高二文科数学试题

合集下载

高二下期期中考试文科数学试题(选修1-2)(含答案)

高二下期期中考试文科数学试题(选修1-2)(含答案)

集合集合的概念 集合的表示集合的运算基本运算基本关系高二下期期中考试 数学(文科)试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数72+,i 72,0,85+i ,)31(-i ,618.0中,纯虚数的个数有A .0个B .1个C .2个D .3个2.复数i z +=31,i z -=12,则复数21z z ⋅在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限3.右图是《集合》的知识结构图,如果要加入 “子集”,则应该放在A .“集合的概念”的下位B .“集合的表示”的下位C .“基本关系”的下位D .“基本运算”的下位4.在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数2R 如下,其中拟合效果最好的模型是A .模型1的相关指数2R 为98.0 B .模型2的相关指数2R 为80.0 C .模型3的相关指数2R 为56.0 D .模型4的相关指数2R 为25.0 5.设复数i 2321+-=ω,则=+ω1 A .ω- B .ω1-C .2ω D .21ω6.下列结构图中,体现要素之间是逻辑先后关系的是A .B .C .D .7些复数是实数,c 是复数,则c 是实数”,则A .大前提错误B .小前提错误C .推理形式错误D .推理正确 8.下列推理正确的是A .把)(c b a +与)(log y x a +类比,则有:y x y x a a a log log )(log +=+B .把)(c b a +与)sin(y x +类比,则有:y x y x sin sin )sin(+=+C .把nab )(与nb a )(+类比,则有:nnny x y x +=+)( D .把c b a ++)(与z xy )(类比,则有:)()(yz x z xy = 9.甲乙两个班级进行计算机考试,按照学生考试成绩优秀和不优秀统计后,得到如下的列联表.利用独立性检验估计,你认为成绩与班级 A .有%95的把握有关 B .无关 C .有%99的把握有关 D .无法确定 10.用反证法证明:“a ,b 至少有一个为0”,应假设A .a ,b 没有一个为0B .a ,b 只有一个为0。

高中数学必修五测试题 高二文科数学(必修五)

高中数学必修五测试题 高二文科数学(必修五)

2014—2015学年度第一学期期中考试高二文科数学试题(A )(必修五)一、选择题(每题5分,共10小题)1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) A .a+c >b+dB .a-c >b-dC .ac >bdD .a d >b c211两数的等比中项是( ) A .2B .-2C .±2D .以上均不是3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) A .90°B .120°C .135°D .150°4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )A .103B .11088C .11038D .1085.若△ABC 的周长等于20,面积是BC 边的长是 ( ) A .5B .6C .7D .86.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) A .1516B .158C .34 D .387.在△ABC 中,角A ,B 均为锐角,且cosA >sinB ,则△ABC 的形状是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .等腰三角形8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) A .13B .26C .52D .1569.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n-B .211n+C .211(1)n ++ D .211(1)n -+ 10.已知不等式(x + y )(1x + ay)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8二、填空题(每题5分,共5小题) 11.数列{a n }的通项公式a n =1n n ++,则103-是此数列的第 项.12. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.13. 已知点(x,y )满足x 0y 0x y 1≥⎧⎪≥⎨⎪+≤⎩,则u=y-x 的取值范围是_______.14.如图,在四边形ABCD 中,已知AD⊥CD,AD =10,AB =14,∠BDA=60°,∠BCD=135°,则BC 的长为______. 15.在△ABC 中,给出下列结论:①若a 2>b 2+c 2,则△ABC 为钝角三角形; ②若a 2=b 2+c 2+bc,则角A 为60°; ③若a 2+b 2>c 2,则△ABC 为锐角三角形; ④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3. 其中正确结论的序号为 . 三、解答题(共6小题,共75分)16.(12分)已知不等式ax 2-3x+6>4的解集为{x|x<1或x>b}. (1)求a,b .(2)解不等式ax 2-(ac+b )x+bc<0.17.(12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且b sin A=3a cos B.(1)求角B的大小;(2)若b=3,sin C=2sin A,求a,c的值.18.(12分)设数列{a n}的前n项和为S n=2a n-2n.(1)求a3,a4; (2)证明:{a n+1-2a n}是等比数列;(3)求{a n}的通项公式.19.(12分)设函数()cosfθθθ=+,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为12⎛⎝⎭,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:1,1,1x yxy+≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.20.(13分)某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的 利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元? (2)每套丛书定价为多少元时,单套丛书的利润最大?21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===(1)若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值; (2)设122111n n n nT S S S ++=++⋅⋅⋅+,求n T .参考答案1.设a 、b 、c 、d∈R,且a >b,c >d,则下列结论正确的是( ) (A )a+c >b+d (B )a-c >b-d (C )ac >bd (D )a d >b c1.【解析】选A .由不等式的可加性可知a+c >b+d, 而当a=2,b=1,c=-2,d=-3时,B 不一定成立, C ,D 中a 、b 、c 、d 符号不定,不一定成立. 2.11两数的等比中项是( )A .2B .-2C .±2D .以上均不是2.【解析】设等比中项为x ,则x 2=1)1)=4.所以x=±2.故应选C .答案:C3.若三角形三边长的比为5∶7∶8,则它的最大角和最小角的和是( ) (A )90° (B )120° (C )135° (D )150°3.【解析】选B .设三边长为5x,7x,8x ,最大的角为C ,最小的角为A .由余弦定理得:()()()2225x 8x 7x 1cosB ,25x 8x2+-==⨯⨯所以B=60°,所以A+C=180°-60°=120°.4.数列{a n }中,2n a 2n 29n 3=-++,则此数列最大项的值是( )(A )103 (B )11088 (C )11038(D )108 4.【解析】选D .根据题意结合二次函数的性质可得:22n 229a 2n 29n 32(n n)322929292(n )3.48=-++=--+⨯=--++∴n=7时,a n =108为最大值.5.若△ABC 的周长等于20,面积是103,A=60°,则BC 边的长是 ( ) A .5B .6C .7D .85.解析:由1sin 2ABC S bc A ∆=得1103sin 602bc =︒,则bc=40.又a+b+c=20,所以b+c=20-a .由余弦定理得()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-, 所以()2220120a a =--,解得a=7.答案:C6.在数列{a n }中,a 1=1,a n a n-1=a n-1+(-1)n(n≥2,n∈N *),则35a a 的值是( ) (A )1516 (B )158 (C )34 (D )386.【解析】选C .当n=2时,a 2·a 1=a 1+(-1)2,∴a 2=2; 当n=3时,a 3a 2=a 2+(-1)3,∴a 3=12; 当n=4时,a 4a 3=a 3+(-1)4,∴a 4=3;当n=5时,()5354455a 23a a a 1a .3a 4=+-∴=∴=,, 7.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 7.解析:cos sin()sin ,,22A AB A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>,选C .答案:C8.在等差数列{a n }中,2(a 1+a 4+a 7)+3(a 9+a 11)=24,则此数列的前13项之和等于( ) (A )13 (B )26 (C )52 (D )1568.【解析】选B .∵2(a 1+a 4+a 7)+3(a 9+a 11)=6a 4+6a 10=24,∴a 4+a 10=4.()()1134101313a a 13a a S 26.22++∴===9.数列222222235721,,,,122334(1)n n n +⋅⋅⋅⨯⨯⨯+的前n 项的和是 ( )A . 211n -B . 211n +C . 211(1)n ++D . 211(1)n -+9.解析:因为22222111,(1)(1)n n a n n n n +==-++所以数列的前n项和2222222221111111111.1223(1)1(1)(1)n S n n n n =-+-+⋅⋅⋅+-=-=-+++ 答案:D10.已知不等式(x + y )(1x + ay )≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2B .4C .6D .810.解析:不等式(x +y )(1ax y+)≥9对任意正实数x ,y 恒成立,则1y axa x y+++≥1a +≥24(舍去),所以正实数a 的最小值为4,选B . 答案:B11.数列{a n }的通项公式a n是此数列的第 项.解析:因为a n ,所以n=9. 答案:91 4,则sin B=________12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=1,b=2,cos C=.12.15 4[解析] 由余弦定理,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,所以b=c,B=C,所以sin B=sin C=1-cos2C=154.13.已知点(x,y)满足x0y0x+y1≥⎧⎪≥⎨⎪≤⎩,则u=y-x的取值范围是_______.13.【解析】作出可行域如图,作出y-x=0,由A(1,0),B (0,1),故过B时u最大,u max=1,过A点时u最小,u min=-1.答案:[-1,1]14.如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为______.14.【解析】在△ABD中,设BD=x,则BA2=BD2+AD2-2BD·AD·cos∠BDA,即142=x2+102-2·10x·cos60°,整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).由正弦定理得BC BDsin CDB sin BCD ∠∠=,∴BC=16sin135︒·sin30°=.答案:15.在△ABC中,给出下列结论:①若a2>b2+c2,则△ABC为钝角三角形;②若a2=b2+c2+bc,则角A为60°;③若a2+b2>c2,则△ABC为锐角三角形;④若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3.其中正确结论的序号为.解析:在①中,cos A=2222b c abc+-<0,所以A为钝角,所以△ABC为钝角三角形,故①正确;在②中,b2+c2-a2=-bc,所以cos A=2222b c abc+-=-2bcbc=-12,所以A=120°,故②不正确;在③中,cos C=2222a b cab+->0,故C为锐角,但△ABC不一定是锐角三角形,故③不正确;在④中A∶B∶C=1∶2∶3,故A=30°,B=60°,C=90°,所以确.答案:①16.已知不等式ax2-3x+6>4的解集为{x|x<1或x>b}.(1)求a,b.(2)解不等式ax2-(ac+b)x+bc<0.【解】(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系得31,21,b a b a ⎧+=⎪⎪⎨⎪⨯=⎪⎩解得1,2.a b =⎧⎨=⎩ (2)解不等式ax 2-(ac+b )x+bc<0,即x 2-(2+c )x+2c<0,即(x-2)(x-c )<0,所以①当c>2时,不等式(x-2)(x-c )<0的解集为{x|2<x<c};②当c<2时,不等式(x-2)(x-c )<0的解集为{x|c<x<2};③当c=2时,不等式(x-2)(x-c )<0的解集为∅.17.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.17.解:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B,得 sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac ,将c =2a 代入得, a =3,c =23.18.(12分)设数列{a n }的前n 项和为S n =2a n -2n.(1)求a 3,a 4;(2)证明:{a n+1-2a n }是等比数列;(3)求{a n }的通项公式.(1)解:因为a 1=S 1,2a 1=S 1+2,所以a 1=2,S 1=2,由2a n =S n +2n 知:2a n+1=S n+1+2n+1=a n+1+S n +2n+1,得a n+1=S n+2n+1, ①所以a 2=S 1+22=2+22=6,S 2=8,a 3=S 2+23=8+23=16,S 3=24,a 4=S 3+24=40.(2)证明:由题设和①式得:a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,所以{a n+1-2a n }是首项为a 2-2a 1=2,公比为2的等比数列.(3)解:a n =(a n -2a n-1)+2(a n-1-2a n-2)+…+2n-2(a 2-2a 1)+2n-1a 1=(n+1)·2n-1.19. (12分)设函数()3sin cos f θθθ=+,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x,y ),且0≤θ≤π.(1)若点P 的坐标为13,22⎛⎫⎪ ⎪⎝⎭,求f (θ)的值;(2)若点P (x,y )为平面区域Ω: 1,1,1x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得3sin ,21cos ,2θθ⎧=⎪⎪⎨⎪=⎪⎩所以31()3sin cos 3 2.2f θθθ=+=⨯+= (2)作出平面区域(即三角形区域ABC )如图,其中A (1,0),B (1,1),C (0,1),则0≤θ≤2π.又()cos 2sin .6f πθθθθ⎛⎫=+=+⎪⎝⎭. 故当62ππθ+=,即3πθ=时, max ()2f θ=; 当66ππθ+=,即θ=0时, min ()1f θ=.20.某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书定价为100元时,书商能获得的总利润是多少万元?(2)每套丛书定价为多少元时,单套丛书的利润最大?20. 【解析】(1)每套丛书定价为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),故书商所获得的总利润为5×(100-32) =340(万元). (2)每套丛书售价定为x 元时,由150.1x 0x 0-⎧⎨⎩>>,得0<x <150. 依题意,单套丛书利润 P=x-(30+10150.1x -)=x-100150x--30, ∴P=-[(150-x )+100150x -]+120, ∵0<x <150,∴150-x >0,由(150-x )+100150x-≥)150x -=2×10=20, 当且仅当150-x =100150x-,即x=140时等号成立,此时P max =-20+120=100.答:(1)当每套丛书售价定为100元时,书商能获得总利润为340万元;(2)每套丛书售价定为140元时,单套丛书的利润取得最大值100元.21.(本小题满分14分)已知数列{}n a 的各项排成如图所示的三角形数阵,数阵中每一行的第一个数1247,,,,a a a a ⋅⋅⋅构成等差数列{}n b ,n S 是{}n b 的前n 项和,且1151,15b a S ===( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知916a =,求50a 的值;(Ⅱ)设122111n n n n T S S S ++=++⋅⋅⋅+,求n T . 20.(本小题满分12分)解:(Ⅰ){}n b 为等差数列,设公差为155,1,15,51015,1d b S S d d ==∴=+== 1(1)1.n b n n ∴=+-⨯= …………………………………………………………………………2分 设从第3行起,每行的公比都是q ,且0q >,2294,416,2,a b q q q ===……………………4分 1+2+3+…+9=45,故50a 是数阵中第10行第5个数,而445010102160.a b q ==⨯=……………………………………………………………………7分 (Ⅱ)12n S =++…(1),2n n n ++=…………………………………………………………8分 1211n n n T S S ++∴=++…21n S + 22(1)(2)(2)(3)n n n n =++++++…22(21)n n ++ 11112(1223n n n n =-+-+++++…11)221n n +-+ 1122().121(1)(21)n n n n n =-=++++友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

高二文科数学立体几何测试卷

高二文科数学立体几何测试卷

高二文科数学立体几何测试卷(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.一个简单几何体的正视图、侧视图如图所示,则下列图形:①长方形;②正方形;③圆;④椭圆.不可能是其俯视图的有( )(A)①②(B)②③ (C)③④(D)①④2.如图所示为正方体木块堆成的几何体的三视图,则组成此几何体的正方体木块共有( )(A)3块(B)4块(C)5块(D)6块3.如图所示为一平面图形的直观图,则此平面图形可能是( )4.某几何体的三视图如图所示,则它的体积是()A.8-2π3B.8-π3C.8-2π D.2π35. 如图所示,在正方体ABCD A1B1C1D1中,F为线段BC1的中点,E为直线A1C1上的动点,则下列结论中正确的为( )(A)存在点E使EF∥BD1 (B)不存在点E使EF⊥平面AB1C1D(C)三棱锥B 1ACE的体积为定值 (D)EF与AD1不可能垂直6.已知m、n为直线,α、β为平面,给出下列命题:①⎭⎪⎬⎪⎫m⊥αm⊥n⇒n∥α;②⎭⎪⎬⎪⎫m⊥βn⊥β⇒m∥n;③⎭⎪⎬⎪⎫m⊥αm⊥β⇒α∥β;④⎭⎪⎬⎪⎫m⊂αn⊂βα∥β⇒m∥n.其中正确命题的序号是()A.③④B.②③C.①②D.①②③④7. 如图所示,正方体ABCD A1B1C1D1中,P为线段BC1上的动点,则下列判断错误的是( )(A)DB1⊥平面ACD1 (B)BC1∥平面ACD1(C)BC1⊥DB1 (D)三棱锥P ACD1的体积与P点位置有关8.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出 AB∥平面MNP的图形的序号是( )(A)①③(B)②③(C)①④ (D)②④9. 四棱锥P ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图所示,则四棱锥P ABCD的表面积为( )(A)(2+1)a2 (B)2a2(C)(1+)a2 (D)(2+)a210.某几何体的三视图如图所示(单位:cm),则此几何体的体积为( )(A)18 cm3 (B)15 cm3(C)12 cm3 (D)9 cm311.三棱锥P ABC的高为PH,若三个侧面两两垂直,则H为△ABC的( )(A)内心 (B)外心 (C)垂心(D)重心12.在二面角αlβ的两个面α、β内,分别有直线a、b,它们与棱l都不垂直,则( )(A)当该二面角是直二面角时,可能a∥b,也可能a⊥b(B)当该二面角是直二面角时,可能a∥b,但不可能a⊥b(C)当该二面角不是直二面角时,可能a∥b,但不可能a⊥b(D)当该二面角不是直二面角时,不可能a∥b,也不可能a⊥b二、填空题(每小题4分,共16分)13.如图所示,一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.14.如图所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A其中正确结论的序号是.15.如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件__________时,有MN∥平面B1BDD1.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.则在上面的结论中,正确结论的编号是__________.(写出所有正确结论的编号)三、解答题(共70分)17.(本小题满分10分)如图所示,梯形ABCD和正△PAB所在平面互相垂直,其中AB∥DC,AD=CD=AB,且O为AB的中点.(1)求证:BC∥平面POD;(2)求证:AC⊥PD.18.(本小题满分12分)如图所示,三棱锥P ABC中,PB⊥面ABC, BCA=90°,PB=BC=CA=4,E 为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.(1)求证:BE⊥平面PAC;(2)求证:CM∥平面BEF;(3)求三棱锥F ABE的体积.20.(本小题满分12分)一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.(1)求该多面体的体积与表面积;(2)求证:GN⊥AC;(3)当FG=GD时,在棱AD上确定一点P,使得GP∥平面FMC,并给出证明.21.(本小题满分12分)如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,CD=2AB=2AD.(1)求证:BC⊥BE;(2)在EC上找一点M,使得BM∥平面ADEF,请确定M点的位置,并给出证明.22.(本小题满分14分)如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,平面ACFE ⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上.(1)求证:BC⊥平面ACFE;(2)当EM为何值时,AM∥平面BDF?证明你的结论.。

高二下学期期中考试数学试题 (二)(文科)

高二下学期期中考试数学试题 (二)(文科)

高二下学期期中考试数学试题 (二)(文科)本试卷全卷满分150分。

考试用时120分钟★ 祝 考 试 顺 利 ★一、选择题(本大题共10小题,每小题5分,共50分, 在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数 3cos y x x =的导数为( D )A.23sin y x x '=- B.233cos sin y x x x x '=+ C. 32sin 3cos y x x x x '=- D. 233cos sin y x x x x '=- 2. 下列命题中为真命题的是(C )A . 命题“若1x =,则220x x +-=”的否命题B .命题“若1x >,则21x >”的否命题 C .命题“若x y >,则x y >”的逆命题 D .命题“若20x >,则1x >”的逆否命题3.曲线21x y xe x =++在点(0,1)处的切线方程为(A )A .31y x =+B .31y x =-C .21y x =+D .21y x =-4. 不能表示的曲线是()方程1cos sin ],,0[22=+∈ααπαy x C A 椭圆 B 双曲线 C 抛物线 D 圆5. 设:()ln 21p f x x x mx =++++1x e mx ++在(0)+∞,内单调递增,:q m -≥0m ≥,则p 是q 的( C ) A .充分不必要条件 B . 充分必要条件 C .必要不充分条件D .既不充分也不必要条件6.已知对k R ∈,直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是( D ) A .(0,1)B .(0,5)C .[1,5)D .),5()5,1[+∞⋃7.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( A )A .12B . . 24 D . 8.方程322670x x -+=在(0,2)内根的个数有(B )A. 0个B. 1个C. 2个D. 3个9. 已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数()y f x '=的图象如右图所示。

高二文科数学竞赛试题

高二文科数学竞赛试题

高二文科数学竞赛试题一.选择题:本大题共6小题,每小题4分,共24分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“BD AC ⊥”的( )A. 充分不必要条件B. 必要不成分条件C. 充要条件D. 既不充分也不必要条件 2.为了得到函数x x y 3cos 3sin +=的图象,可以将函数x y 3sin 2=的图象( )A.向右平移12π个单位长 B.向右平移4π个单位长 C.向左平移12π个单位长 D.向左平移4π个单位长3.已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-<f f f ,则( ) A.3≤c B.63≤<c C. 96≤<c D.9>c4.设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t a b +的最小值为1( ) A.若θ确定,则 ||a 唯一确定 B.若θ确定,则 ||b 唯一确定 C.若||a 确定,则 θ唯一确定 D.若||b 确定,则 θ唯一确定5.对于函数f(x),若存在常数0≠a ,使得x 取定义域内的每一个值,都有a-x)f(f(x)2=,则称f(x)为准偶函数。

下列函数中是准偶函数的是( ) (A )x x f =)( (B )2)(x x f = (C )x x f tan )(=(D ))1cos()(+=x x f6.已知x,y 满足的约束条件⎩⎨⎧≥≤,x-y-,x-y-03201当目标函数)00(>>+=,b a by ax z 在该约束条件下取得最小值52时,22b a +的最小值为( )(A )5(B )4(C )5(D )2二.填空题:本大题共4小题,每小题4分,共16分.7.已知实数a 、b 、c 满足0=++c b a ,1222=++c b a ,则a 的最大值为为_______.8.一个六棱锥的体积为其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 。

高二下学期文科数学期末复习试题含答案

高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。

高二数学文科期末测试题

高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。

)A。

①②。

B。

①③。

C。

②③。

D。

③④2.“x≠”是“x>”的(。

)A。

充分而不必要条件。

B。

必要而不充分条件C。

充分必要条件。

D。

既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。

)A。

$\forall a\in R^+$,方程C表示椭圆。

B。

$\forall a\in R^-$,方程C表示双曲线C。

$\exists a\in R^-$,方程C表示椭圆。

D。

$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。

)A。

$(0,\frac{1}{4})$。

B。

$(0,\frac{1}{2})$。

C。

$(1,\frac{1}{4})$。

D。

$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。

)A。

$y=\pm2x$,$e=3$。

B。

$y=\pm\frac{1}{2}x$,$e=5$C。

$y=\pm\frac{1}{2}x$,$e=3$。

D。

$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。

)A。

$y=2e(x-1)$。

B。

$y=ex-1$。

C。

$y=e(x-1)$。

D。

$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。

)A。

$a>$。

B。

$a\geq$。

C。

$a<$。

D。

$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。

)A。

$\frac{2}{3}$。

B。

$-1$。

C。

$1$。

D。

$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。

高二数学试题:高二数学文科期末复习题一

高二数学试题:高二数学文科期末复习题一查字典数学网为大家提供高二数学试题:高二数学文科期末复习题一一文,供大家参考使用:高二数学试题:高二数学文科期末复习题一.命题的否定为()A. B.C. D.【答案】C.与直线垂直的直线的倾斜角为()A.B.C.D.【答案】B.已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A、y=x (B)y=x (C)y=x (D)y=x【答案】C;.设是可导函数,且()A.B.-1 C.0 D.-2【答案】B.点到点的距离相等,则x的值为( )A.B.1 C.D.2【答案】B.若直线经过两点,则直线AB的倾斜角为A.30 B.45 C.90 D.0【答案】C.椭圆上一点M到焦点F1的距离为2,N是MF1的中点.则|ON|等于()(A)2 (B)4 (C)8 (D)【答案】B.是直线与直线平行的(A)充分必要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件【答案】C.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是A.BD//平面CB1D1 B.AC1BDC.AC1平面CB1D1 D.异面直线AD与CB1所成的角为60【答案】D.已知圆:+=1,圆与圆关于直线对称,则圆的方程为()A.+=1 B.+=1C.+=1D.+=1【答案】B w W w .x K b 1.c o M.已知函数f(x)=2(1)x4-2x3+3m,xR,若f(x)+90恒成立,则实数m的取值范围是()A.m2(3) B.m2(3) C.m2(3) D.m2(3)答案 A.已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则椭圆的离心率为()A.B.C.D.【答案】C观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

高二文科数学适应性综合试题(2)

高二文科数学适应性综合试题(2)一、选择题:本大题共10小题,每小题5分,共50分.1.设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为 ( ) A .{}2 B .{}4,6C .{}1,3,5D .{}4,6,7,8 2.等差数列}{n a 的前n 项和为n S ,若301272=++a a a ,则13S 的值是( ) A .130B .65C .70D .753.“22ab>”是 “22log log a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形5.直线2(1)10x a y +++=的倾斜角的取值范围是( )A .[0,]4πB .3,4ππ⎡⎫⎪⎢⎣⎭C .[0,](,)42πππD .3,,424ππππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ 6.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( )A .521B .27C .13D .8217.已知直线0=++c by ax 与圆1:22=+y x O 相交于,A B 两点,且,3=AB 则OB OA ⋅的值是( )A .12-B .12C .34-D .08.若右边的程序框图输出的S 是126,则条件①可为( )A .n ≤5B .n ≤6C .n ≤7D .n ≤89.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变;C1③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值.其中所有正确的命题的序号是( ) A .①②③ B .①③ C .②④ D .①③④ 10.函数2()f x x bx a =-+的图象如图所示,则函数()ln ()g x x f x '=+的零点所在的区间是( )A .11(,)42B .1(,1)2C .(1,2)D . (2,3)二、填空题:(本大题共4小题,每小题5分,共20分. 把答案填在题中横线上.) 11、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 。

高二下学期期末文科数学及复习资料

高二文科 数学试卷【完卷时间:120分钟;满分150分】一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求.)1.设集合{}{}d c b B b a A ,,,,==, ,则B A ( )A .{}d c b a ,,,B .{}d c b ,,C .{}d c a ,,D . {}b2.命题“∃x ∈R ,x 3-2x +1=0”的否定是( )A .∃x ∈R ,x 3-2x +1≠0B .不存在x ∈R ,x 3-2x +1≠0C .∀x ∈R ,x 3-2x +1≠0D . ∀x ∈R ,x 3-2x +1=0 3.函数11)(-+=x x x f 的定义域是( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞4. 将指数函数()x f 的图象向右平移一个单位,得到如图的()x g的图象,则()=x f ( )A .x⎪⎭⎫ ⎝⎛21 B .x⎪⎭⎫ ⎝⎛31 C .x2 D .x3 5.下列函数中,既是偶函数又在区间()+∞,0上单调递减的是( ) A .1y x=B .21y x =-+C .xy e -=D . lg ||y x =6. 函数()log (43)a f x x =-过定点( )A .(3,14) B .(3,04) C .(1,1) D .(1, 0) 7. 已知2.12=a ,8.0)21(-=b ,2log 25=c ,则c b a ,,的大小关系为( )A .a b c <<B .b a c <<C .c a b <<D .a c b <<)(x g8. 函数x x x f -=ln )(在区间],0(e 的最大值为( )A .e -1B . e - C. -1 D .09. 已知函数⎩⎨⎧>-≤=)0()3()0(2)(x x f x x f x ,则=)2013(f ( )A . 2B . 1 C.21 D .41 10.已知a 是x x f x 2log )21()(-=的零点,若000,()x a f x <<则的值满足( )A .0()0f x =B .0()0f x <C .0()0f x >D .0()f x 的符号不确定11.定义一种运算:=a a b b ⎧⊗⎨⎩ <a ba b ≥已知函数()=2(3-)x f x x ⊗,那么函数=()y f x 的图像大致是 ( )12.某同学在研究函数2()1xf x x =+()x ∈R 时,给出下列结论: ①()()0f x f x -+=对任意x ∈R 成立; ②函数()f x 的值域是(2,2)-;③若12x x ≠,则一定有12()()f x f x ≠; ④函数()()2g x f x x =-在R 上有三个零点.则正确结论的序号是( )A .②③④B .①②③C . ①③④D .①②③④二、填空题:(本大题共4小题,每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学试卷第 1 页 共 2 页
高二数学试卷(选修历史)
考试时长:120分钟 试卷总分:160分
一、填空题:本大题共14小题,每小题5分,共计70分.

1.不等式12x解集是 ▲ .
2.在等差数列na中,若39=4,=16aa,则此等差数列的公差d ▲ .
3.ABC中, B=3,7,1200BCAB,则ABC的面积为▲ .
4.在ABC中,若1120,sin,23BABC,则AC= ▲ .

5.设错误!未找到引用源。,错误!未找到引用源。,则错误!未找到引用源。 ▲ .
6.在△ABC中,a2+b2+ab=c2,则∠C= ▲ .
7.等差数列{}na中,若124aa, 91036aa,则10S ▲ __.
8.
在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且3a=2csinA,
则角C=_____
▲.

9.已知公差不为零的等差数列的第2、3、6项依次构成一个等比数列,则该等比数列
的公比等于 ▲ .

10.已知关于x的不等式2260kxkx的解集为,则k的取值范围为▲ .

11.等比数列{an}中,an>0,且8963aaa,则log2a2+log2a4+log2a8+log2a10=▲ .
12.等差数列na中,13a,58115aa,则其前n项和nS的最小值为___▲ _____.
13.已知数列{an}的通项公式an=9-2n,则| a1|+| a2|+…+| a20|= ▲ .

14已知函数,221)(xxf利用课本中推导等差数列前n项和的公式的方法,可求得

)6()5((1)0()4()5(ffffff)
的值为▲ .

二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算
步骤.(在答题纸上作答)
高二数学试卷第 2 页 共 2 页

15、ABC在中.
(1)已知060,3,1Acb,求a(2)已知A=,23,45,7500cB求a.

16.在ABC中,角A、B、C所对应的边分别为a、b、c,且满足
coscos2cosaBbAcC

(1)求角C的值; (2)若c=2,求ABC面积的最大值。
17、某小型服装厂生产一种上衣,日销货量x件(Nx)与货售价P元/件之间的关
系为P=160-2x,生产x件所需成本为C=800+30x,问该厂日产量多大时,日获利不少于
1000元?

18、解不等式:

1
x22xx ; (2) 02)2(2axax.

19、等差数列{ an}中a3=7,a1+a2+a3=12,记nS为{an }的前n项和,令
bn =ana1n,数列}1{nb的前n项和为Tn.
(1)求an(2) 求Sn;(3)求Tn.
20.设{}na是各项为正数的等差数列,1aa,其前n项和为nS;{}nb是各项均为正数
的等比数列.
(1)若114332==2,3,19ababSb.
(ⅰ)求数列{}na与{}nb的通项公式;
(ⅱ)记1-121=+++,nnnnTabababnN*,当>102206nTn,求n的最小值.

(2)是否存在等差数列{}na,使2nnSkS(nN*,k是非零常数),若存在,求出
其通项公式;若不存在,请说明理由.

相关文档
最新文档