+y,得(cosα,sinα)=(x,0)+(﹣y,)=(x﹣y,y)得x﹣=cosα,=sinα,得x=+cosα,y=∴x+y=sinα+cosα=2sin()∵,∴α+,∴∴x+y∈[1,2].…………12分21.在平面直角坐标系xOy中,已知向量=(λcosα﹣sinβ,λsinα+cosβ),向量=(﹣λcosα﹣sinβ,﹣λsinα+cosβ),λ>0.(1)若向量与的夹角为,<β<α<2π,求α﹣β的值;(2)若对任意实数α,β都使得|﹣|≥||成立,求实数λ的取值范围.【思路分析】(1)直接利用向量的数量的线性运算和向量的数量积的应用和三角函数关系式的恒等变变换求出夹角.(2)利用向量的夹角公式和恒成立问题求出参数的取值范围.【解析】:(1)已知向量=(λcosα﹣sinβ,λsinα+cosβ)①,向量=(﹣λcosα﹣sinβ,﹣λsinα+cosβ),则:==(﹣λcosα﹣sinβ,﹣λsinα+cosβ)②,由①②得:,,所以:,.设向量与的夹角为θ,所以: =sin(α﹣β),由于,所以:.由于:<β<α<2π,所以:,则:.…………6分(2)由于对任意实数α,β都使得|﹣|≥||成立,而:,由于,所以对任意的实数α,β都成立.由于1﹣2λsin(α﹣β)≥0对任意的实数α,β都成立,所以:,所以:,解得:,所以:.…………12分22(2018春•江阴市校级期中)在△ABC中,,M是BC的中点.(1)若点O是线段AM上任意一点,且||=||=,求+的最小值;(2)若点P是∠BAC内一点,且=2=2,||=2,求|++|的最小值.【思路分析】(1)由题意可得△ABC为等腰直角三角形,以A为原点,AB,AC为x轴和y轴建立直角坐标系,如图所示,M是BC的中点,O是线段AM上任意一点,可设O(x,x),0≤x≤,根据向量的数量积和坐标运算可得关于x的二次函数,根据函数的性质求出最值即可;(2)设∠CAP=α,∠BAP=﹣α,0<α<,运用向量数量积的定义和性质,向量的平方即为模的平方,结合坐标法和三角函数的同角关系、以及基本不等式可得最小值.=4x2﹣2x=4(x﹣)2﹣,故当x=时,+的最小值为﹣;…………6分(2)设∠CAP=α,∠BAP=﹣α,0<α<,由=2=2,||=2,可得2||cosα=2,2||cos(﹣α)=1,即有||=,||=,|++|2=2+2+2+2•+2•+2•=++4+0+4+2=++10=+tan2α+≥2+=,当且仅当=tan2α,即tanα=时,|++|的最小值为.……12分。

高考数学艺术生百日冲刺专题07数列的综合应用测试题20190307367

高考数学艺术生百日冲刺专题07数列的综合应用测试题20190307367

专题7数列的综合应用测试题命题报告:1.高频考点:等差数列、等比数列的综合,数列与函数的、不等式、方程等的综合考情分析:数列的综合问题在近几年的高考试题中一直比较稳定,难度中等,主要命题点是等差数列和等比数列的综合,数列和函数、方程、不等式的综合,与数列有关的探索性问题以及应用性问题等,对于数学文化为背景的数列问题需要特别关注。

3.重点推荐:基础卷第2、7等,涉及新定义和数学文化题,注意灵活利用所给新定义以及读懂题意进行求解。

一.选择题(共12小题,每一题5分)1. (2018春•广安期末)在等差数列{a n}中,a2=3,若从第7项起开始为负,则数列{a n}的公差d的取值范围是()A.[﹣,﹣)B.[﹣,+∞)C.(﹣∞,﹣)D.(,]【答案】:A【解析】,解得﹣≤d<﹣.故选:A.2. (2018•永定区校级月考)定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列a n,{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:①f(x)=x3;②f(x)=3x;③;④f(x)=lgx,则其中是“保等比数列函数”的f(x)的序号为()A.①②B.①③C.②④D.③④【答案】B【解析】由任意给定的等比数列a n,公比设为q,定义在(0,+∞)上的如下函数:①f(x)=x3;=q,即有==q3为常数,则f(x)为“保等比数列函数”;②f(x)=3x;=q,即有==3不为常数,则f(x)不为“保等比数列函数”;3. (2018 •黄冈期末)数列{a n}满足a n+1=,若a1=,则a2018=()A.B.C.D.【答案】A【解析】:∵a n+1=,a1=∈[,1),∴a2=2a1﹣1=∈[0,),∴a3=2a2=2×=∈[0,),∴a4=2a3=∈[,1),∴a5=2a4﹣1==a1,∴数列{a n}是以4为周期的数列,又2018=504×4+2,∴a2018=a2=.故选:A.4. (2019华南师范大学附属中学月考) 设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为( )A. B. C. D.【答案】C【解析】设等差数列的公差为,由可得,即由可得,解得,,,,解得,的最大值为,则故选5. 在数列{a n}中,,又,则数列{b n}的前n项和S n为()A.B.C.D.【答案】:A6. 已知数列{a n}的前n项和为S n,对任意的n∈N*有,且1<S k<12则k的值为()A.2或4 B.2 C.3或4 D.6【答案】:A【解析】对任意的n∈N*有,可得a1=S1=a1﹣,解得a1=﹣2,n≥2时,a n=S n﹣S n﹣1,S n﹣1=a n﹣1﹣,又,相减可得a n=a n﹣﹣a n﹣1+,化为a n=﹣2a n﹣1,则a n=﹣2•(﹣2)n﹣1=(﹣2)n,S n==﹣[1﹣(﹣2)n],1<S k<12,化为<(﹣2)k<19,可得k=2或4,故选:A.7. 公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为10﹣2米时,乌龟爬行的总距离为()A.B.C.D.【答案】:B【解析】由题意知,乌龟每次爬行的距离构成等比数列{a n},且a1=100,q=,a n=10﹣2;∴乌龟爬行的总距离为S n===.故选:B.8. 已知函数f(x)=sin(x﹣3)+x﹣1,数列{a n}的公差不为0的等差数列,若f(a1)+f(a2)+f(a3)+…+f (a7)=14,则a1+a2+a3+…+a7=()A.0 B.7 C.14 D.21【答案】:D【解析】∵f(x)=sin(x﹣3)+x﹣1,∴f(x)﹣2=sin(x﹣3)+x﹣3,令g(x)=f(x)﹣2,则g(x)关于(3,0)对称,∵f(a1)+f(a2)+…+f(a7)=14,∴f(a1)﹣2+f(a2)﹣2+…+f(a7)﹣2=0,即 g(a1)+g(a2)+…+g(a7)=0,∴g(a4)为g(x)与x轴的交点,由g(x)关于(3,0)对称,可得a4=3,∴a1+a2+…+a7=7a4=21.故选:D.9. 巳知数列{a n}的前n项和为S n,首项a1=﹣,且满足S n+(n≥2),则S2018等于()A.B.C.D.【答案】:D【解析】数列{a n}的前n项和为S n,满足S n+(n≥2),则:,所以:,,当n=2时,=﹣,当n=3时,,…猜想:,所以选择D。

2019年高考数学艺术生百日冲刺专题11直线与圆的方程测试题20190307371

2019年高考数学艺术生百日冲刺专题11直线与圆的方程测试题20190307371

专题11直线和圆的方程测试题【高频考点】本知识涉及直线的倾斜角与斜率,两直线的位置关系,圆的方程,直线与圆的位置关系,弦长计算以及对称问题,直线过定点问题。

【考情分析】本阶段是高考考查重点内容之一,涉及题型主要选择题与填空题,考察两直线的垂直平行关系,以及直线与圆的位置关系以及圆与圆锥曲线的综合交汇,注意利用平面几何的性质求解。

【重点推荐】第22题,涉及证明定值问题以及最值问题,考察综合能力,第8题数学文化题,第20题考察三角函数恒等变换与直线的交汇,命题角度新颖,考察综合解决问题的能力。

一选择题1.直线x+y﹣1=0的倾斜角等于()A.45° B.60° C.120°D.135°【答案】:D【解析】直线x+y﹣1=0的斜率为﹣1,设其倾斜角为θ(0°≤θ<135°),∴tanθ=﹣1,则θ=135°.故选:D.2.(2018•资阳模拟)已知直线l1:ax+(a+2)y+2=0与l2:x+ay+1=0平行,则实数a的值为()A.﹣1或2 B.0或2 C.2 D.﹣1【答案】:D【解析】由a•a﹣(a+2)=0,即a2﹣a﹣2=0,解得a=2或﹣1.经过验证可得:a=2时两条直线重合,舍去.∴a=﹣1.故选:D.3.(2018•北京模拟)直线l:3x+4y+5=0被圆M:(x﹣2)2+(y﹣1)2=16截得的弦长为()A.B.5 C.D.10【答案】:C【解析】∵圆(x﹣2)2+(y﹣1)2=16,∴圆心(2,1),半径r=4,圆心到直线的距离d==3,∴直线3x+4y+5=0被圆(x﹣2)2+(y﹣1)2=16截得的弦长l=2.故选:C.4.已知点(﹣1,2)和(,0)在直线l:ax﹣y+1=0(a≠0)的同侧,则直线l倾斜角的取值范围是()A.(,)B.(0,)∪(,π)C.(,)D.(,)【答案】D【解析】:点(﹣1,2),(,0)在直线ax﹣y+1=0的同侧,(﹣a﹣2+1)(a+1)>0,解不等式可得,﹣<a<﹣1∴,故选:D.5(2018•武汉模拟)已知圆C1:,x2+y2=r2,圆C2:(x﹣a)2+(y﹣b)2=r2(r>0)交于不同的A(x1,y1),B (x2,y2)两点,给出下列结论:①a(x1﹣x2)+b(y1﹣y2)=0;②2ax1+2by1=a2+b2;③x1+x2=a,y1+y2=b.其中正确结论的个数是()A.0 B.1 C.2 D.3【答案】:D6.(2018•丹东二模)圆心为(2,0)的圆C与圆x2+y2+4x﹣6y+4=0相外切,则C的方程为()A.x2+y2+4x+2=0 B.x2+y2﹣4x+2=0 C.x2+y2+4x=0 D.x2+y2﹣4x=0【答案】:D【解析】圆x2+y2+4x﹣6y+4=0的圆心为M(﹣2,3),半径为r=3,CM==5,∴圆C的半径为5﹣3=2,∴圆C的标准方程为:(x﹣2)2+y2=4,即x2+y2﹣4x=0.故选:D.7.(2018•房山区一模)圆x2+y2=4被直线y=﹣截得的劣弧所对的圆心角的大小为120°,则b的值()A.±2 B.C.2 D.【答案】A【解析】:根据题意,圆x2+y2=4的圆心为(0,0),半径r=2,若圆x2+y2=4被直线y=﹣截得的劣弧所对的圆心角的大小为120°,则圆心到直线的距离d==1,即=1,解可得b=±2,故选:A.8.已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.[﹣,0)B.(﹣,0)C.(﹣,+∞) D.(﹣∞,﹣)∪(0,+∞)【答案】:D【解析】∵点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),∴,化为x0+3y0+2=0.又y0<x0+2,设=k OM,当点位于线段AB(不包括端点)时,则k OM>0,当点位于射线BM(不包括端点B)时,k OM<﹣.∴的取值范围是(﹣∞,﹣)∪(0,+∞).故选:D.9.一条光线从点(﹣2,3)射出,经x轴反射后与圆(x﹣3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.或B.或C.或D.或【答案】:D【解析】由题意可知:点(﹣2,﹣3)在反射光线上.设反射光线所在的直线方程为:y+3=k(x+2),即kx﹣y+2k﹣3=0.由相切的性质可得:=1,化为:12k2﹣25k+12=0,解得k=或.故选:D.10.(2018•宜宾模拟)过点P(2,3)并且在两坐标轴上截距相等的直线方程为()A.2x﹣3y=0 B.3x﹣2y=0或x+y﹣5=0C.x+y﹣5=0 D.2x﹣3y=0或x+y﹣5=0【答案】:B【解析】①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x+y=a,把(2,3)代入所设的方程得:a=5,则所求直线的方程为x+y=5即x+y﹣5=0;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y=kx,把(2,3)代入所求的方程得:k=,则所求直线的方程为y=x即3x﹣2y=0.综上,所求直线的方程为:3x﹣2y=0或x+y﹣5=0.故选:B.11.(2018•红河州二模)已知方程kx+3﹣2k=有两个不同的解,则实数k的取值范围是()A.B.C.D.【答案】:C12.(2018•涪城区校级模拟)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是()A.[2﹣,1] B.[2﹣,2+]C.[,] D.[0,+∞)【答案】:B【解析】圆x2+y2﹣4x﹣4y﹣10=0可化为(x﹣2)2+(y﹣2)2=18,则圆心为(2,2),半径为3;则由圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2可得,圆心到直线l:ax+by=0的距离d≤3﹣2=;即≤,则a2+b2+4ab≤0,若a=0,则b=0,故不成立,故a≠0,则上式可化为1+()2+4≤0,由直线l的斜率k=﹣,则上式可化为1+k2﹣4k≤0,则∈[2﹣,2+],故选:B.二.填空题13.已知两点A(0,1),B(4,3),则线段AB的垂直平分线方程是.【答案】:2x+y﹣6=0【解析】两点A(0,1),B(4,3),中点坐标为:(2,2),直线AB的斜率为:=,AB垂线的斜率为:﹣2,线段AB的垂直平分线方程是:y﹣2=﹣2(x﹣2),即:2x+y﹣6=0,故答案为2x+y﹣6=0.14.(2018•顺义区二模)圆(x﹣2)2+(y﹣1)2=1的圆心到直线y=2x+2的距离为.【答案】:【解析】圆(x﹣2)2+(y﹣1)2=1的圆心为C(2,1),直线y=2x+2化为一般形式是2x﹣y+2=0,则圆心到直线的距离为d==.故答案为:.15.(2018•铜山区三模)已知圆O:x2+y2=r2(r>0)及圆上的点A(﹣r,0),过点A的直线l交y轴于点B(0,1),交圆于另一点C,若AB=2BC,则直线l的斜率为.【答案】:或.【解析】由题意直线l的方程为=,即x﹣ry+r=0,联立直线与圆的方程:,得C(,),∵AB=2BC,∴=2,解得r=或r=,∴直线l的斜率k==或k==.故答案为:或.16设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的最大值是.【答案】:2.【解析】由题意可得动直线x+my=0过定点A(0,0),直线mx﹣y﹣m+3=0可化为(x﹣1)m+3﹣y=0,令可解得,即B(1,3),又1×m+m×(﹣1)=0,故两直线垂直,∴|PA|2+|PB|2=|AB|2=10,由基本不等式可得10=|PA|2+|PB|2=(|PA|+|PB|)2﹣2|PA||PB|≥(|PA|+|PB|)2﹣2()2=(|PA|+|PB|)2,∴(|PA|+|PB|)2≤20,解得|PA|+|PB|≤2,当且仅当|PA|=|PB|=时取等号.故答案为:2.三.解答题17.(本题10分)直线l的倾斜角为450,在x轴上的截距为-2,直线l和x轴,y轴分别交于点A,B,在线段AB为边在第二象限内作等边△ABC,如果在第二象限内有一点P(m, 1)使得△ABP和△ABC的面积相等,求m的值.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.【解析】:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;…………3分(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,…………5分则有:;所以为定值;…………7分(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,…………9分当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.…………12分。

2019年高考数学艺术生百日冲刺专题19考前模拟卷20190307379

2019年高考数学艺术生百日冲刺专题19考前模拟卷20190307379

专题19考前模拟卷一.选择题1.设集合M={x|x2﹣x>0},N={x|<1},则()A.M∩N=∅B.M∪N=∅C.M=N D.M∪N=R【答案】C【解析】:M={x|x2﹣x>0}={x|x>1或x<0},N={x|<1}={x|x>1或x<0},则M=N,故选:C.2.已知是虚数单位,,且,则( )A. B. C. D.【答案】A【解析】由,得,,即,故选A.3.在区间[0,2]上随机取一个数x,使的概率为()A.B.C.D.【答案】A【解析】:∵0≤x≤2,∴0≤≤π,∵sin≥,∴≤≤,即≤x≤,∴P==.故选:A.4.(2018•威海二模)已知命题p:“∀a>b,|a|>|b|”,命题q:“”,则下列为真命题的是()A.p∧q B.¬p∧¬q C.p∨q D.p∨¬q【答案】C【解析】:∵命题p:“∀a>b,|a|>|b|”是假命题,命题q:“”是真命题,∴p ∨q是真命题.故选:C.5.如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B. 2018年1~4月的业务量同比增长率均超过50%,在3月最高C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长【答案】D6.(2019•泉州期中)已知等差数列{a n}的前n项和为S n,则“S n的最大值是S8”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】:等差数列{a n}的前n项和为S n,则“S n的最大值是S8”⇔a8>0,a9<0.则“”⇔.∴S n的最大值是S8”是“”的充要条件.故选:C.7.已知点P(2,1)是抛物线C:x2=my上一点,A,B是抛物线C上异于P的两点,A,B在x轴上的射影分别为A1,B1,若直线PA与直线PB的斜率之差为1,D是圆(x﹣1)2+(y+4)2=1上一动点,则△A1B1D的面积的最大值为()(2)若b,a,c成等差数列,△ABC的面积为2,求a.【解析】:(1)∵asinB=bsin(A+).∴由正弦定理可得:sinAsinB=sinBsin(A+).∵sinB≠0,∴sinA=sin(A+).∵A∈(0,π),可得:A+A+=π,∴A=.…………6分(2)∵b,a,c成等差数列,∴b+c=,∵△ABC的面积为2,可得:S△ABC=bcsinA=2,∴=2,解得bc=8,∴由余弦定理可得:a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccos=(b+c)2﹣3bc=(a)2﹣24,∴解得:a=2.………………12分18.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,点E在棱CS上,且CE=λCS.(1)若,证明:BE⊥CD;(2)若,求点E到平面SBD的距离.【解析】(1)因为,所以,在线段CD上取一点F使,连接EF,BF,则EF∥SD且DF =1.因为AB=1,AB∥CD,∠ADC=90°,所以四边形ABFD为矩形,所以CD⊥BF.又SA⊥平面ABCD,∠ADC=90°,所以SA⊥CD,AD⊥CD.因为AD∩SA=A,所以CD⊥平面SAD,所以CD⊥SD,从而CD⊥EF.因为BF∩EF=F,所以CD⊥平面BEF.又BE平面BEF,所以CD⊥BE.…………5分(2)解:由题设得,,又因为,,,所以,设点C到平面SBD的距离为h,则由V S—BCD=V C—SBD得,因为,所以点E到平面SBD的距离为.…………12分19..2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)(ⅰ)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.【解析】(1)平均数.前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x,则(x-30)×0.03+0.15+0.2=0.5,解得x=35,即中位数为35.…………5分(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a,b,c,d,年龄在[60,70)的有2人,设为x,y.则从中任选2人共有如下15个基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).至少有1人年龄不低于60岁的共有如下9个基本事件:(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),(d,x),(d,y),(x,y).记“这2人中至少有1人年龄不低于60岁”为事件A,故所求概率.…………9分(ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88,故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.……12分20.已知椭圆E:(a>b>0)过点P(),其上顶点B(0,b)与左右焦点F1,F2构成等腰三角形,且∠F1BF2=120°.(Ⅰ)求椭圆E的方程;(Ⅱ)以点B(0,b)为焦点的抛物线C:x2=2py(p>0)上的一动点P(m,y p),抛物线C在点P处的切线l与椭圆E交于P1P2两点,线段P1P2的中点为D,直线OD(O为坐标原点)与过点P且垂直于x轴的直线交于点M,问:当0<m≤b时,△POM面积是否存在最大值?若存在,求出最大值,若不存在说明理由.【解析】:(Ⅰ)由已知得:a=2b,+=1,解得b2=1,a2=4.故椭圆E的方程为:+y2=1.………………4分(Ⅱ)抛物线C的焦点B(0,1),则其方程为x2=4y.y′=x.于是抛物线上点P(m,),则在点P处的切线l的斜率为k=y′|x=m=,故切线l的方程为:y﹣=(x﹣m),即y=x﹣.…………6分由方程组,消去y,整理后得(m2+1)x2﹣m3x+﹣4=0.由已知直线l与椭圆交于两点,则△=m6﹣4(m2+1)(﹣4)>0.解得0≤m2<8+4,其中m=0是不合题意的.∴﹣<m<0,或0<m<.设P1(x1,y1),P2(x2,y2),则x D==.…………8分代入l的方程得y D=.故直线OD的方程为:x,即y=﹣x.当x=m时,y=﹣,即点M.△POM面积S=|PM|•m=m=+m.∵S′=m2+>0,故S关于m单调递增.∵0<m≤1,∴当m=1时,△POM面积最大值为.…………12分21已知函数.(1)若函数f(x)在[1,+∞)上是单调递减函数,求a的取值范围;(2)当-2<a<0时,证明:对任意x∈(0,+∞),.【解析】 (1)解:由题意得.即在上恒成立,所以.…………3分(2)证明:由(1)可知,所以在上单调递增,在上单调递减,因为,所以,所以,即,即,所以.…………12分22.(10分)以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.23. 设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.(Ⅰ)作出函数f(x)的图象;(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.【解析】:(Ⅰ)函数f(x)=|x﹣1|﹣|2x+1|=,画出图象如图,(Ⅱ)由(Ⅰ)知,当x=﹣时,函数f(x)取得最大值为m=.∵a2+2c2+3b2=m==(a2+b2)+2(c2+b2)≥2ab+4bc,∴ab+2bc≤,当且仅当a=b=c=1时,取等号,故ab+2bc的最大值为.。

人教版2019年高考数学艺术生百日冲刺专题05平面向量测试题20190307365

人教版2019年高考数学艺术生百日冲刺专题05平面向量测试题20190307365

专题5平面向量测试题命题报告:高频考点:平面向量的基本概念,平面向量的运算,平面向量的数量积的运算,平面向量是数量积运算,平面向量与三角函数、解析几何的综合,平面向量与平面几何的综合等。

考情分析:本单元在高考中主要以客观题形式出现,难度较低,再解答题中,主要课程向量的工具性的作用,一般在解答题中不单独命题。

重点推荐:第12题,考查向量和不等式的交汇,有一定难度。

考查学生解决问题的能力。

一.选择题1.(2018•洛阳三模)已知平面向量,,,若,则实数k的值为()A.B.C.2 D.【答案】:B【解析】∵平面向量,,,∴=(2+k,﹣1+k),∵,∴,解得k=.∴实数k的值为.故选:B.2.已知A,B,C为圆O上的三点,若=,圆O的半径为2,则=()A.﹣1 B.﹣2 C.1 D.2【答案】:D【解析】如图所示,=,∴平行四边形OABC是菱形,且∠AOC=120°,又圆O的半径为2,∴=2×2×cos60°=2.故选:D.3.(2018•宝鸡三模)已知不共线向量,,,则=()A.B.C.D.【答案】:A【解析】∵,∴﹣=﹣4=1,∴=5,∴==4﹣2×5+9=3,∴=,故选:A.4.(2018•安宁区校级模拟)已知向量=(1,1),=(2,﹣3),若k﹣2与垂直,则实数k的值为()A.﹣1 B.1 C.2 D.﹣2【答案】:A5.设是非零向量,则是成立的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分又不必要条件【答案】B【解析】由可知:方向相同,表示方向上的单位向量所以成立;反之不成立.故选B6.(2018•西宁一模)如图在边长为1的正方形组成的网格中,平行四边形ABCD的顶点D被阴影遮住,请找出D点的位置,计算的值为()A.10 B.11 C.12 D.13【答案】:B【解析】:以A为原点,建立如图所示的坐标系,则A(0,0),B(4,1),C(6,4),平行四边形ABCD,则=,设D(x,y),∴(4,1)=(6﹣x,4﹣y),∴4=6﹣x,1=4﹣y,解得x=2,y=3,∴D(2,3),∴•=2×4+3×1=11,故选:B.格中的位置如图所示,则•()= .【答案】:3【解析】如图建立平面直角坐标系,则=(1,3),=(3,﹣1)﹣(1,1)=(2,﹣2),=((3,2)﹣(5,﹣1)=(﹣2,3),∴=(0,1),∴=(1,3)•(0,1)=3.故答案为:3.16.(2018•红桥区一模)在△ABC中,点D满足=,当点E在射线AD(不含点A)上移动时,若=λ+μ,则λ+的最小值为.【思路分析】根据题意画出图形,利用、表示出,再利用表示出,求出λ与μ,利用基本不等式求出的最小值.【答案】【解析】:如图所示,△ABC中,,∴=+=+=+(﹣)=+,又点E在射线AD(不含点A)上移动,设=k,k>0,∴=+,又,∴,∴=+≥2=,当且仅当k=时取“=”;∴λ+的最小值为.故答案为:.三.解答题17.如图,在△ABC中,AO是BC边上的中线;已知AO=1,BC=3.设=,=.(Ⅰ)试用,表示,;(Ⅱ)求AB2+AC2的值.【解析】:(Ⅰ)在△ABC中,AO是BC边上的中线,设=,=.所以:,则:=.=.…………4分18.如图,已知向量.(1)若∥,求x与y之间的关系;(2)在(1)的条件下,若有,求x,y的值以及四边形ABCD的面积.【思路分析】(1)由∥,结合向量平行的坐标表示可得(x+4)y﹣(y﹣2)x=0,可求x,y的关系,(2)由有,结合(1)的关系式可求x,y的值,代入四边形的面积公式可求【解析】:(1)∵,又,∴x(y﹣2)﹣y(x+4)=0⇒x+2y=0①…………4分(2)∵,又⊥,∴(x+6)(x﹣2)+(y+1)(y﹣3)=0⇒x2+y2+4x﹣2y﹣15=0②;由①,②得或,当时,,,则;当时,,,则;综上知.…………12分19.如图,直角梯形ABCD中,||=2,∠CDA=,=2,角B为直角,E为AB的中点,=λ(0≤λ≤1).(1)当λ=时,用向量,表示向量;(2)求||的最小值,并指出相应的实数λ的值.【思路分析】(1)利用三角形法则即可得出结论;(2)表示出的表达式,结合二次函数的性质求出其模的最小值即可.【解析】:(1)当λ=时,直角梯形ABCD中,||=2,∠CDA=,=2,角B为直角,E为AB中点,=,∵=[(﹣)+(+)]=(﹣++)=+;…………5分(2)∵直角梯形ABCD,||=2,∠CDA=,=2,角B为直角,E为AB中点,=λ,(0≤λ≤1),∵=(+)=[(﹣)+(+)]=[﹣λ+(1﹣λ)+]=[+(1﹣2λ)]=+,∴=++(1﹣2λ)•=4λ2﹣7λ+=4+,∵0≤λ≤1,∴当λ=时,有最小值,∴||有最小值.…………12分20.(2018秋•新罗区校级月考)在如图所示的直角坐标系xOy中,点A,B是单位圆上的点,且A(1,0),.现有一动点C在单位圆的劣弧上运动,设∠AOC=α.(Ⅰ)若tanα=2,求的值;(Ⅱ)若,其中x,y∈R,求x+y的取值范围.【思路分析】(Ⅰ)利用三角函数的定义及向量数量积可求得;(Ⅱ)利用向量的坐标运算可将x和y用α表示,从而转化为三角函数求值域可求得.【解析】:(Ⅰ)∵且tanα=2,∴sinα=,cosα=∴•=|||cos∠BOC=cos()=cos cosα+sin sinα=﹣×+=;…………5分(Ⅱ)∵,∴B(﹣,),又∵∠AOC=α,∴C(cosα,sinα)由=x+y,得(cosα,sinα)=(x,0)+(﹣y,)=(x﹣y,y)得x﹣=cosα,=sinα,得x=+cosα,y=∴x+y=sinα+cosα=2sin()∵,∴α+,∴∴x+y∈[1,2].…………12分21.在平面直角坐标系xOy中,已知向量=(λcosα﹣sinβ,λsinα+cosβ),向量=(﹣λcosα﹣sinβ,﹣λsinα+cosβ),λ>0.(1)若向量与的夹角为,<β<α<2π,求α﹣β的值;(2)若对任意实数α,β都使得|﹣|≥||成立,求实数λ的取值范围.【思路分析】(1)直接利用向量的数量的线性运算和向量的数量积的应用和三角函数关系式的恒等变变换求出夹角.(2)利用向量的夹角公式和恒成立问题求出参数的取值范围.【解析】:(1)已知向量=(λcosα﹣sinβ,λsinα+cosβ)①,向量=(﹣λcosα﹣sinβ,﹣λsinα+cosβ),则:==(﹣λcosα﹣sinβ,﹣λsinα+cosβ)②,由①②得:,,所以:,.设向量与的夹角为θ,所以: =sin(α﹣β),由于,所以:.由于:<β<α<2π,所以:,则:.…………6分(2)由于对任意实数α,β都使得|﹣|≥||成立,而:,由于,所以对任意的实数α,β都成立.由于1﹣2λsin(α﹣β)≥0对任意的实数α,β都成立,所以:,所以:,解得:,所以:.…………12分22(2018春•江阴市校级期中)在△ABC中,,M是BC的中点.(1)若点O是线段AM上任意一点,且||=||=,求+的最小值;(2)若点P是∠BAC内一点,且=2=2,||=2,求|++|的最小值.【思路分析】(1)由题意可得△ABC为等腰直角三角形,以A为原点,AB,AC为x轴和y轴建立直角坐标系,如图所示,M是BC的中点,O是线段AM上任意一点,可设O(x,x),0≤x≤,根据向量的数量积和坐标运算可得关于x的二次函数,根据函数的性质求出最值即可;(2)设∠CAP=α,∠BAP=﹣α,0<α<,运用向量数量积的定义和性质,向量的平方即为模的平方,结合坐标法和三角函数的同角关系、以及基本不等式可得最小值.=4x2﹣2x=4(x﹣)2﹣,故当x=时,+的最小值为﹣;…………6分(2)设∠CAP=α,∠BAP=﹣α,0<α<,由=2=2,||=2,可得2||cosα=2,2||cos(﹣α)=1,即有||=,||=,|++|2=2+2+2+2•+2•+2•=++4+0+4+2=++10=+tan2α+≥2+=,当且仅当=tan2α,即tanα=时,|++|的最小值为.……12分23。

2019高考数学二轮专项练习精品--推理证明、复数、算法框图

2019高考数学二轮专项练习精品--推理证明、复数、算法框图

2019高考数学二轮专项练习精品--推理证明、复数、算法框图【考纲解读】1.理解复数的基本概念;理解复数相等的充要条件;了解复数的代数表示法及其几何意义、2.会进行复数代数形式的四那么运算、② 了解复数代数形式的加、减运算的几何意义、3.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用、4.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理、5.了解合情推理和演绎推理之间的联系和差异、6.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点、7.了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点、9.了解算法的含义,了解算法的思想;理解程序框图的三种基本逻辑结构:顺序、条件分支、循环、10.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义、【考点预测】今年高考对本部分知识的命题主要有以下两个方面: 1.复数与算法框图是历年高考的热点内容,考查方式主要在客观题中出现,一般只有一个选择或填空,考查复数的基础知识、算法框图以循环结构为主,难度较低。

2.推理证明也是高考的一个重点内容,考查方式多样,在客观题中主要考查合情推理中的归纳与类比,证明题目多以解答题的一个分支出现,常与数列、导数、不等式等知识结合,理科可能考查数学归纳法,难度较高,将继续强调考查逻辑推理、归纳等能力。

【要点梳理】1.合情推理与演绎推理:合情推理包括归纳与类比,明确演绎推理的三个模式〔大前提、小前提、结论〕.2.直接证明与间接证明:直接证明包括分析法(执果索因)与综合法(执因索果);常用的间接证明方法是反证法,反证法主要用于证明唯一性与否定性命题,其主要步骤是否定结论、证明、得出矛盾、肯定结论.3.(理科)数学归纳法:用来证明与自然数有关的等式、不等式、整除及几何等问题。

证明时,特别注意第二步,要弄清式子的构成规律,充分利用题目中的条件和假设,适当变形。

2019年高考数学艺术生百日冲刺专题03导数及其应用测试题20190307363

专题3导数及其应用测试题命题报告:1.高频考点:导数的几何意义切线方程,留言导数求函数的单调区间,极值以及最值,利用导数解决实际问题.2.考情分析:高考主要以选择题填空题以及解答题形式出现,在全国卷所占分值是12-17分,一般解答题形式出现,考察利用导数研究函数的性质以及求极值最值问题。

3.重点推荐:基础卷第10题需要构造函数,利用导数与函数的单调性的关系求解。

一.选择题(本大题共12题,每小题5分)1. (2018•平罗县校级期中)已知函数f(x)=e2x,则=()A.1 B.0 C.e2D.2e2[答案]D【解析】:∵f′(x)=2e2x,∴=f′(1),∴f′(1)=2e2,故选:D.2. (2018•攀枝花期末)设f′(x)是函数的导函数,则f'(0)的值为()A.1 B.0 C.﹣1 D.【答案】:C【解析】根据题意,,其导数f′(x)==﹣,则f'(0)=﹣1;故选:C.3. (2018•银川三模)已知函数f(x)=cosx+alnx在x=处取得极值,则a=()A.B.C.D.﹣【答案】C【解析】:∵f(x)=cosx+alnx,∴f′(x)=﹣sinx+,∵f(x)在x=处取得极值,∴f′()=﹣+=0,解得:a=,经检验符合题意,故选:C.4. (2018春•云阳县期末)已知函数f(x)=x3﹣ax+1在[1,+∞)上是单调递增函数,则实数a的取值范围是()A.a<3 B.a≤3 C.a≤1 D.1<a<3【答案】:B【解析】求导函数,可得f′(x)=3x2﹣a,∵f(x)在[1,+∞)上单调递增,∴3x2﹣a≥0在[1,+∞)上恒成立,∴a≤3x2在[1,+∞)上恒成立,∴a≤3,故选:B.5. (2018•柳州一模)设a∈R,若函数y=x+alnx在区间(,e)有极值点,则a取值范围为()A.(,e)B.(﹣e,﹣)C.(﹣∞,)∪(e,+∞)D.(﹣∞,﹣e)∪(﹣,+∞)【答案】B6. (2018•吉安期中)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为()A.B.C.D.【答案】A【解析】:由f(x)的图象判断出可得从左到右函数的单调性在y轴左侧先增,再减,在y轴的右侧,函数单调递减,∴导函数y=f′(x)的图象可能为区间(﹣∞,0)内,先有f′(x)>0,再有f′(x)<0,在(0,+∞)再有f′(x)>0.故选:A.7. (2018•邯郸二模)若过点P(﹣1,m)可以作三条直线与曲线C:y=xe x相切,则m的取值范围是()A.(﹣,+∞)B.()C.(0,+∞)D.()【答案】D【解析】:设切点为(x0,y0),过点P的切线程为,代入点P坐标化简为m=,即这个方程有三个不等根即可,令,求导得到f′(x)=(﹣x﹣1)(x+2)e x,函数在(﹣∞,﹣2)上单调递减,在(﹣2,﹣1)上单调递增,在(﹣1,+∞)上单调递减,故得到f(﹣2)<m<f(﹣1),即,故选:D.综上,若∃x∈(1,+∞),使得f(x)>﹣a,a的取值范围为a.…………12分19. (2018•新余期末)函数f(x)=x3+ax2+bx﹣c,过曲线y=f(x)上的点p(1,f(1)的切线方程y=3x+3.(1)若y=f(x)在x=﹣2时有极值,求f(x)的表达式;(2)在(1)的条件下,求y=f(x)在[﹣3,1]上的最小值.【思路分析】(1)f′(x)=3x2+2ax+b,由过曲线y=f(x)上的点p(1,f(1)的切线方程y=3x+3.可得f(1)=6=1+a+b﹣c,f′(1)=3+2a+b=3.又y=f(x)在x=﹣2时有极值,可得f′(﹣2)=12﹣4a+b=0,联立解得a,b,c.(2)在(1)的条件下,f(x)=x3+2x2﹣4x+7.x∈[﹣3,1].f′(x)=3x2+4x﹣4=(3x﹣2)(x+2),令f′(x)=0,解得x=或﹣2.列表即可得出.【解析】:(1)f′(x)=3x2+2ax+b,∵过曲线y=f(x)上的点p(1,f(1)的切线方程y=3x+3.∴f(1)=6=1+a+b﹣c,f′(1)=3+2a+b=3.又y=f(x)在x=﹣2时有极值,∴f′(﹣2)=12﹣4a+b=0,联立解得:a=2,b=﹣4,c=﹣7.∴f(x)=x3+2x2﹣4x+7.(2)在(1)的条件下,f(x)=x3+2x2﹣4x+7.x∈[﹣3,1].f′(x)=3x2+4x﹣4=(3x﹣2)(x+2),令f′(x)=0,解得x=或﹣2.列表如下:x [﹣3,﹣2)﹣2 (﹣2,)f′(x)+ 0 ﹣ 0 +f(x)单调递增极大值单调递减极小值单调递增由表格可得:x=时,函数f(x)取得极小值,=.又f(﹣3)=10>.∴函数f(x)最小值为=.20. (2018 •新罗区校级月考)设函数f(x)=axlnx+(a>0).(Ⅰ)已知函数在x=1处取得极值,讨论函数f(x)的单调性;(Ⅱ)设g(x)=f(x)﹣ax,若g(x)≥0恒成立,求实数a的取值范围.【思路分析】(I)函数f(x)=axlnx+(a>0),x>0.f′(x)=alnx+a﹣,根据函数在x=1处取得极值,可得f′(1)=0,解得a.进而得出单调性.(II)g(x)=f(x)﹣ax,a>0,g(x)≥0恒成立,可得axlnx+﹣ax≥0,x>0.可得alnx+﹣a ≥0恒成立,令h(x)=alnx+﹣a,利用导数研究函数的单调性即可得出.【解析】:(I)函数f(x)=axlnx+(a>0),x>0.∴f′(x)=alnx+a﹣,∵函数在x=1处取得极值,∴a﹣1=0,解得a=1.∴f′(x)=lnx+1﹣,可得:函数f′(x)在(0,+∞)上单调递增,又f′(1)=0,∴x∈(0,1)时,f′(x)<0;x∈(1,+∞)时,f′(x)>0.∴函数f(x)在x∈(0,1)时单调递减;x∈(1,+∞)时,函数f(x)单调递增.(II)g(x)=f(x)﹣ax,a>0,g(x)≥0恒成立,∴axlnx+﹣ax≥0,x>0.可得alnx+﹣a≥0恒成立,令h(x)=alnx+﹣a,则h′(x)=﹣==,∴0<x<时,h′(x)<0,此时函数h(x)单调递减;x>时,h′(x)>0,此时函数h(x)单调递增.∴h(x)min==aln+﹣a≥0,∴ln≥1,解得:a≤,∴a的取值范围是(0,].21. (2018•思明区校级月考)已知函数f(x)=(m≥0),其中e为自然对数的底数.(1)讨论函数f(x)的极值;(2)若m∈(1,2),证明:当x1,x2∈[1,m]时,f(x1)>﹣x2+1+.【思路分析】(1)求导对m分类讨论,即可得出单调性与极值.(2)当x1,x2∈[1,m]时,f(x1)>﹣x2+1+,只要证明f(x1)min>即可,由(1)可知:f(x)在x∈[1,m]内单调递减,可得f(x1)min=f(m).因此f(x1)min>⇔x2>﹣.m∈(1,2),令g(m)=﹣.m∈(1,2),利用导数研究其单调性即可得出.【解析】(1):f′(x)==.①m>0时,1﹣m<1,令f′(x)=0,解得x=1或1﹣m.则函数f(x)在(﹣∞,1﹣m)上单调递减,在(1﹣m,1)内单调递增,在(1,+∞)上单调递减.∴x=1﹣m时,函数f(x)取得极小值;x=1时,函数f(x)取得极大值.②m=0时,f′(x)=≤0,函数f(x)在R上单调递减,无极值.(2)证明:当x1,x2∈[1,m]时,f(x1)>﹣x2+1+,只要证明f(x1)min>即可,由(1)可知:f(x)在x∈[1,m]内单调递减,∴f(x1)min=f(m)=.∴f(x1)min>⇔x2>﹣.m∈(1,2),令g(m)=﹣.m∈(1,2),g′(m)=﹣=<0,∴函数g(m)在m∈(1,2)上单调递减,∴g(m)<g(1)=1+﹣=<1≤x2,因此结论成立.22. (2018•道里区校级二模)已知函数h(x)=ae x,直线l:y=x+1,其中e为自然对数的底.(1)当a=1,x>0时,求证:曲线f(x)=h(x)﹣x2在直线l的上方;(2)若函数h(x)的图象与直线l有两个不同的交点,求实数a的取值范围;(3)对于第(2)中的两个交点的横坐标x1,x2及对应的a,当x1<x2时,求证:a>.【思路分析】(1)可令g(x)=,求出二阶导数,求得单调区间,可得g(x)的单调性,即可得证;(2)由题可得ae x=x+1,即有a=,设m(x)=,求出导数和单调性,作出图象,即可得到所求范围;(3)由(2)可得ae x1=x1+1,ae x2=x2+1,作差可得a=,运用分析法证明,即证>,即为x2﹣x1>1﹣=1﹣,运用换元法和构造函数,求得导数和单调性,即可得证.【解析】:(1)证明:当a=1,x>0时,令g(x)=,g′(x)=e x﹣x﹣1,g″(x)=e x﹣1,当x>0时,g″(x)>0,g′(x)递增,g′(x)>g′(0)=0,∴g(x)递增,g(x)>g(0)=0,∴曲线f(x)=h(x)﹣x2在直线l的上方;(2)由y=ae x和y=x+1,可得ae x=x+1,即有a=,设m(x)=,可得m′(x)=,当x>0时,m′(x)<0,m(x)递减;当x<0时,m′(x)>0,m(x)递增,可得m(x)在x=0处取得极大值,且为最大值1,图象如右上:由图象可得0<a<1时,a=有两解,可得函数h(x)的图象与直线l有两个不同的交点,则a的范围是(0,1);设n(t)=t﹣1+,t>0,n′(t)=1﹣=>0,可得n(t)在t>0上递增,可得n(t)>n(0)=0,可得t>1﹣成立,则当x1<x2时,a>.。

2019年高考数学艺术生百日冲刺专题07数列的综合应用测试题(含答案)

专题7数列的综合应用测试题命题报告:1.高频考点:等差数列、等比数列的综合,数列与函数的、不等式、方程等的综合考情分析:数列的综合问题在近几年的高考试题中一直比较稳定,难度中等,主要命题点是等差数列和等比数列的综合,数列和函数、方程、不等式的综合,与数列有关的探索性问题以及应用性问题等,对于数学文化为背景的数列问题需要特别关注。

3.重点推荐:基础卷第2、7等,涉及新定义和数学文化题,注意灵活利用所给新定义以及读懂题意进行求解。

一.选择题(共12小题,每一题5分)1. (2018春•广安期末)在等差数列{a n}中,a2=3,若从第7项起开始为负,则数列{a n}的公差d的取值范围是()A.[﹣,﹣)B.[﹣,+∞)C.(﹣∞,﹣)D.(,]【答案】:A【解析】,解得﹣≤d<﹣.故选:A.2. (2018•永定区校级月考)定义在(0,+∞)上的函数f(x),如果对于任意给定的等比数列a n,{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(0,+∞)上的如下函数:①f(x)=x3;②f(x)=3x;③;④f(x)=lgx,则其中是“保等比数列函数”的f(x)的序号为()A.①②B.①③C.②④D.③④【答案】B【解析】由任意给定的等比数列a n,公比设为q,定义在(0,+∞)上的如下函数:①f(x)=x3;=q,即有==q3为常数,则f(x)为“保等比数列函数”;②f(x)=3x;=q,即有==3不为常数,则f(x)不为“保等比数列函数”;3. (2018 •黄冈期末)数列{a n}满足a n+1=,若a1=,则a2018=()A.B.C.D.【答案】A【解析】:∵a n+1=,a1=∈[,1),∴a2=2a1﹣1=∈[0,),∴a3=2a2=2×=∈[0,),∴a4=2a3=∈[,1),∴a5=2a4﹣1==a1,∴数列{a n}是以4为周期的数列,又2018=504×4+2,∴a2018=a2=.故选:A.4. (2019华南师范大学附属中学月考) 设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为( )A. B. C. D.【答案】C【解析】设等差数列的公差为,由可得,即由可得,解得,,,,解得,的最大值为,则故选5. 在数列{a n}中,,又,则数列{b n}的前n项和S n为()A.B.C.D.【答案】:A6. 已知数列{a n}的前n项和为S n,对任意的n∈N*有,且1<S k<12则k的值为()A.2或4 B.2 C.3或4 D.6【答案】:A【解析】对任意的n∈N*有,可得a1=S1=a1﹣,解得a1=﹣2,n≥2时,a n=S n﹣S n﹣1,S n﹣1=a n﹣1﹣,又,相减可得a n=a n﹣﹣a n﹣1+,化为a n=﹣2a n﹣1,则a n=﹣2•(﹣2)n﹣1=(﹣2)n,S n==﹣[1﹣(﹣2)n],1<S k<12,化为<(﹣2)k<19,可得k=2或4,故选:A.7. 公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在阿基里斯前面1000米处开始,和阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米;当阿基里斯跑完下一个100米时,乌龟仍然前于他10米.当阿基里斯跑完下一个10米时,乌龟仍然前于他1米……,所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为10﹣2米时,乌龟爬行的总距离为()A.B.C.D.【答案】:B【解析】由题意知,乌龟每次爬行的距离构成等比数列{a n},且a1=100,q=,a n=10﹣2;∴乌龟爬行的总距离为S n===.故选:B.8. 已知函数f(x)=sin(x﹣3)+x﹣1,数列{a n}的公差不为0的等差数列,若f(a1)+f(a2)+f(a3)+…+f (a7)=14,则a1+a2+a3+…+a7=()A.0 B.7 C.14 D.21【答案】:D【解析】∵f(x)=sin(x﹣3)+x﹣1,∴f(x)﹣2=sin(x﹣3)+x﹣3,令g(x)=f(x)﹣2,则g(x)关于(3,0)对称,∵f(a1)+f(a2)+…+f(a7)=14,∴f(a1)﹣2+f(a2)﹣2+…+f(a7)﹣2=0,即 g(a1)+g(a2)+…+g(a7)=0,∴g(a4)为g(x)与x轴的交点,由g(x)关于(3,0)对称,可得a4=3,∴a1+a2+…+a7=7a4=21.故选:D.9. 巳知数列{a n}的前n项和为S n,首项a1=﹣,且满足S n+(n≥2),则S2018等于()A.B.C.D.【答案】:D【解析】数列{a n}的前n项和为S n,满足S n+(n≥2),则:,所以:,,当n=2时,=﹣,当n=3时,,…猜想:,所以选择D。

2019年高考数学艺术生百日冲刺专题01集合与常用逻辑测试题 (9)

专题9立体几何初步测试题命题报告:1. 高频考点:三视图的认识,几何体的表面积和体积的求解。

2. 考情分析:高考主要以选择题填空题形式出现,每年必考,重点考查三视图和表面积、体积的综合,与球有关的外接和内切问题。

3.重点推荐:基础卷16题,涉及数学文化题的应用,是近几年热点问题;一.选择题1. 所有棱长都为1的正四棱锥的体积是( )A 、23B 、3C 、6D 【答案】:C【解析】正四棱锥的侧棱、高、底面对角线的一半构成直角三角形,所以高为,正四棱锥的底面积为1,所以体积为,故选C.2. 将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )【答案】 B【解析】 先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.3.(2018•黄山一模)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()A. B.C. D.【答案】:B4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90πB.63πC.42πD.36π答案 B解析法一(割补法)由几何体的三视图可知,该几何体是一个圆柱被截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π. 法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π, ∴45π<V 几何体<90π.观察选项可知只有63π符合.5. 在棱长为a 的正方体中,P 、Q 是体对角线1A C 上的动点, 且2a PQ ,则三棱锥P-BDQ 的体积为( )A 、336aB 、318aC 、324aD 、312a【答案】:A【解析】 特殊化处理,让点Q 与C 重合,则三棱锥P-BDC 的体积为所求,因为,由三角形的相似比可得P 到底面BCD,所以3,故选A. 6. (2018•烟台一模)已知三棱锥P ﹣ABC 的所有顶点都在球O 的球面上,△ABC 是边长为的正三角形,PA ,PB ,PC 两两垂直,则球O 的体积为( )A .B .C .3πD .4【答案】:A7. 长方体的体积为V ,P 是1DD 的中点,Q 是AB 上的动点,则四面体P-CDQ 的体积是( ) A 、14V B 、16V C 、18V D 、112V【答案】:D【解析】设长方体的长、宽、高分别为AB=a ,BC=b ,1AA c ,则有V=abc ,由题意知,所以112V8. (2018•三明二模)如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,则以下四个命题中错误的是( )A.直线A1C1与AD1为异面直线B.A1C1∥平面ACD1C.BD1⊥AC D.三棱锥D1﹣ADC的体积为【答案】:D【解析】由正方体ABCD﹣A1B1C1D1的棱长为2,知:在A中,直线A1C1⊂平面A1B1C1D1,BD1⊂平面A1B1C1D1,D1∉直线A1C1,由异面直线判定定理得直线A1C1与AD1为异面直线,故A正确;在B中,∵A1C1∥AC,A1C1⊄平面ACD1,AC⊂平面ACD1,∴A1C1∥平面ACD1,故B正确;在C中,∵正方体ABCD﹣A1B1C1D1中,AC⊥BD,AC ⊥DD1,∵BD∩DD1,∴AC⊥面BDD1,∴BD1⊥AC,故C正确;在D中,三棱锥D1﹣ADC的体积:==,故D错误.故选:D.9.如图是棱长为2的正八面体(八个面都是全等的等边三角形),球O是该正八面体的内切球,则球O的表面积为()A. B. C.D.【答案】A;【解析】:由题意,该八面体的棱长为2,设球O的半径为r,=,解得r=,所以球O的表面积为:4=.故选:A.10. (2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)三模)棱长为2的正方体ABCD﹣A1B1C1D1中,E为棱AD中点,过点B1,且与平面A1BE平行的正方体的截面面积为()A.5 B.2C.2D.6【答案】.C11.如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.四边形EFGH是矩形C.Ω是棱柱D.四边形EFGH可能为梯形【答案】D;【解析】:若FG不平行于EH,则FG与EH相交,交点必然在B1C1上,与EH∥B1C1矛盾,所以FG∥EH,故A正确;由EH⊥平面A1ABB1,得到EH⊥EF,可以得到四边形EFGH为矩形,故B正确;将Ω从正面看过去,就知道是一个五棱柱,故C正确;因为EFGH截去几何体EFGHB 1C1后,EH B1C1CF,所以四边形EFGH不可能为梯形,故D错误.故选:D.12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺【答案】:A【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V 1=×3×2×2=6,四棱锥的体积V 2=×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V=V 1+2V 2=10立方丈=10000立方尺.故选:A .二.填空题13. 正△AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.答案 616a 2 解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2. 14. 如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为 .【答案】.13【解析】由题意可知四棱锥A 1-BB 1D 1D 的底面是矩形,边长为1和2,四棱锥的高为12A 1C 1=22,则四棱锥A 1-BB 1D 1D 的体积为13×1×2×22=13.故答案为13.15. 有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 如图1,在直观图中,过点A 作AE ⊥BC ,垂足为E .在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 又四边形AECD 为矩形,AD =EC =1.∴BC =BE +EC =22+1. 由此还原为原图形如图2所示,是直角梯形A ′B ′C ′D ′.在梯形A ′B ′C ′D ′中,A ′D ′=1,B ′C ′=22+1,A ′B ′=2. ∴这块菜地的面积S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22. 16. 《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵ABC ﹣A 1B 1C 1中,AA 1=AC=5,AB=3,BC=4,则阳马C 1﹣ABB 1A 1的外接球的表面积是_______。

人教版2019年高考数学艺术生百日冲刺专题02函数测试题20190307362

专题2函数测试题命题报告:1.高频考点:函数的性质(奇偶性单调性对称性周期性等),指数函数、对数函数、幂函数的图像和性质,函数的零点与方程根。

2.考情分析:高考主要以选择题填空题形式出现,考查函数的性质以及指数函数、对数函数的性质图像等,函数的零点问题等,题目一般属于中档题。

3.重点推荐:10题,数学文化题,注意灵活利用所学知识解决实际问题。

一.选择题(本大题共12题,每小题5分)1(2018•长汀县校级月考)下列四个函数中,在(0,+∞)为单调递增的函数是()A.y═﹣x+3 B.y=(x+1)2C.y=﹣|x﹣1| D.y=【答案】B2. 函数f(x)=+log3(8﹣2x)的定义域为()A.R B.(2,4]C.(﹣∞,﹣2)∪(2,4)D.(2,4)【答案】:D【解析】要使f(x)有意义,则;解得2<x<4;∴f(x)的定义域为(2,4).故选:D.3. (2018•宁波期末)函数的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】:C【解析】函数是(1,+∞)上的连续增函数,f(2)=ln2﹣3<0;f(3)=ln3﹣=ln<0,f(4)=ln4﹣1>0;f(3)f(4)<0,所以函数的零点所在的大致区间为:(3,4).故选:C.4.(2018 •赤峰期末)已知f(x)=,则下列正确的是()A.奇函数,在(0,+∞)上为增函数B.偶函数,在(0,+∞)上为增函数C.奇函数,在(0,+∞)上为减函数D.偶函数,在(0,+∞)上为减函数【答案】:B【解析】根据题意,f(x)=,则f(﹣x)===f(x),则函数f (x)为偶函数;当x>0时,f(x)=在(0,+∞)上为增函数;故选:B.5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.3【答案】:B【解析】由f(x)﹣g(x)=x3+x+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3﹣x+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3﹣x2+1,再令x=1,计算得,f(1)+g(1)=﹣1.故选:B.6. (2018春•吉安期末)定义在R上的函数f(x)满足f(x+2)f(x)=﹣1,当x∈(0,1)时,f(x)=3x,则f(log3162)=()A.B.C.2 D.【答案】:C【解析】∵f(x+2)f(x)=﹣1,∴f(x+4)===f(x),可得函数f(x)是最小正周期为4的周期函数.则f(log3162)=f(4+log32)=f(log32),∵当x∈(0,1)时,f(x)=3x,log32∈(0,1),∴f(log32)=2,故选:C.7.定义在R上的偶函数f(x),满足f(2)=0,若x∈(0,+∞)时,F(x)=xf(x)单调递增,则不等式F(x)>0的解集是()A.(﹣2,0)∪(0,2)B.(﹣2,0)∪(2,+∞)C.(∞,﹣2)∪(0,2)D.(﹣∞,﹣2)∪(2,+∞)【答案】:B【解析】∵x∈(0,+∞)时,F(x)=xf(x)单调递增,又∵函数f(x)是定义在R上的偶函数,f(2)=0,∴函数y=F(x)=xf(x)是奇函数,且在(﹣∞,0)上也是增函数,且f(2)=f(﹣2)=0,故不等式F(x)=xf(x)>0的解集为{x|﹣2<x<0,或x>2},即为(﹣2,0)∪(2,+∞),故选:B.(1)若g(mx2+2x+m)的定义域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m、n,使得函数的定义域为[m,n],值域为[2m,2n],若存在,求出m、n的值;若不存在,则说明理由.【思路分析】(1)若的定义域为R,则真数大于0恒成立,结合二次函数的图象和性质,分类讨论满足条件的实数m的取值范围,综合讨论结果,可得答案;(2)令,则函数y=[f(x)]2﹣2af(x)+3可化为:y=t2﹣2at+3,,结合二次函数的图象和性质,分类讨论各种情况下h(a)的表达式,综合讨论结果,可得答案;(3)假设存在,由题意,知解得答案.【解析】:(1)∵,∴,令u=mx2+2x+m,则,当m=0时,u=2x,的定义域为(0,+∞),不足题意;当m≠0时,若的定义域为R,则,解得m>1,综上所述,m>1 …(4分)(2)=,x∈[﹣1,1],令,则,y=t2﹣2at+3,∵函数y=t2﹣2at+3的图象是开口朝上,且以t=a为对称轴的抛物线,故当时,时,;当时,t=a时,;当a>2时,t=2时,h(a)=y min=7﹣4a.综上所述,…(10分)(3),假设存在,由题意,知解得,∴存在m=0,n=2,使得函数的定义域为[0,2],值域为[0,4]…(12分)22.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数,.(1)若函数g(x)为奇函数,求实数a的值;(2)在(1)的条件下,求函数g(x)在区间上的所有上界构成的集合;(3)若函数f(x)在[0,+∞)上是以5为上界的有界函数,求实数a的取值范围.【思路分析】(1)根据函数奇偶性的定义求出a的值即可;(2)先求出函数的单调区间,求出函数的值域,从而求出函数g(x)在区间上的所有上界构成的集合;(3)问题转化为在[0,+∞)上恒成立,通过换元法求解即可.【解析】:(1)因为函数g(x)为奇函数,所以g(﹣x)=﹣g(x),即,即,得a=±1,而当a=1时不合题意,故a=﹣1.…………3分(3)由题意知,|f(x)|≤5在[0,+∞)上恒成立,﹣5≤f(x)≤5,.∴在[0,+∞)上恒成立.∴设2x=t,,,由x∈[0,+∞),得t≥1.易知P(t)在[1,+∞)上递增,设1≤t1<t2,,所以h(t)在[1,+∞)上递减,h(t)在[1,+∞)上的最大值为h(1)=﹣7,p(t)在[1,+∞)上的最小值为p(1)=3,所以实数a的取值范围为[﹣7,3].…………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 专题16算法、复数、推理与证明测试题 命题报告: 1. 高频考点:程序框图、复数、归纳推理、类比推理、演绎推理、不等式的证明等。 2. 考情分析:本单元在高考中必考,内容简单,主要涉及客观题,推理和证明渗透得数学各方面,是培养数学素养的关键。 3.重点推荐: 3考察复数的几何性质,9,11题涉及数学文化题。 一.选择题(共12小题,每一题5分)

1. (2018•青州市三模)设i是虚数单位,若复数是纯虚数,则a=( ) A.﹣1 B.1 C.﹣2 D.2

【答案】D

【解析】:∵=是纯虚数,∴a=2.故选:D. 2. 如程序框图所示,其作用是输入x的值,输出相应的y的值.若要使输入的x的值与输出

的y的值相等,则这样的x的值有( )

A.1个 B.2个 C.3个 D.4个 【答案】C 【解析】:这是一个用条件分支结构设计的算法,该程序框图所表示的算法的作用是求分段函

数y=的函数值, 2

当x≤2时,令x2=x,得x=0或1; 当2<x≤5时,令2x﹣3=x,得x=3; 当x>5时,令=x,得x=±1(舍去), 故只有3个值符合题意. 故选:C.

3. 如图,在复平面内,复数z1,z2对应的向量分别是,OAOB,则复数12ZZ对应的点位于( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】.B

【解析】:由题意可知z1=﹣2﹣i,z2=i.∴, 复数12ZZ对应的点位于第二象限.故选B. 4. (2018•陕西一模)运行如图的程序框图,设输出数据构成的集合为A,从集合A中任取一个元素a,则函数y=xa,x∈[0,+∞)是增函数的概率为( )

A. B. C. D. 3

【答案】C 【解析】:由框图可知A={3,0,﹣1,8,15},其中基本事件的总数为5,设集合中满足“函数y=xα,x∈[0,+∞)是增函数”为事件E,当函数y=xα,x∈[0,+∞)是增函数时,α>0事件E包含基本事件为3,则.故选:C. 故选:D.

11. 设函数,观察:,,3()fx ,,,由归纳推理可得当nN*

且2n时,()nfx ( )

A. B. C. D. 【答案】C 【解析】观察可得,所给的函数式的分子不变都是x,而分母是由两部分的和组成,第一部分的系数分别是1,3,7,15,…,21n,第二部分的数分别是2,4,8,16,…,2n,∴

. 12. (2018•平度市校级模拟)阅读程序框图(如图),输出的结果的值为( ) 4

A B12 C 13 D15 【答案】A 【解析】:如图所示的是当型循环结构, 第一次循环:S=0+=, n=1+1=2;

第二次循环:S==, n=2+1=3; 第三次循环:S==, n=3+1=4; 第四次循环:S=+sin=, n=4+1=5; 第五次循环:S=+sin=0, n=5+1=6; 第六次循环:S=0+sin2π=0, n=6+1=7. 第七次循环:S=0+=, n=7+1=8;

第八次循环:S==, n=8+1=9; … 所以,S的取值的周期是6, ∵2011=335×6+1, ∴第2011次循环时,S=0+=, n=2011+1=2012, ∵n=2012,n<2012不成立, 5

∴输出的结果S为:. 故答案为:. 二.填空题 13.(2019届•曾都区期中)将n表示为k=k+1(n∈N*),当i=0时,ai=1;当1≤i≤k时,ai

为0或1.记f(n)为上述表示中ai为1的个数,例如:1=1×20,4=1×22+0×21+0×20,故f

(1)=1,f(4)=1,则f(20)= 2 . 【答案】2 【解析】:根据题意知,20=1×24+0×23+1×22+0×21+0×20,∴f(20)=2, 故答案为:2.

14. (2018•闵行区一模)已知是纯虚数(i是虚数单位),则= . 【答案】

【解析】:∵是纯虚数,∴,得sin且cos,∴α为第二象限角,则cos.∴

=sinαcos+cosαsin=.故答案为:﹣. 15. 布兰克先生有一位夫人和一个女儿,女儿有一位丈夫和一个儿子,阅读以下信息: ①五人中有一人是医生,而在其余四人中有一人是这位医生的病人; ②医生的孩子和病人父母亲中年龄较大的那一位性别相同; ③医生的孩子既不是病人,也不是病人父母亲中年龄较大的那一位. 根据以上信息,谁是医生? (填写代号:A布兰克先生,B夫人,C女儿,D女婿,E外孙) 【答案】D 【解析】:根据题意得,布兰克先生不是医生,由医生的孩子和病人 父母亲中年龄较大的那一位性别相同知女婿是医生,女儿是病人. 6

16. 已知数列其中第一项是,接下来的两项是,再接下来的三项是,依此类推,则a97+a98+a99+a100= . 【答案】 【解析】:根据题意知,第一项是,接下来的两项是,再接下来的三项是

,依此类推,1+2+3+…+i=,i=13时,=91,∴a97+a98+a99+a100=+++=.故答案为:. 三.解答题 17. 已知i是虚数单位,a,b∈R,z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,z1=z2. (1)求a,b的值; (2)若z=m﹣2+(1﹣m)i,m∈R,求证:|z+a+bi|≥. 解析:(1)解:由z1=a﹣1+(3﹣a)i,z2=b+(2b﹣1)i,由z1=z2, 得,解得, ∴a=2,b=1;…………4分 (2)证明:∵z=m﹣2+(1﹣m)i,m∈R,

∴|z+a+bi|=|m﹣2+(1﹣m)i+2+i|= ==. 当且仅当m=1时上式取等号, ∴|z+a+bi|≥.…………10分

18. (2018•洛阳期中)将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…设第1组,第2组,第3组,第4组,第5组,第6组,…第n组包含的正整数的和分别为S1,S2,S3,S4,S5,S6,…Sn. 7

(1)计算S1,S2,S3,S4,S5,S6,S7,并求Sn; (2)计算S1+S3,S1+S3+S5,S1+S3+S5+S7的值,试猜测S1+S3+S5+…+S2n﹣1的结果 【分析】(1)求得S1,S2,S3,S4,S5,S6,S7,结合已知条件说明各组数值关系.然后求Sn; (2)计算S1+S3,S1+S3+S5,S1+S3+S5+S7的值猜想(n∈N*)即可.

(2)S1+S3=1+15=16=24, S1+S3+S5=1+15+65=81=34, S1+S3+S5+S7=81+175=256=44, 猜测S1+S3+S5+…+S2n﹣1=n4,…………12分

19. 请阅读下列不等式的证法:已知,求证:. 证明:构造函数, 则

因为对一切Rx,恒有fx≥0,所以≤0, 从而得. 请回答下面的问题:

(Ⅰ)若,请写出上述结论的推广式; (Ⅱ)参考上述证法,请证明你的推广式.

【解析】:(Ⅰ)推广形式:若, 8

则. …………5分 (Ⅱ)证明:构造函数 …………7分 则

因为对一切xR,恒有fx≥0,

所以≤0, 从而得. ……12分 20. 如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD,E,F分别为PD,BC的中点. (1)求证:AE⊥PC; (2)G为线段PD上一点,若FG∥平面AEC,求的值.

【分析】(1)证明:AE⊥平面PCD,即可证明AE⊥PC; (2)取AP中点M,连接MF,MG,ME,利用平面MFG∥平面AEC,又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,MG∥AE,即可求的值. 【解析】(1)证明:∵AP⊥平面ABCD,∴AP⊥CD, 在矩形ABCD中,CD⊥AD, 又AP∩AD=A,∴CD⊥平面PAD, ∵AE⊂平面PAD,∴CD⊥AE, 在△PAD中,E为PD中点,PA=AD,∴AE⊥PD, 又CD∩PD=D,CD,PD⊂平面PCD,∴AE⊥平面PCD, ∵PC⊂平面PCD,∴AE⊥PC…………6分 (2)解: 9

取AP中点M,连接MF,MG,ME. 在△PAD中,M,E分别为PA,PD的中点

则ME为△PAD的中位线∴, 又,∴ME∥FC,ME=FC,∴四边形MECF为平行四边形,∴MF∥EC, 又MF⊄平面AEC,EC⊂平面AEC,∴MF∥平面AEC,

又FG∥平面AEC,MF∩FG=F,MF,FG⊂平面MFG,∴平面MFG∥平面AEC, 又平面MFG∩平面PAD=MG,平面AEC∩平面PAD=AE,∴MG∥AE, 又∵M为AP中点,∴G为PE中点, 又E为PD中点,∴,即.……12分

21. 某校高二(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,且将全班25人的成绩记为AI(I=1,2,…,25)由右边的程序运行后,输出n=10.据此解答如下问题:

相关文档
最新文档