2014年辽宁高考理科数学试卷
2014学年高考理科数学年辽宁卷

2014年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案解析【提示】根据复数的基本运算即可得到结论. 【考点】复数的四则运算 2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,系统抽样和分层抽样都必须满足每个个体被抽到的概率相等,即123p p p ==.故选D.【提示】利用二项式定理的展开式的通项公式,求解所求项的系数即可. 【考点】二项式定理 5.【答案】C【解析】根据不等式的性质可知,若x y >,则x y -<-成立,即p 为真命题,当1x =,1y =-时,满足x y >,但22x y >不成立,即命题q 为假命题,则①p q ∧为假命题;②p q ∨为真命题;③()p q ∧⌝为真命题;④()p q ⌝∨为假命题,故选:C.【提示】根据不等式的性质分别判定命题p ,q 的真假,利用复合命题之间的关系即可得到结论. 【考点】非、或、且,真假命题 6.【答案】D【解析】当[2,0)t ∈-时,运行程序如下,221(1,9]t t =+∈,(26]3,S t -=∈-,当[0,2]t ∈时,[,1]33S t ∈--=-,则(2,6][3,1][3,6]S ∈---=-,故选D.【提示】由题意可得001e ln()0xx a ---+=有负根,采用数形结合的方法可判断出a 的取值范围.BD DC AD DE DE =⇒=【提示】可先由图中的点与抛物线的位置关系,写出C,F两点的坐标,再将坐标代入抛物线方程中,消去参数p后,得到a,b的关系式,再寻求b的值.||OA OB OD++=||OA OB OD++的取值范围为||8OA OB OD++=+ ||OA OB OD++的最大值【提示】(Ⅰ)利用对立事件的概率公式,计算即可, AD CD AC AD-21277217147⎛⎫-- ⎪ ⎪⎝⎭37sin 23sin 6AC BACCBA∠=∠. 【提示】(Ⅰ)利用余弦定理,利用已知条件求得cos CAD ∠的值.(Ⅱ)根据cos CAD ∠,cos BAD ∠的值分别,求得sin BAD ∠和sin CAD ∠,进而利用两角和公式求得sin BAC ∠的值,最后利用正弦定理求得BC .【考点】解三角形,余弦定理,正弦定理19.【答案】(Ⅰ)如图,因为四边形11ACC A 为矩形,所以1CC AC ⊥. 同理1DD BD ⊥.因为11CC DD ∥,所以1CC BD ⊥. 而ACBD O =,因此1C C B D C A ⊥底面.由题设知,11O O C C ∥. 故1C O B D O A ⊥底面.(Ⅱ)如图2,过1O 作11O H OB ⊥于H ,连接1HC . 由(Ⅰ)知,1C O B D O A ⊥底面, 所以11111O O A B C D ⊥底面, 于是111O O AC ⊥.又因为四棱柱1111A B ABC C D D -的所有棱长都相等, 所以四边形1111A B C D 是菱形,因此1111AC B D ⊥,从而1111AC BDD B ⊥平面,1112OO O B OB =2O H =119【提示】(Ⅰ)由已知中,四棱柱1111ABCD A B C D -的所有棱长都相等,AC BD O =,11111AC B D O =,四边形11ACC A 和四边形11BDD B 均为矩形.可得111O O CC BB ∥∥且1CC AC ⊥,1BB BD ⊥,进而1OO AC ⊥,1OO BD ⊥,再由线面垂直的判定定理得到1O O ABCD ⊥底面;11(1)32nn -- n 1(1)2n n --++112121()121n ---+ 11(1)32nn --.11(1)32nn --. 【提示】(Ⅰ)根据条件去掉式子的绝对值,分别令1n =,2代入求出2a 和3a ,再由等差中项的性质列出关于p 的方程求解,利用“{}n a 是递增数列”对求出的p 的值取舍;(Ⅱ)根据数列的单调性和式子“1||n n n a a p +-=”、不等式的可加性,求出221nn a a --和1n n a a +-,再对数列{}n a 的项数分类讨论,利用累加法和等比数列前n 项和公式,求出数列{}n a 的奇数项、偶数项对应的通项22a b a +=,从而2(F22212m m ++,22214m m ++.APBQ 的面积2222213|222122mS d m m+==-+--.S 取得最小值2.【提示】(Ⅰ)由斜率公式写出1e ,2e 把双曲线的焦点用含有a ,b 的代数式表示,结合已知条件列关于a ,b 的方程组求解a ,b 的值,则圆锥曲线方程可求;(Ⅱ)设出AB 所在直线方程,和椭圆方程联立后得到关于y 的一元二次方程,由根与系数的关系得到AB 中点M 的坐标,并由椭圆的焦点弦公式求出AB 的长度,写出PQ 的方程,和双曲线联立后解出P ,Q 的坐标,由点到直线的距离公式分别求出P ,Q 到AB 的距离,然后代入三角形面积公式得四边形APBQ 的面n【提示】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决. 【考点】函数单调性,极值,导数的性质与应用。
2014辽宁高考数学卷辽宁卷

普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第I 卷一、选择题(1) 已知全集U R =,{}0|A x x =≤,{}1|B x x =≥,则集合()U AB =ð (A ) {}0|x x ≥ (B ){}1|x x ≤ (C ){}1|0x x ≤≤ (D ){}1|0x x <<(2) 设复数z 满足(2)(2)5z i i --=,则z =( )A. 23i +B. 23i -C. 32i +D. 32i -(3) 已知132a -=,21log 3b =,121log 3c =,则 (A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>(4) 已知,m n 表示两条不同的直线,α表示平面,下列说法正确的是( )A. 若//,//m n αα,则//m nB. 若,m n αα⊥⊂,则m n ⊥C. 若,m m n α⊥⊥,则//n αD. 若//,m m n α⊥,则n α⊥(5) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b , b ∥c ,则a ∥c . 则下列命题中真命题是(A )p q ∨ (B )p q ∧ (C ) ()()p q ⌝∧⌝ (D ) ()p q ∨⌝(6) 若将一个质点随即投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是(A )2π (B )4π (C )6π (D )8π(7) 某几何体三视图如图所示,则该几何体体积为(A )82π- (B )8π- (C )82π- (D )84π-(8) 已知点A (-2,3)在抛物线2:2C y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为(A )43- (B ) -1 (C )34- (D )12- (9) 设等差数列{}n a 中的公差为d ,若数列1{2}n aa为递减数列,则A. 0d <B. 0d >C. 10a d <D. 10a d >(10) 已知()f x 为偶函数,当0x ≥时,1cos ,0,2()121,,2x x f x x x π⎧⎡⎤∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,则不等式1(1)2f x -≤的解集为(A )1247,,4334⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(B )3112,,4343⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦ (C )1347,,3434⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(D )3113,,4334⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦ (11) 将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图像向右平移2π个长度单位,所得图像对应函数 (A )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 (C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 (12) 当[]2,1x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是(A )[]5,3-- (B )96,8⎡⎤--⎢⎥⎣⎦ (C )[]6,2-- (D )[]4,3-- 第II 卷二、填空题(13) 执行右侧的程序框图,若输入3n =,则输出T = .(14) 已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,则目标函数34z x y =+的最大值为(15) 已知椭圆22:194x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则AN BN += .(16) 对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使|2|a b +最大时,124a b c++的最小值为______________ 三、解答题(17) (本小题满分12分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值;(Ⅱ)()cos B C -的值。
10.2014年普通高等学校招生全国统一考试(辽宁卷)(答案版)

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12πD .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=︒,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+⋅-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.参考答案【选择题】1.D2.A3.C4.B5.A6.D7.B8.C9.B 10.D 11.C 12.B【填空题】 13.299 14.23 15.12 16.-2【解答题】17.解:(1)2,3.2,3∴5,6c ∴2-cos 23cos ,3,31cos 222====>=+=+====•==c a c a c a c a a acb c a B ac B ca BC BA b B 所以,解得,且 (2)2723)-cos(.2723sin sin cos cos )-cos(924sin ,972c -cos ,2,3,3322sin 31cos 222==+=∴==+=====∴=C B C B C B C B C ab b a C c b a B B 所以,18.解:(1)108.0.108.02)(501002.15.050003.0)50(,6.050)002.0004.0006.0()100≥(2所以,所求事件概率为,则且一日销量低于日销量不低于表示连续表示日销售量,则用==+==•=<==•++==b a baa aab A p A Y p b Y p a Y(2).72.08.1.72.0)-1(,8.16.0*3.216.0)-1()3(.432.0)-1()2(.288.0)-1()1(.064.0)-1()0(∴).6.0,3(~,6.0100)1(.3,2,1,00333122321133003和分别为和方差望的分布列如下,数学期的概率知,日销量不低于由可取DX EX X a na DX na EX a a C x p a a C x p a a C x p a a C x p B X a X ==================19.解: (1)BCBC BC H EH FH EH FH EH FH BC H BCE BCF BE RT BCE ABC EC AE BA BC BF RT BCF CBD FC DF BD BC ⊥EF EF ⊥∴EFH ⊥∴∩BC,⊥BC,⊥21BH BC,⊥BC,⊥ΔΔ∴EC⊥,Δ∴120∠,,FC ⊥,Δ∴120∠,,所以,面则上,且在全等,设与三角形为且同理三角形为且==°===°=== (2)552θsin CD --552,sin 55113100100||||,cos ∴)1,1,3-(002321230210),,()0,23,21(),23,0,21(),0,0,21-(),0,23,0(),23,0,0()1,0,0(2.,,,HF ,∴HF ⊥⊥,12121212122221=>=<=++++++<==++=++========的正弦值所以,二面角,解出一个法向量,即满足:的法向量面的一个法向量显然,面轴建立坐标系为分别以)知由(BF E n n n n n n n n n y x z x BF n BE n z y x n BEF BF BE B F E n BCF BF BE z y x EH HC HC EH 20.解: (1)12-1231-)2,2(,,3).2,2(2,168211682116)(4214421,,4,,,222222222222242242242222====∴=+====++=++≥+++=++===y x a b c by a x P a b c a c P s n m r r n m r n m r n m s mn r r n m P r 所以,双曲线方程为,,中代入双曲线方程把点取最大值,这时时,仅当三角形面积由射影定理得为点上下两段线段长分别设圆半径(2)222222222222222211221121313 6.1630.(,),(,).0(P x y a b c c a bx y P b a a bx y l PA PB x my A x y B x y PA PB x y x +==+=+===+=•===•=椭圆过,焦点为设椭圆方程,,把点代入椭圆方程中,解得,所以,椭圆方程为由题知,直线过右焦点为,且设直线方程212121212221212121221212222212(((())2(1))0163(2)-30,yx x y y mymy y y m yy y y y y yy m y yy y x ym y y y =+=+=++++++=+++++=++=+=与椭圆方程联立得:由韦达定理得1222121222222222-32(1))0-3(1)0-3-30(-3-30-2m02m 0y y m m y yy y m m m m m =+++++=∴+++=++++=++++=++=+=∴=即12m m x y x y =======+所以,所求直线方程为或21.解:(1)上仅有一个零点,在所以,单调递减单调递减,且单调递减单调递增,单调递增上,,在上有零点,在,)2π0()(↓)1(sin 38-)2π)(-(cos )(∴↓)1(sin 38-↓)2π)(cos -(-∴↑0cos -↑02π)2π0()2π0()(∴0)2(38-)π2)(2π-()2π(,038-π)0(∴)1(sin 38-)2π)(-(cos )(x f x x x x x f y x y x x x y x x y x y x f f f x x x x x f ++==+=++=>+=>+=<=>=++= (2)(II )考虑 ].,2[),23ln(4sin 1cos )(3)(ππππ∈--+-=x x x x x h 令,x t -=π则],2[ππ∈x 时,]2,0[π∈t 记)sin 1)(2()(3)(),21ln(4sin 1cos 3-)('t t t f t u t t t t t h t u ++=+-+==πππ则)( 由(I )得,当0)()2,(,0)(),0('0'0〈∈〉∈t u x t t u x t 时,当时,π在(0,0x )上)(t u 是增函数,又)00(=u ,从而当),0(0x t ∈时,)(t u 0〉,所以)(t u 在],0(0x 上无零点。
2014辽宁高考数学理科

14高考辽宁(理)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足:①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .18二、填空题13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x=上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .频率组距 /个19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.C20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P (1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.PA23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.参考答案一、选择题: 1. D解析: ∵A ∪B={x|x ≥1或x ≤0},∴()U C A B ={|01}x x <<.故选D.考点:(1)1.1.3集合的基本运算. 难度:A 备注:高频考点2. A解析:∵(2)(2)5z i i --=,∴522z i i -=-,∴()()55(2)2223222iz i i iii i +=+=+=+--+.解析2: ∵(2)(2)5z i i --=,∴5(2)(2)242z i i z z i i =--=---,∴472i z z i +=-,∴()()()()4724723222i i i z i i i i +++===+--+.解析3:设z a bi =+,代入到已经中(2)(2)5a bi i i +--=,整理2(24)5a b b a i +-+--=,根据复数相等的概念得25240a b b a +-=⎧⎨--=⎩,解得a=2,b=3,所以z =23i +. 考点:(1)11.2.2复数的代数运算;(2)13.1.1函数与方程思想. 难度:A 备注:高频考点 3. C解析:∵1030221a -<=<=,22122211log log 10,log log 3log 2133b c =<===>=, ∴c >a >b解析2:首先将c 化简:1221log log 33c ==.画函数22,log x y y x ==的图像,如图所示:通过观察图像得:c >a >b考点:(1)2.4.3指数函数的性质及应用;(2)2.5.2对数函数的图象与性质;(3)13.1.1函数与方程思想;(4)13.1.5特殊与一般思想.备注:易错题. 4. B 解析:A .若m ∥α,n ∥α,则m ,n 相交或平行或异面,故A 错;xB .若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;C .若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错;D .若m ∥α,m ⊥n ,则n ∥α或n ⊂α或n ⊥α,故D 错. 考点:(1)9.4.1直线与平面平行的判定与性质;(2)9.5.1直线与平面垂直的判定与性质. 难度:B 备注:易错题. 5. A解析:若0a b ∙=,0b c ∙=,则0a c ∙=”是个假命题,理由如下:若0a b ∙=,0b c ∙=,则a b b c ∙=∙,所以0a b b c ∙-∙=,即()0a c b -∙=,则不能说明0a c ∙=成立;“若//,//a b b c ,则//a c ”为真命题,理由如下:若//,//a b b c ,设,a b b c λμ==(0λμ⋅≠),所以()()a c c λμλμ==,可得//a c .则p ∨q ,为真命题,p ∧q ,(¬p )∧(¬q ),p ∨(¬q )都为假命题.考点:(1)1.2.1四种命题的关系及真假判断;(2)5.1.3平面向量的共线问题;(3)5.3.1平面向量的数量积运算. 难度:B 备注:易错题. 6.D解析:第一步:3人全排,有33A =6种方法,第二步:3人全排形成4个空,在前3个或后3个或中间两个空中插入椅子,有4种方法,第三步:根据乘法原理可得所求坐法种数为6×4=24种.解析2:将6把椅子依次编号为1,2,3,,4,5,6,故任何两人不相邻的做法,可安排:“1,3,5,”,“1,3,6”,“1,4,6”,“2,4,6”号位置就坐,故总数为433A =24.考点:(1)10.6.1分类加法计数原理的应用;(2)10.6.2分步乘法计数原理的应用;(3)10.6.4排列问题. 难度:B备注:高频考点. 7. D解析: 由三视图知:几何体是正方体切去两个14圆柱, 正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积V=23﹣2×14×π×12×2=8﹣π.考点:(1)9.2.3由三视图求几何体的表面积、体积. 难度:B备注:高频考点 8.C解析:根据题意可得∵数列1{2}na a 为递减数列,∴111111111()()0222,22122nnn n n n a a a a a a a a a a d a a +++-->∴==>=,10a d ∴<.解析 2 :由数列1{2}n a a 为递减数列,根据指数函数n y a =的性质,知10n a a <,得10,0n a a ><,或10,0n a a <>,当10,0n a a ><时,0d <,所以10a d <,,当10,0n a a <>时,0d >,所以10a d <,综上:10a d <.考点:(1)2.4.3指数函数的性质及应用;(2)6.2.2等差数列的基本量的计算;(3)13.1.3分类与整合思想.难度:B 备注:高频考点 9. B解析: 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得函数为 23sin 23sin 2233y x x πππ⎡⎤⎛⎫⎛⎫=-+=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以23222232k x k πππππ+≤-≤+,解得7131212k x k ππππ+≤≤+,所以函数在区间713[,]1212k k ππππ++上单调递减 ,所以A,C 都不正确;2222232k x k πππππ-+≤-≤+,解得71212k x k ππππ+≤≤+,所以函数在区间7,1212k k ππππ⎡⎤++⎢⎥⎣⎦上单调递增 ,当k=0时,函数在在区间7[,]1212ππ上单调递增. 考点:(1)4.4.1作y=Asin(wx+φ)的图象及图像变换(2);4.3.2三角函数的单调性与周期性. 难度:B 备注:高频考点 10. D解析:抛物线C :22y px =的准线方程为2px =-,焦点F (2,0),而点(2,3)A -在准线上,所以解得p=4,设B (m ,n ),抛物线在第一象限的方程为y =12y -'=,所以过点B的切线斜率为12k -=,而切线又过点A ,所以33n m -=+12-①,而点B 又在满足方程y =n =m=n=8,所以BF 的斜率为804823-=-.解析2:22y px =的准线方程为2px =-,焦点F (2,0),而点(2,3)A -在准线上,所以解得p=4,设直线AB 的方程为(3)2x k y =--,与方程22y px =联立,得22(3)2y pxx k y ⎧=⎨=--⎩,化简2824160y ky k -++=,26496640k k ∆=--=,所以k=2,(或k=-1舍去),将k=2代入2824160y ky k -++=中,可求得y=8,从而解得x=8,故B (8,8),所以BF 的斜率为804823-=-. 考点:(1)8.7.3直线与抛物线的位置关系;(2)3.1.3导数的几何意义. 难度:B备注:高频考点 11. C 解析:当0≤x ≤1时,ax 3-x 2+4x+3≥0可化为32341a x x x≥--+, 令()32341f x x x x =--+,则()432981f x x x x'=+-,当0≤x ≤1时,f ′(x )>0,f (x )在(0,1]上单调递增,f (x )max =f (1)=-6,∴a ≥-6;当-2≤x <0时,ax 3-x 2+4x+3≥0可化为32341a x x x≤--+, 当-2≤x <-1时,f ′(x )<0,f (x )单调递减,当-1<x <0时,f ′(x )>0,f (x )单调递增,f (x )min =f (-1)=-2,∴a ≤-2;综上所述,实数a 的取值范围是-6≤a ≤-2,即实数a 的取值范围是[-6,-2].考点:(1)3.2.2导数与函数单调性;(2)7.2.2一元二次不等式恒能恰成立问题. 难度:C备注:高频考点解析2:先证4k ≤.不妨设01y x ≤<≤,(1) 若12x y -≤ ,则1111|(x)()||x |2224f f y y -<-≤⨯=;(2) 若12x y ->,有12x y -+<-,则|(x)()||(x)(1)(0)()||(x)(1)|f f y f f f f y f f -=-+-≤-|(0)()|f f y +-1111111111|x 1||0|(1x)(x )()2222222224y y y <-+-=-+=+-+<+⨯-= 所以14k ≤.由于对称性,同理可证明当01x y ≤<≤时,14k ≤;故:14k ≤再证14k ≥.为了证明这一点,我们需要构造一族函数.我们构造如下函数:11(),[0,]22(x)11()(1),(,1]22x x f x x εε⎧-∈⎪⎪=⎨⎪--∈⎪⎩ (其中ε 是远小于12 的正数)显然有(0)(1)0f f ==.接下来再验证条件(2).同样不妨设01y x ≤<≤.(i )当1,[0,]2x y ∈ 时,11|(x)()|()|x ||x |22f f y y y ε-=--<-(ii )当1,[,1]2x y ∈时,11|(x)()||()(1x)()(1)|22f f y y εε-=-----11|()()||x |22y x y ε=--<-;(iii )当11[,1],[0,]22x y ∈∈时,11|(x)()||()(1x)()|22f f y y εε-=----11|()(1x y)||x |22y ε=---<-(因为此时有1x y x y --<-和1x y x y -++<-,所以(1x y)||x |y --<-).又因为11111|()(0)||()0|22242f f εε-=--=-,所以1142k ε>-,由于ε的任意性,令ε趋近与0,可得14k ≥. 由于对称性,同理可证明当01x y ≤<≤时,14k ≥; 综合14k ≤,所以只有14k =. 解析3 :依题意,由1|()()|||2f x f y x y -<-,得|()()|()()1||2f x f y f x f y x y x y --=<--,如图所示的函数y=f (x )满足的条件函数之一(函数y=f (x )的图像位于直线1l解析4:依题意,由1|()()|||2f x f y x y -<-,得|()()|()()1||2f x f y f x f y x y x y --=<--,13.1.3分类与整合思想.难度:D 备注:高频考点二、填空题 13.299解析:由程序框图知:第一次循环x=9,y=93+2=5,|5﹣9|=4>1; 第二次循环x=5,y=53+2=113,|113﹣5|=43>1;第三次循环x=113,y=119+2.|119+2﹣113|=49<1,满足条件|y ﹣x|<1,跳出循环,输出y=299.考点:(1)11.1.3程序框图的识别及应用. 难度:B 备注:高频考点 14.23解析:∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1), ∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积()11231111182122113333S x dx x x --⎡⎤⎛⎫⎛⎫=-=-=---+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是82343=.考点:(1)10.5.5与面积、体积有关的几何概型(2)3.4.3利用定积分求曲线所围图形的面积. 难度:B 备注:高频考点 15.12解析:如图:由M 关于C 的焦点的对称点分别为A ,B ,得12,F F 分别是线段MA ,MB 的中点,而MN 的中点为Q ,根据中位线定义,易得212QF BN =,112QF AN = ∵Q 在椭圆C 上,∴|QF 1|+|QF 2|=2a=6,∴|AN|+|BN|=2×6=12.解析2:设M ,N 的中点坐标为P ,(),M M M x y ,(),N N N x y ,(),P P P x y ,(),A A A x y ,(),B B B x y ,则M A x x +=-M B x x +=2M A P x x x +=,0M A y y +=,0M B y y +=,2M N P y y y +=,所以AN BN +=6=,所以|AN|+|BN|=2×6=12.考点:(1)8.5.1椭圆的定义;(2)8.5.3椭圆的几何性质. 难度:C备注:高频考点 16. -2解析:∵224240a ab b c -+-=,∴222211542416c b a ab b a b ⎛⎫=-+=-+ ⎪⎝⎭,由柯西不等式得,22222152224164b b a b a a b ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫-++≥-=+⎢⎥⎢⎥⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎣⎦⎣⎦, 故当|2a+b|最大时,有4462b a -=,∴32a b =,代入已知得210c b =,∴2223453451121122310222a b c b b b b b b ⎛⎫⎛⎫-+=-+=-=-- ⎪ ⎪⎝⎭⎝⎭,当12b =时,取得最小值为-2. 类似的,还可以这样构造式子:22532232b b c a ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,所以2222253332122232522b b ba ab a b ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-++≥-+=+⎢⎥⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,剩下的步骤和解析1相同.解析2:∵224240a ab b c -+-=,∴()()225322388c a b a b =++-, 则()()225322388a b c a b c +=--≤,当32a b =时,取到等号,即|2|a b +取到最大值,将32a b =代入22424c a ab b =-+中,解得210c b =,下面步骤与解析1步骤一样.解析3:设t=2a+b ,则b=t-2a ,代入式子224240a ab b c -+-=中,整理可得22241840,a ta t c -+-=要保证关于a 的方程有解,则△=()()221842440t t c -⋅-≥,整理解t,t ≤|2|a b +≤,而只有△=0时,等号成立,即使|2|a b +最大,此时,()()1832322488t a b t a --+===⋅,即32a b =, 又()()22225552310888c t a b a b b ==+=+=, 所以223452411122222a b c b b b b ⎛⎫-+=-+=--≥- ⎪⎝⎭,当12b =时,上式取得最小值,解得3324a b ==,25102c b ==,所以当12b = ,34a =,52c =时,345a b c-+的最小值为-2.解析4:∵224240a ab b c -+-=,∴2215224b b c a ⎛⎫=-+ ⎪⎝⎭,设22b a θ-=,2θ=,则i n b θ=,2a θθ=,代入式子|2|a b +中,所以|2|c o ss i 1s i n ()a b θθθϕ+==+≤.当tan θ=时,等号成立,即2tan 22b a θ=-,整理得32a b =,代入到已知等式中解得210c b =, 所以223452411122222a b c b b b b ⎛⎫-+=-+=--≥- ⎪⎝⎭,当12b =时,上式取得最小值,解得33,24a b ==,25102c b ==,所以当12b = ,34a =,52c =时,345a b c-+的最小值解析5:令222244t a b a ab b =+=++,由已知可得22424c a ab b =-+,所以22222244144424424a a t a ab b b bc a ab b a a b b ⎛⎫++ ⎪++⎝⎭==-+⎛⎫-+ ⎪⎝⎭,设a x b =,则 ()()()()2222321441633111442442421(21)421121x t x x x c x x x x x x x x -++-==+=+=+-+-+-+-+-++-381415≤+=+.当且仅当42121x x -=-即32x =或12x =-(舍)时,等式成立,所以32b a =,即32a b =时,|2|a b +取到最大值,将32a b =代入22424c a ab b =-+中,解得210c b =,下面步骤与其他解析步骤一样.考点:(1)12.3.4柯西不等式与排序不等式的简单应用;(2)2.6.5二次函数的图象与性质;(3)13.1.4化归与转化思想. 难度:D备注:典例. 三、解答题 17.(1)a=3,c=2;(2)2327解析:(1)2BA BC ∙=,1cos 3B =,cos 2BA BC B ∴∙=,即6a c ⋅=①,由余弦定理可得2221cos 23a cb B ac +-==,化简整理得2213a c +=②,①②联立,解得,a=3,c=2;(2)1cos ,sin 33B B =∴=因为a=3,3b =,c=2,由余弦定理可得2227cos 29ac b C ab -+==,sin 9C∴==,7123cos()cos cos sin sin 9327B C B C B C ∴-=+=⋅=.(2)在△ABC 中,1cos ,sin 3B B =∴==sin sin b c B C =可得sinsin 9c B C b ==,a b c =>,C ∴为锐角,7cos 9C ∴==,7123cos()cos cos sin sin 9327B C B C B C ∴-=+=⋅=. 考点:(1)5.3.1平面向量的数量积运算;(2)4.6.2利用余弦定理求解三角形; 难度:B备注:高频考点 18.(1)0.108;(2)1.8,0.72.解析:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个” B 表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108,(Ⅱ)X 可能取的值为0,1,2,3,相应的概率为:()33(0)10.60.064P X C ==-=,()213(1)0.610.60.288P X C ==-=,()1223(2)0.610.60.432P X C ==-=,333(3)0.60.216P X C ===,随机变量X 的分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1﹣0.6)=0.72. 考点:(1)0.9.5二项分布的均值、方差;(2)13.1.7或然与必然思想. 难度:B 备注:典例19. (1)见解析;(2解析:(1)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系, 易得B (0,0,0),A (0,﹣1,D1,0),C (0,2,0),因而E (0,12,F12,0),所以EF =), BC =(0,2,0),因此EF BC ⋅=0,所以EF ⊥BC . (2)在图中,设平面BFC 的法向量1n =(0,0,1),平面BEF 的法向量2n =(x ,y ,z ), 又BF =(12,0),BE =(0,12), 由120n BF n BE ⎧⋅=⎪⎨⋅=⎪⎩ 解得其中一个法向量2n =(11), 设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则cos θ=|cos <1n ,2n >|=12125n n n n ⋅=因此sin θ解析2: (几何法)(1)延长CB ,过点A 作AG ⊥BC 交G ,连接DG ,因为2AB BC BD ===,0120ABC DBC ∠=∠=所以ABC ∆≅BCD ∆ 所以AC=DC ,又因为030ACB DCB ∠=∠=,GB=BGG所以AGC ∆≅GCD ∆,所以090AGC DGC ∠=∠=,即DB ⊥CG 而AG ⊥CG ,所以CG ⊥平面AGD , 因为AD ⊂平面AGD ,所以CG ⊥AD因为E 、F 分别为AC 、DC 的中点. 所以EF//AD 所以CG ⊥EF (2)如图所示:过点E 分别作EO ⊥平面BDC ,交点O ,EH ⊥BF ,垂足H ,EM ⊥DC ,垂足M ,连接OH ,OM , 则四边形HOMF 是矩形,根据三垂线定理可得,EHO ∠是二面角E BF C --所求的平面角,因为2AB BC BD ===,0120ABC DBC ∠=∠=所以由余弦定理可得AC=DC=在直角三角形AGB 和直角三角形BGD 中,AG=GD=sin60AB ⋅=因为E 、F 分别为AC 、DC 的中点, 所以EF=12AD= 由三角形面积公式可得4EF EF h EM FC⋅====,所以4FM ==即4HO =. 在△EBF 中GHO M4EFEF H EH BF⋅===cos HO EHO EH ∠===. 因为cos 0EHO ∠>,所以EHO ∠为锐角所以sin 5EHO ∠==. 即二面角E BF C --所求的平面角EHO ∠考点:(1)9.5.1直线与平面垂直的判定与性质;(2).8.3求二面角. 难度:B备注:高频考点20. (1)221:12y C x -=;(2)102x y ⎛⎫--= ⎪ ⎪⎝⎭或102x y ⎛+-= ⎝⎭.解析:(1)设切点P (x 0,y 0),(x 0>0,y 0>0),则切线的斜率为0x y -, 可得切线的方程为0000()x y y x x y -=--,化为x 0x+y 0y=4. 令x=0,可得04y y =;令y=0,可得04x x =. ∴切线与x 轴正半轴,y 轴正半轴围成一个三角形的面积000014482S y x x y =⋅⋅=⋅ ∵2222000042x y x y =+≥⋅,当且仅当00x y =时取等号. ∴842S ≥=.此时P .由题意可得22221a b -=,c e a ===a 2=1,b 2=2.故双曲线C 1的方程为221:12y C x -=.(2)由(Ⅰ)可知双曲线C 10),即为椭圆C 2的焦点.可设椭圆C 2的方程为22221113x y b b +=+(b 1>0). 把P代入可得22112213b b +=+ 22112213b b +=+,解得213b =, 因此椭圆C 2的方程为22163x y +=.由题意可设直线l 的方程为A (x 1,y 1),B (x 2,y 2),联立2226x my x y ⎧=⎪⎨+=⎪⎩()22230m y ++-=,∴1212232y y y y m-+==+.∴1212()x x m y y +=++=()2212121226632m x x m y y y y m-=++=+()()11222,2,2,AP x y BPx y =--=-∵AP BP ⊥,∴0AP BP ⋅=,∴))1212121240x x x x y y y y ++++=,∴22110m-+=,解得1-或m=1-,因此直线l的方程为:102x y ⎛⎫---=⎪ ⎪⎝⎭或102x y ⎛+--= ⎝⎭. 考点:(1)8.5.2椭圆的标准方程;(2)5.4.3平面向量与解析几何的综合问题;(3)7.3.2利用基本不等式求最值;(4)13.1.2数形结合思想;(5)13.1.4化归与转化思想.难度:D 备注:典例21.(1)见解析;(2)见解析.解析:根据题意可得,f′(x )=﹣(1+sinx )(π+2x )﹣2x ﹣23cosx (Ⅰ)∵当x ∈(0,2π)时,f′(x )<0, ∴函数f (x )在(0,2π)上为减函数,又f (0)=π﹣83>0,f (2π)=﹣π2-163<0;∴存在唯一的x 0∈(0,2π),使f (x 0)=0;(Ⅱ)考虑函数h (x )=3()cos 1sin x xx π-+﹣4ln (3﹣2πx ),x ∈[2π,π],令t=π﹣x ,则x ∈[2π,π]时,t ∈[0,2π],记u (t )=h (π﹣t )=3cos 1sin t tt +﹣4ln (1+2πt ),则u′(t )=3()(2)(1sin )f t t t π++,由(Ⅰ)得,当t ∈(0,x 0)时,u′(t )<0;在(0,x 0)上u (x )是增函数,又u (0)=0,∴当t ∈(,x 0]时,u (t )>0, ∴u (t )在(0,x 0]上无零点;在(x 0,2π)上u (t )是减函数,由u (x 0)>0,u (2π)=﹣4ln2<0, ∴存在唯一的t 1∈(x 0,2π),使u (t 1)=0;∴存在唯一的t 1∈(0,2π),使u (t 1)=0;∴存在唯一的x 1=π﹣t 1∈(2π,π),使h (x 1)=h (π﹣t 1)=u (t 1)=0;∵当x ∈(2π,π)时,1+sinx >0,∴g (x )=(1+sinx )h (x )与h (x )有相同的零点,∴存在唯一的x 1∈(2π,π),使g (x 1)=0,∵x 1=π﹣t 1,t 1>x 0,∴x 0+x 1<π.考点:(1)3.1.2导数的运算;(2)3.2.2导数与函数单调性;(3)3.2.3导数与函数极值;(4)3.2.4导数与函数最值;(5)3.2.6导数与函数零点、方程的根. 难度:D备注:典例22. (1)见解析;(2)见解析.解析:(1)∵PG=PD,∴∠PDG=∠PGD,∵PD为切线,∴∠PDA=∠DBA,∵∠PGD=∠EGA,∴∠DBA=∠EGA,∴∠DBA+∠BAD=∠EGA+∠BDA,∴∠NDA=∠PFA,∵AF⊥EP,∴∠PFA=90°.∴∠BDA=90°,∴AB为圆的直径;(2)连接BC,DC,则∵AB为圆的直径,∴∠BDA=∠ACB=90°,在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,∴Rt△BDA≌Rt△ACB,∴∠DAB=∠CBA,∵∠DCB=∠DAB,∴∠DCB=∠CBA,∴DC∥AB,∵AB⊥EP,∴DC⊥EP,∴∠DCE为直角,∴ED为圆的直径,∵AB为圆的直径,∴AB=ED.考点:(1)12.1.5圆的切线的性质与判定;难度:B备注:高频考点23. (1)cos 2sin x y θθ=⎧⎨=⎩(0≤θ<2π,θ为参数);(2)34sin 2cos ραα=-.解析:(1)在曲线C 上任意取一点(x ,y ),由题意可得点(x ,2y)在圆x 2+y 2=1上, ∴x 2+24y =1,即曲线C 的方程为 x 2+24y =1,化为参数方程为cos 2sin x y θθ=⎧⎨=⎩(0≤θ<2π,θ为参数).(2)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设P 1(1,0)、P 2(0,2), 则线段P 1P 2的中点坐标为(12,1), 再根据与l 垂直的直线的斜率为12,故所求的直线的方程为y-1=12(x-12),即x-2y+32=0.再根据x=ρcos α、y=ρsin α 可得所求的直线的极坐标方程为ρcos α-2ρsin α+32=0,即34sin 2cos ραα=-.考点:(1)12.2.3极坐标方程的综合应用;(2)12.2.4参数方程与普通方程的互化;12.2.1极坐标和直角坐标的互化. 难度:B 备注:典例 24. (1)[0,43];(2)见解析. 解析:(1)由f (x )=2|x ﹣1|+x ﹣1≤1 可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②.解①求得1≤x≤43,解②求得 0≤x<1.综上,原不等式的解集为[0,43]. (2)由g (x )=16x 2﹣8x+1≤4,求得14-≤x≤34,∴N=[14-,34],∴M∩N=[0,34].∵当x ∈M∩N 时,f (x )=1﹣x ,x 2f (x )+x[f (x )]2 =xf (x )[x+f (x )]=21142x ⎛⎫-- ⎪⎝⎭≤14,故要证的不等式成立.考点:(1)1.1.3集合的基本运算;(2)12.3.2绝对值不等式的证明. 难度:C 备注:典例.。
高考辽宁数学答案

高考辽宁数学答案【篇一:2014年高考辽宁文科数学试题及答案(精校版)】文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分, 共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集u?r,a?{x|x?0},b?{x|x?1},则集合cu(ab)?()a.{x|x?0}b.{x|x?1} c.{x|0?x?1} d.{x|0?x?1} 2. 设复数z满足(z?2i)(2?i)?5,则z?()a.2?3i b.2?3i c.3?2i d.3?2i 3. 已知a?2?13,b?log211,c?log1,则() 323a.a?b?cb.a?c?bc.c?a?b d.c?b?a 4. 已知m,n表示两条不同直线,?表示平面,下列说法正确的是() a.若m//?,n//?,则m//n b.若m??,n??,则m?n c.若m??,m?n,则n//?d.若m//?,m?n,则n??5. 设a,b,c是非零向量,已知命题p:若a?b?0,b?c?0,则a?c?0;命题q:若a//b,b//c,则a//c,则下列命题中真命题是()a.p?q b.p?q c.(?p)?(?q) d.p?(?q) 6. 若将一个质点随机投入如图所示的长方形abcd中,其中ab=2,bc=1,则质点落在以ab为直径的半圆内的概率是() a.????b. c. d. 24687. 某几何体三视图如图所示,则该几何体的体积为()??b. 8? 42c.8?? d. 8?2?a.8?8. 已知点a(?2,3)在抛物线c:y2?2px的准线431 b.-1 c.? d.? 342aa9. 设等差数列{an}的公差为d,若数列{21n}为递减数列,则()a.d?0 b.d?0 c.a1d?0 d. a1d?01?cos?x,x?[0,?1?210. 已知f(x)为偶函数,当x?0时,f(x)??,则不等式f(x?1)?2?2x?1,x?(1,??)??2的解集为()12473112,?][,]4334434313473113c.[,][,] d.[?,?][,]34344334a.[,][,] b.[?11. 将函数y?3sin(2x??个单位长度,所得图象对应的函数()32?7??7?]上单调递减 b.在区间[,]上单调递增 a.在区间[,12121212???? c.在区间[?,]上单调递减d.在区间[?,]上单调递增6363)的图象向右平移32?12. 当x?[?2,1]时,不等式ax?x?4x?3?0恒成立,则实数a的取值范围是() a.[?5,?3] b.[?6,?] c.[?6,?2] d.[?4,?3]98第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 执行右侧的程序框图,若输入n?3,则输出t??2x?y?2?0?14. 已知x,y满足条件?x?2y?4?0,则目标函数z?3x?4y?3x?y?3?0?的最大值为 .x2y2??1,点m与c的焦点不重合,若m15. 已知椭圆c:94关于c的焦点的对称点分别为a,b,线段mn的中点在c上,则|an|?|bn|? .16. 对于c?0,当非零实数a,b满足4a?2ab?b?c?0,且使|2a?b|最大时,三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)在?abc中,内角a,b,c的对边a,b,c,且a?c,已知ba?bc?2,cosb?22124??的最小值为. abc1,3b?3,求:(1)a和c的值;(2)cos(b?c)的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:?2?n(n11n22?n12n21),n1?n2?n?1n?2219. (本小题满分12分)如图,?abc和?bcd所在平面互相垂直,且ab?bc?bd?2,?abc??dbc?1200,e、f、g分别为ac、dc、ad的中点.(1)求证:ef?平面bcg;(2)求三棱锥d-bcg的体积. 附:椎体的体积公式v?1sh,其中s为底面面积,h为高. 3dc20. (本小题满分12分)圆x2?y2?4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为p(如图). (1)求点p的坐标;(2)焦点在x轴上的椭圆c过点p,且与直线l:y?xa,b两点,若?pab的面积为2,求c的标准方程.21. (本小题满分12分)已知函数f(x)??(x?cosx)?2sinx?2,g(x)?(x??证明:(1)存在唯一x0?(0,(2)存在唯一x1?(请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2b铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲如图,ep交圆于e、c两点,pd切圆于d,g为ce上一点且pg?pd,连接dg并延长交圆于点a,作弦ab垂直ep,垂足为f. (1)求证:ab为圆的直径;a2x?1.??2),使f(x0)?0;?2,?),使g(x1)?0,且对(1)中的x0?x1??.【篇二:2014年辽宁省高考数学试卷(理科)答案与解析】ss=txt>参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.3.(5分)(2014?辽宁)已知a=,b=log2,c=log,则()15.(5分)(2014?辽宁)设,,是非零向量,已知命题p:若?=0,?=0,则?=0;命题q:若∥,∥,则∥,则下列命题中真命题是()26.(5分)(2014?辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为7.(5分)(2014?辽宁)某几何体三视图如图所示,则该几何体的体积为()38.(5分)(2014?辽宁)设等差数列{an}的公差为d,若数列{}为递减数列,则()9.(5分)(2014?辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象410.(5分)(2014?辽宁)已知点a(﹣2,3)在抛物线c:y=2px的准线上,过点a的直25【篇三:2014年辽宁高考理科数学试题逐题详解 (纯word解析版)】)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年辽宁卷(理01)】已知全集u?r,a?{x|x?0},b?{x|x?1},则集合cu(ab)?()a.{x|x?0}b.{x|x?1}c.{x|0?x?1}d.{x|0?x?1}【答案】d【解析】a∪b={x|x≥1或x≤0},∴cu(a∪b)={x|0<x<1},故选:d【2014年辽宁卷(理02)】设复数z满足(z?2i)(2?i)?5,则z?() a.2?3ib.2?3ic.3?2i d.3?2i【答案】a【解析】由(z﹣2i)(2﹣i)=5,得:∴z=2+3i.故选:a【2014年辽宁卷(理03)】已知a?2a.a?b?cb.a?c?bc.c?a?b d.c?b?a【答案】c 【解析】∵0<a=<2=1,b=log2<log21=0,c=log,?13,b?log211,c?log1,则() 323=log23>log22=1,∴c>a>b.故选:c【2014年辽宁卷(理04)】已知m,n表示两条不同直线,?表示平面,下列说法正确的是()a.若m//?,n//?,则m//n b.若m??,n??,则m?n c.若m??,m?n,则n//? d.若m//?,m?n,则n??b?c?0,【2014年辽宁卷(理05)】设a,b,c是非零向量,学科网已知命题p:若a?b?0,则a?c?0;命题q:若a//b,b//c,则a//c,则下列命题中真命题是()a.p?qb.p?q c.(?p)?(?q) d.p?(?q)【答案】a【解析】若?=0,?=0,则?=?,即(﹣)?=0,则?=0不一定成立,故命题p为假命题,若∥,∥,则∥平行,故命题q为真命题,则p∨q,为真命题,p∧q,(¬p)∧(¬q),p∨(¬q)都为假命题,故选:a【2014年辽宁卷(理06)】6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为()a.144 b.120 c.72 d.24【答案】d【解析】3人全排,有【2014年辽宁卷(理07)】某几何体三视图如图所示,则该几何体的体积为() a.8?2? b.8??c.8?=6种方法,形成4个空,在前3个或后3个或中间两个空中插入 ??d.8?24【答案】b【解析】由三视图知:几何体是正方体切去两个圆柱,正方体的棱长为2,切去的圆柱的【2014年辽宁卷(理08)】设等差数列{an}的公差为d,若数列{21n}为递减数列,则()a.d?0 b.d?0c.a1d?0 d.a1d?0【答案】c【解析】∵等差数列{an}的公差为d,∴an+1﹣an=d,又数列{2∴【2014年辽宁卷(理09)】将函数y?3sin(2x?aa32}为递减数列,=<1,∴a1d<0.故选:c?3)的图象向右平移?个单位长度,所得2图象对应的函数()a.在区间[?7?,1212?7?]上单调递增 b.在区间[,1212c.在区间[?d.在区间[?【答案】b【解析】把函数y=3sin(2x+]上单调递减????,]上单调递减63,]上单调递增 63)的图象向右平移个单位长度,)+].得到的图象所对应的函数解析式为:y=3sin[2(x﹣即y=3sin(2x ﹣由取k=0,得.,).,得.∴所得图象对应的函数在区间[]上单调递增.故选:b【2014年辽宁卷(理10)】已知点a(?2,3)在抛物线c:y?2px的准线上,学科网过点a的直线与c在第一象限相切于点b,记c的焦点为f,则直线bf的斜率为()a.【答案】d【解析】∵点a(﹣2,3)在抛物线c:y=2px的准线上,即准线方程为:x=﹣2,∴p>0,=﹣2即p=4,∴抛物线c:y=8x,在第一象限的方程为y=2,2221234b. c. d. 2343,设切点b(m,n),则n=2又导数y′=2mm,则在切点处的斜率为,解得=2(,∴舍去),即∴切点b(8,8),又f(2,0),∴直线bf的斜率为,故选d【2014年辽宁卷(理11)】当x?[?2,1]时,不等式ax?x?4x?3?0恒成立,则实数a的取值范围是()a.[?5,?3] b.[?6,?] c.[?6,?2] d.[?4,?3]zxxk【答案】c【解析】当x=0时,不等式ax﹣x+4x+3≥0对任意a∈r恒成立;当0<x≤1时,ax﹣x+4x+3≥0可化为a≥32323298,令f(x)=,则f′(x)==﹣(*),当0<x≤1时,f′(x)>0,f(x)在(0,1]上单调递增, f(x)max=f(1)=﹣6,∴a≥﹣6;当﹣2≤x<0时,ax﹣x+4x+3≥0可化为a≤32,由(*)式可知,当﹣2≤x<﹣1时,f′(x)<0,f(x)单调递减,当﹣1<x<0时,f′(x)>0,f(x)单调递增, f(x)min=f(﹣1)=﹣2,∴a≤﹣2;综上所述,实数a的取值范围是﹣6≤a≤﹣2,即实数a的取值范围是[﹣6,﹣2].【2014年辽宁卷(理12)】已知定义在[0,1]上的函数f(x)满足:①f(0)?f(1)?0;②对所有x,y?[0,1],且x?y,有|f(x)?f(y)|?|x?y|. 2若对所有x,y?[0,1],|f(x)?f(y)|?k,则k的最小值为() a.1111 b.c. d.8242?。
2014年全国高考理科数学试题及答案-辽宁、四川、陕西、新课标

2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =U ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c r r r是非零向量,学科 网已知命题P :若0a b •=r r ,0b c •=r r ,则0a c •=r r ;命题q :若//,//a b b c r r r r,则//a c r r ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]-- 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14C .12πD .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点. (1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ;(2)当x M N ∈I 时,证明:221()[()]4x f x x f x +≤.2014年陕西高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =I ( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D【答案】 B 【解析】B N M N M 选,).1,0[),11-(),,0[=∩∴=+∞=Θ2.函数()cos(2)6f x x π=-的最小正周期是( ).2A π .B π .2C π .4D π【答案】 B 【解析】B T 选∴,π2π2||π2===ωΘ 3.定积分1(2)xx edx +⎰的值为( ).2Ae + .1B e + .C e .1De -【答案】 C 【解析】C e e e e x dx e x x x 选∴,-0-1|)()2(1001102∫=+=+=+Θ4.根据右边框图,对大于2的整数N ,输出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】 C 【解析】C q a a a a a n 选的等比数列是.2,2∴,8,4,21321=====Θ5.已知底面边长为12则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π【答案】 D 【解析】D r r r r 选解得设球的半径为.π3434V ∴,1,4)2(11)2(,32222====++=πΘ6.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C 4.5D 【答案】 C 【解析】C p 选反向解题.53C 4C 4-1.2525=== 7.下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )(A )()12f x x = (B )()3f x x = (C )()12xf x ⎛⎫= ⎪⎝⎭(D )()3xf x =【答案】 D 【解析】D y f x f y x f D C y x y x y x 选而言,对不是递增函数只有.333)()(,3)(.++=•=•=+8.原命题为“若12,z z 互为共轭复数,则12zz =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假 【答案】 B 【解析】Bz z b a z b a z bi a z bi a z 选选择完成判断逆命题的真假即可逆否名称也为真,不需,原命题为真,则设,逆命题和否命题等价原命题和逆否名称等价.,||||∴,||||,-,.2122222111=+=+==+=设样本数据1210,,,x x x L 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =L ),则12,10,y y y L 的均值和方差分别为( ) (A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A 【解析】A 选变均值也加此数,方差不样本数据加同一个数,.10.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+ 【答案】 A【解析】AA f x f f x f A f x 选符合只有,,而言,对即为极值点且),三次奇函数过点..053-53)5(53-1253x )(2-3-1)5(∴x 53-x 1251)(.0)5(,5,2-5(),0,0(23==′=′====′=Θ第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.已知,lg ,24a x a==则x =________. 【答案】 10【解析】.1010,21lg 12a ∴,lg ,224212a a========x a x a x 所以,Θ12.若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为_______.【答案】11-(22=+)y x 【解析】.11-(1),1,0(∴)1,0()0,1(22=+=)的标准方程为半径为圆心为,的对称点关于点y x x y Θ设20πθ<<,向量()()sin 2cos cos 1a b θθθ==r r ,,,,若b a ρρ//,则=θtan _______.【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即Θ14.猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】 2+=+E V F 【解析】.2+=+E V F 经观察规律,可得15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分).A (不等式选做题)设,,,a b m n R ∈,且225,5a b ma nb +=+=,则22m n +的最小值为.B (几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC于点,E F ,若2AC AE =,则EF =.C (坐标系与参数方程选做题)在极坐标系中,点(2,)6π到直线sin()16πρθ-=的距离是 【答案】 A 5 B 3 C 1【解析】A5.≤5)φθsin(∴5)φθsin(5os θ5θsin 5,os θ5,θsin 5∴,52222222222的最小值为所以,,则设n m n m n m n m c n m nb ma c b a b a ++=++=++=+=+===+ΘB.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与Θ C1|1323-3|023-1,3(∴,2-3121os θρ-23θsin ρ)6π-θsin(ρ,1,3()6π,2(=++==+==••=d y x x y c 的距离)到直线点即对应直线)对应直角坐标点极坐标点Θ三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)ABC ∆的内角C B A ,,所对的边分别为c b a ,,. (I )若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; (II )若c b a ,,成等比数列,求B cos 的最小值.【答案】 (1) 省略 (2)21【解析】 (1)C)sin(A sinC sinA .∴C),sin(A sinB sinC.sinA 2sinB c,a b 2∴,,+=++=+=+=ΘΘ即成等差,c b a(2).,21cosB 212ac ac -2ac 2ac b -2ac ≥2ac b -c a cosB ac.b ∴,,22222这时三角形为正三角形取最小值时,仅当又成等比,b c a c b a ====+==Θ17. (本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分 别交四面体的棱CA DC BD ,,于点H G F ,,.(I )证明:四边形EFGH 是矩形;(II )求直线AB 与平面EFGH 夹角θ的正弦值.【答案】 (1) 省略 (2)510【解析】 (1).FG.⊥BCD ⊥,//∴,,AD//HG AD//EF,∴ADHG ADEF EFGH ⊂HG EF,EFGH,AD//HC AH EH//BC,∴EHBC EFGH,⊂EH EFGH,//B BCD⊥AD DC,⊥BD Δ,Δ为矩形所以,四边形,即面,且且共面和,面面同理且共面面面面且为等腰由题知,EHGF EF EF HG EF HG EF GC DG FB DF C RT BCD ====ΘΘ(2)510|,cos |sin 510252||||,cos ),0,1,1(0),,,()0,1-1(),2100(),1-20()0,0,1(),211,0(),0,1,0(),020(),100(,,DA ,DB ,DC (1)=><==<∴=======∴n AB n AB z y x EHGF G E F B A z y x θ所以,,解得一个则法向量,设面,,,,,,,,,,轴建系,则为知,分别以由18.(本小题满分12分)在直角坐标系xOy 中,已知点)2,3(),3,2(),1,1(C B A ,点),(y x P 在ABC ∆三边围成的 区域(含边界)上(1)若=++,;(2)设),(R n m n m ∈+=,用y x ,表示n m -,并求n m -的最大值.【答案】 (1) 22 (2)m-n=y-x, 1【解析】 (1)22|OP |22|OP |,2,2,0-2-3-1,0-3-2-1(0,0))-2,-3()-3,-2()-1,-1(PC PB PA ∴),,(),2,3(),3,2(),11(22==+=∴===++=++∴=++=++所以,解得,y x y x y y y x x x y x y x y x y x P C B A Θ(2)1---.1-)3,2(.,,-.--.2,2),1,2()2,1(y)x ,(∴,最大值为,所以,取最大值时,经计算在三个顶点求线性规划问题,可以代含边界内的最大值,属在三角形即求解得即n m x y n m x y B C B A ABC x y x y n m n m y n m x n m n m ==+=+=+=+=Θ19.(本小题满分12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上 的产量具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于...2000元 的概率.【答案】 (1)(800,0.2)(2000,0.5)(4000,0.3) (2) 0.896【解析】 (1)3.06.0*5.0)4000(,5.04.0*5.06.0*5.0)2000(,2.04.0*5.0)800(.4000,2000,80040001000-10*50020001000-6*50020001000-10*3008001000-6*300.-*====+==========X p X p X p X X 三个,即,,,可以取考虑产量和价格,利润成本价格产量利润X 800 2000 4000 P0.20.50.3896.020*******.08.02.0*8.0*3)-1()-1(200023.8.03.05.02000)1(8001000-6*300.-*32333223的概率是季的利润不少于季中至少有所以,的概率季的利润不少于季中至少有则的概率知,一季利润不少于由,可以取考虑产量和价格,利润成本价格产量利润=+=+==+===p p C p p C P p X X20.(本小题满分13分)如图,曲线C 由上半椭圆22122:1(0,0)y x C a b y a b+=>>≥和部分抛物线22:1(0)C y x y =-+≤连接而成,12,C C 的公共点为,A B ,其中1C 的离心率为32. (1)求,a b 的值;(2)过点B 的直线l 与12,C C 分别交于,P Q (均异于点,A B ),若AP AQ ⊥,求直线l的方程.【答案】 (1) a=2,b=1 (2) )1-(38-x y =【解析】 (1)14,3,1,2∴,23.1∴)0,1(),0,1-(1-2222222=+===+===+=x y c b a c b a a c b x y 椭圆方程为联立解得又,交于点抛物线ΘΘ(2))1-(38-.38-,0)2(4-)2,1)(4-,(,0)2k -k - -k,()4k8- 1,44-(,0∴⊥),0,1-()2k --k ,1--k (,2k --k )1-(,1--k 0,1-k -:1-)4k8-,44-(,4k 8-)1-(,44-04-2-)4(,44)12x -(14),,(),,(),1-()0,1(222222222222222112212222222222211x y k k k k k k k k AQ AP AQ AP A Q x k y x kx x x y k k k P k x k y k k x k x k x k x x k x y y x Q y x P x k y B ===+=+=•+++=•====++=+++==+==++=++=+=所以,所求直线方程为解得即即即由韦达定理得联立得与即由韦达定理得,即联立得与的直线方程为设过Θ21.(本小题满分14分) 设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式;(2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++L与()n f n -的大小,并加以证明.【答案】 (1) nx x x g n +=1)((2),1](-∞ (3) 前式 > 后式【解析】 (1)+++++=++=+=++=+++=+==+=+++=+===+=+=′′=+=N n nx xx g xk xx g k n x k x kxx kx xx g kx x x g k n x xxx x xx g x x x g x g g x g x g x g xx x g x x f x x f x x g x x f n k k k n n ∈,1)(,.)1(1)(1∴)1(1111)(.1)(1≥21111)(1)(∴))(()()()(1)(,11)(∴,0≥),()(),1ln()(112111综上也成立时,当则时,假设当,,,ΘΘ (2),1](-a 1.a 0.≥-1),0[∈∃0≥(x)h ,0),,0[∈∃∴0≥0≥h(x),0h(0))1(-1)1()-1(-11(x)h ,0.≥,1-)1ln(h(x)0.≥,≥1-)1ln(∴1)(),(≥)(22∞∈≤+′>=++=+++=′++=+++=所以,解得,即使上恒成立在则令a x t x t t x x x ax x x x a x x x ax x x x axx x x x g x ag x f ΘΘ(3)2014年普通高等学校招生全国统一考试(四川卷)理科数学一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
辽宁高考数学理科试卷(带详解)教学内容
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|U R A x x ==≤0},{|B x x =≥1},则集合()U A B =U ð( ) A .{|x x ≥0} B .{|x x ≤1} C .{|0x ≤x ≤1} D .{|01}x x <<【测量目标】集合的基本运算. 【考查方式】集合的并集、补集. 【难易程度】容易 【参考答案】D【试题分析】由题意可知,A B U ={|01}x x x ≤或≥,所以()U A B =U ð{|01}x x <<.故选D. 2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 【测量目标】复数的基本性质和运算.【考查方式】复数的基本运算. 【难易程度】容易 【参考答案】A【试题分析】由(2i)(2i)5z --=,得52i 2iz -=-,故z =23i +.故选A. 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 【测量目标】对数的基本运算.【考查方式】对数的大小比较. 【难易程度】容易 【参考答案】C【试题分析】因为13021a -<=<,21log 03b =<,121log 3c =>121log 2c ==1,所以c a b >>.故选C.4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥【测量目标】空间直线与直线,直线与平面的位置关系. 【考查方式】线线平行、垂直,线面平行、垂直的判定. 【难易程度】容易 【参考答案】B【试题分析】由题可知,若//,//,m n αα则m 与n 平行、相交或异面,所以A 错误;若m α⊥,n α⊂,则m n ⊥,故B 正确;若m α⊥,m n ⊥,则//n α或n α⊂,故C 错误.若//m α,m n ⊥,则//n α或n α⊥或n 与α相交,故D 错误.故选B.5.设,,a b c 是非零向量,已知命题P :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝⌝∧D .()p q ⌝∨【测量目标】向量的平行与垂直,真假命题的判定. 【考查方式】利用向量之间的位置关系对命题的真假进行判定. 【难易程度】容易 【参考答案】A【试题分析】由向量数量积的几何意义可知,命题p 为假命题;命题q 中,当0≠b 时,,a c 一定共线,故命题q 是真命题.故p q ∨为真命题.故选A.6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .24 【测量目标】排列组合.【考查方式】利用插空法进行排列组合. 【难易程度】容易 【参考答案】D【试题分析】这是一个元素不相邻问题,采用插空法,3334A C 24=.故选D.7.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .π82-D .π84-第7题图 【测量目标】几何体的体积、三视图.【考查方式】利用三视图对体积的考查. 【难易程度】容易 【参考答案】B【试题分析】根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分(占柱的14)后余下的部分,故该几何体体积为2×2×2-2×14×π×2=8-π.故选B.8.设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d > 【测量目标】等差数列的基本性质.【考查方式】利用等差数列的性质对首项和公差的正负进行判断. 【难易程度】容易 【参考答案】C 【试题分析】令12n n b a a =,因为数列{}12n a a 为递减数列,所以111111122()212n n n n n nb a a a a a a d b a a +++==-=<,所得10a d <.故选C.9.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间π7π[,]1212上单调递减 B .在区间π7π[,]1212上单调递增 C .在区间ππ[,]63-上单调递减 D .在区间ππ[,]63-上单调递增 【测量目标】三角函数的平移及性质.【考查方式】求正弦型三角函数平移后的单调区间. 【难易程度】容易 【参考答案】B【试题分析】由题可知,将函数π3sin(2)3y x =+的图像向右平移π2个单位长度得到函数2π3sin(2)3y x =-的图像,令π2π2k -+≤2π23x -≤π2π2k +,k ∈Z ,即ππ12k +≤x ≤7ππ12k +,k ∈Z 时,函数单调递增,即函数2π3sin(2)3y x =-的单调递增区间为π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z ,可知当0k =时,函数在区间π7π,1212⎡⎤⎢⎥⎣⎦上单调递增.故选B.10.已知点(2,3)A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .43【测量目标】抛物线的几何性质,直线与抛物线的位置关系.【考查方式】求过抛物线准线并与抛物线相切的直线的斜率. 【难易程度】中等 【参考答案】D【试题分析】因为抛物线C :22y px =的准线为2px =-,且点(2,3)A -在准线上,所以p =4.设直线AB 的方程为2(3)x m y +=-,与抛物线方程28y x =联立得到2824160y my m -++=,由题易知V =0,解得m =12- (舍)或者m =2,这时B 点的坐标为(8,8),而焦点F 的坐标为(2,0),故直线BF 的斜率804823BF k -==-.故选D.11.当[2,1]x ∈-时,不等式3243ax x x -++≥0恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3]--【测量目标】函数的导函数、单调区间、最值. 【考查方式】通过给定函数值的范围,利用导函数求函数的单调区间并找出未知量的范围. 【难易程度】中等 【参考答案】C【试题分析】当2-≤0x <时,不等式转化为a ≤2343x x x --,令2343()(2x x f x x--=-≤0)x <, 则24489(9)(1)'()x x x x f x x x -++--+==,故()f x 在[-2,-1]上单调递减,在(-1,0)上单调递增,此时有a ≤14321+-=--.当0x =时,()g x 恒成立.当0x <≤1时,a ≥2343x x x --,令2343()(0x x g x x x --=<≤1),则24489(9)(1)'()x x x x g x x x-++--+==, 故()g x 在(0,1]上单调递增,此时有a ≥14361--=-.综上,6-≤a ≤2-.故选C.12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12πD .18【测量目标】函数概念的新定义,不等式的性质.【考查方式】给出新定义的函数,利用给定条件求解未知量的范围. 【难易程度】中等 【参考答案】B【试题分析】不妨设0≤y ≤x ≤1.当x y -≤12时,11|()()|||()22f x f y x y x y -<-=-≤14. 12x y ->时,|()()|()(1)(()(0))f x f y f x f f y f -=---≤1()(1)()(0)2f x f f y f -+-< 111110()2224x y x y -+-=--+<.故min 14k =.故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = .第13题图 【测量目标】程序框图的运算.【考查方式】利用程序框图进行基本运算. 【难易程度】容易 【参考答案】299【试题分析】当9x =时,5y =,则4y x -=;当5x =时,113y =,则43y x -=;当113x =时,299y =,则419y x -=<.故输出299y =.14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .第14题图 【测量目标】定积分的求解,随机事件的概率.【考查方式】利用定积分求出面积比,进而求出随机事件的概率. 【难易程度】容易 【参考答案】23【试题分析】正方形ABCD 的面积S =2×2=4,阴影部分的面积1231111182(1)d 2()33S x x x x --=-=-=⎰,故质点落在阴影区域的概率82343P ==.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【测量目标】椭圆的定义及几何性质.【考查方式】椭圆的焦点以及椭圆的几何性质求解相关弧长. 【难易程度】中等 【参考答案】12【试题分析】取MN 的中点为G ,点G 在椭圆C 上.设点M 关于C 的焦点1F 的对称点为A ,点M 关于C 的焦点2F 的对称点为B ,则有112GF AN =,212GF BN =,所以122()412AN BN GF GF a +=+==.16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .【测量目标】基本不等式的基本应用.【考查方式】利用基本不等式求最值. 【难易程度】较难 【参考答案】-2【试题分析】由题知2222(2)3(43)c a b a b =-+++.221(43)(1)3a b ++≥222(2)43a b a b +⇔+≥23(2)4a b +,即2c ≥25(2)4a b +,当且仅当2243113a b =,即236a b λ==(同号)时, 2a b +240c λ=.223451111(4)288a b c λλλ-+=-=--≥2-, 当且仅当315,,422a b c ===时,345a b c-+取最小值2-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在△ABC 中,内角,,A B C 的对边,,a b c 且a c >,已知2BA BC ⋅=u u u r u u u r ,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.【测量目标】两角差的余弦公式、向量的数量积.【考查方式】利用正弦定理和余弦定理解三角形中的边和角. 【难易程度】中等【试题分析】(1)由2BA BC ⋅=u u u r u u u r 得,cos 2c a B ⋅=,又1cos 3B =,所以6ac =.由余弦定理,得2222cos a c b ac B +=+.又3b =,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得2,33,2a c a c ====或. 因为a c >,3,2a c ∴==. (2)在△ABC中,sin 3B ===由正弦定理,得2sin sin 339c CB b ==⋅=,又因为a b c =>,所以C为锐角,因此7cos 9C ===. 于是cos()cos cos sin sin B C B C B C -=+=1723393927⋅+⋅=. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:第18题图将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .【测量目标】频率分布直方图,随机事件的概率随机变量的期望和方差. 【考查方式】以频率分布直方图为载体计算事件的概率、分布列、期望、方差. 【难易程度】中等 【试题分析】(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= , 2()0.003500.15P A =⨯=,()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为X 0 1 2 3 P0.0640.2880.4320.21619. (本小题满分12分)如图,△ABC 和BCD △所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E F 、分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.第19题图1【测量目标】线线垂直的判定,二面角的正弦值.【考查方式】通过找线、面之间的位置关系,证明线线垂直,求二面角的三角函数值. 【难易程度】中等 【试题分析】(1)证明: (方法一)过E 作EO BC ⊥,垂足为O ,连OF ,第19题图2由△ABC ≌△DBC 可证出△FOC ≌△EOC ,所以π2EOC FOC ∠=∠=,即FO BC ⊥, 又EO BC ⊥,因此BC ⊥平面EFO , 又EF ⊂平面EFO ,所以EF BC ⊥.(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.第19题图3易得(0,0,0),(0,3)B A -,3,1,0)D -,(0,2,0)C ,因而1331(0,,0)22E F ,所以33((0,2,0)EF BC ==u u u r u u ur ,因此0EF BC ⋅=u u u r u u u r ,从而EF BC ⊥u u u r u u u r ,所以EF BC ⊥.(2)(方法一)在图2中,过O 作OG BF ⊥,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG BF ⊥,由三垂线定理知EG 垂直BF . 因此EGO ∠为二面角E BF C --的平面角; 在△EOC 中,113cos30222EO EC BC ==⋅=o ,由△BGO ∽△BFC知,34BO OG FC BC =⋅=,因此tan 2EOEGO OG∠==,从而sin EGO ∠=255,即二面角E BF C --的正弦值为255. (方法二)在图3中,平面BFC 的一个法向量为1(0,0,1)=n ,设平面BEF 的法向量2(,,)x y z =n ,又3113(,,0),(0,,)22BF BE ==u u u r u u u r ,由220BF BE ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n 得其中一个2(1,3,1)=-n ,设二面角E BF C --的大小为θ,且由题意知θ为锐角,则121212,cos |cos ,|||||||5θ=<>==⋅n n n n n n ,因sin θ=5=255,即二面角E BF C --的正弦值为255.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.第20题图1【测量目标】直线与圆的位置关系,双曲线的标准方程及几何性质,椭圆的几何性质,直线与椭圆的位置关系.【考查方式】利用圆的切线的关系,双曲线的离心率求双曲线方程,通过椭圆与双曲线的的几何性质求解椭圆方程求出直线方程. 【难易程度】较难【试题分析】(1)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当00x y =时00x y 有最大值,即S 有最小值,因此点P得坐标为 ,由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (2)由(1)知2C的焦点坐标为(,由此2C 的方程为22221113x y b b +=+,其中10b >.由P 在2C 上,得22112213b b +=+,解得213b =,因此2C 方程为22163x y +=. 显然,l 不是直线0y =.设l的方程为x my =+1122(,),(,)A x y B x y由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)30m y ++-=,又12,y y 是方程的根,因此122122232y y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由1122x my x my ==1212221212122()66()32x x m y y m x x m y y y y m ⎧+=++=⎪⎪⎨-⎪=+++=⎪+⎩③④因1122),)AP x y BP x y ==u u u r u u u r由题意知0AP BP ⋅=u u u r u u u r ,所以12121212))40x x x x y y y y ++++=⑤ ,将①,②,③,④代入⑤式整理得22110m -+=,解得12m =-或12m =-+,因此直线l 的方程为1)0x y --=,或1)0x y +=.21. (本小题满分12分)已知函数8()(cos )(π2)(sin 1)3f x x x x x =-+-+,2()3(π)cos 4(1sin )ln(3)πx g x x x x =--+-. 证明:(1)存在唯一0π(0,)2x ∈,使0()0f x =;(2)存在唯一1π(,π)2x ∈,使1()0g x =,且对(1)中的0x 有01πx x +<. 【测量目标】函数的零点.【考查方式】利用函数导函数的性质求解三角函数中的零点问题. 【难易程度】较难【试题分析】(1)当π(0,)2x ∈时,2'()(1sin )(π2)2cos 03f x x x x x =-++--<,函数()f x 在π(0,)2上为减函数,又28π16(0)π0,()π0323f f =->=--<,所以存在唯一0π(0,)2x ∈,使0()0f x =. (2)考虑函数3(π)cos 2π()4ln(3),[,π]1sin π2x x h x x x x -=--∈+,令πt x =-,则π[,π]2x ∈时,π[0,]2t ∈,记3cos 2()(π)4ln(1)1sin πt t u t h t t t =-=-++,则3()'()(π2)(1sin )f t u t t t =++ , 由(1)得,当0(0,)t x ∈时,'()0u t >,当0π(,)2t x ∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点.在0π(,)2x 上()u t 是减函数,由0π()0,()4ln 202u x u >=-<,存在唯一的10π(,)2t x ∈ ,使1()0u t =.所以存在唯一的10π(,)2t x ∈使1()0u t =.因此存在唯一的11ππ(,π)2x t =-∈,使111()()()0h x h t u t π=-==.因为当π(,π)2x ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1π(,π)2x ∈,使1()0g x =.因1110π,x t t x =->,所以01πx x +<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于,D G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径;(2)若AC BD =,求证:AB ED =.第22题图1【测量目标】几何证明选讲.【考查方式】利用圆的性质证明相关结论. 【难易程度】中等 【试题分析】(1)因为PD PG =,所以PDG PGD ∠=∠.由于PD 为切线,故PDA DBA ∠=∠,又由于PGD EGA ∠=∠,故DBA EGA ∠=∠,所以DBA BAD EGA BAD ∠+∠=∠+∠,从而BDA PFA ∠=∠.由于AF 垂直EP ,所以90PFA ∠=o,于是90BDA ∠=o,故AB 是直径. (2)连接BC ,DC .第22题图2由于AB 是直径,故∠BDA =∠ACB =90°,在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .由于,AB EP ⊥所以,DC EP DCE ⊥∠为直角,于是ED 是直径,由(1)得ED =AB .23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 【测量目标】坐标系与参数方程.【考查方式】参数方程与极坐标方程转化为普通方程进行求解. 【难易程度】中等【试题分析】(1)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t为参数).(2)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化极坐标方程,并整理得 2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()f x ≤1的解集为M ,()g x ≤4的解集为N .(1)求M ;(2)当x M N ∈I 时,证明:22()[()]x f x x f x +≤14. 【测量目标】不等式选讲,集合的简单运算.【考查方式】函数与集合结合证明不等式. 【难易程度】中等 【试题分析】(1)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当x ≥1时,由()33f x x =-≤1得x ≤43,故1≤x ≤43; 当1x <时,由()1f x x =-≤1得x ≥0,故0≤1x <; 所以()f x ≤1的解集为{|0M x =≤x ≤4}3.(2)由2()1681g x x x =-+≤4得2116()4x -≤4,解得14-≤x ≤34,因此1{|4N x =-≤x ≤3}4,故{|0M N x =I ≤x ≤3}4.当x M N ∈I 时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+211()(1)()42x f x x x x =⋅=-=--≤14.。
全国高考辽宁省数学理试卷及答案精校版
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i - 3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,学科 网已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝**把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) A .144 B .120 C .72 D .247.某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8.设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d > 9.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增 10.已知点(2,3)A -在抛物线C :22y px =的准线上,学 科网过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A .12 B .23 C .34 D .4311.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9[6,]8-- C .[6,2]-- D .[4,3] 12.已知定义在[0,1]上的函数()f x 满足: ①(0)(1)0f f ==;②对所有,[0,1]x y ∈,且x y ≠,有1|()()|||2f x f y x y -<-. 若对所有,[0,1]x y ∈,|()()|f x f y k -<,则k 的最小值为( ) A .12 B .14 C .12π D .18第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.执行右侧的程序框图,若输入9x =,则输出y = . 14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x=上,如图所示,若将一个质点随机投入正方形ABCD 中, 则质点落在阴影区域的概率是 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 16.对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC •=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X .19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 分别为AC 、DC 的中点.(1)求证:EF BC ⊥;(2)求二面角E BF C --的正弦值.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 且离心率为3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.21. (本小题满分12分)已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x ππ=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的x 0有01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22. (本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程. 24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ; (2)当x MN ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷)理科数学答案1. D2. A3. C4. B5. A6. D7. B8. C9. B 10. D 11. C 12. B 13.299C 14. 2315. 12 16. 2- 17.(Ⅰ)由2BA BC⋅=得,cos 2c a B ⋅=,又1cos 3B =,所以ac =6.由余弦定理,得2222cos a c b ac B +=+.又b =3,所以2292213ac +=+⨯=.解22613ac a c =⎧⎪⎨+=⎪⎩,得a =2,c =3或a =3,c =2. 因为a >c ,∴ a =3,c =2. (Ⅱ)在ABC ∆中,22122sin 1cos 1().33B B =-=-=由正弦定理,得22242sin sin 339c CB b ==⋅=,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=. 于是cos()cos cos sin sin B C B C B C -=+=17224223393927⋅+⋅=. 18.(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯= . 2()0.003500.15P A =⨯=. ()0.60.60.1520.108P B =⨯⨯⨯=.(Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,分布列为X 0 1 2 3 P********因为X ~B (3,0.6),所以期望为E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72 19.(Ⅰ)证明:(方法一)过E 作EO ⊥BC ,垂足为O ,连OF ,由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =2π,即FO ⊥BC , 又EO ⊥BC ,因此BC ⊥面EFO , 又EF ⊂面EFO ,所以EF ⊥BC .(方法二)由题意,以B 为坐标原点,在平面DBC 内过B 左垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示的空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而1331(0,,),(,,0)2222E F ,所以33(,0,),(0,2,0)22EF BC =-=,因此0EF BC ⋅=,从而EF BC ⊥,所以EF BC ⊥. (Ⅱ)(方法一)在图1中,过O 作OG ⊥BF ,垂足为G ,连EG ,由平面ABC ⊥平面BDC ,从而EO ⊥平面BDC ,又OG ⊥BF ,由三垂线定理知EG 垂直BF . 因此∠EGO 为二面角E -BF -C 的平面角; 在△EOC 中,EO =12EC =12BC ·cos 30°=32,由△BGO ∽△BFC 知,34BO OG FC BC =⋅=,因此tan ∠EGO =2EOOG=,从而sin ∠EGO =255,即二面角E -BF -C 的正弦值为255. (方法二)在图2中,平面BFC 的一个法向量为1(0,0,1)n =,设平面BEF 的法向量2(,,)n x y z =,又3113(,,0),(0,,)2222BF BE ==,由220n BF n BE ⎧⋅=⎪⎨⋅=⎪⎩ 得其中一个2(1,3,1)n =-,设二面角E -BF -C 的大小为θ,且由题意知θ为锐角,则1212121cos |cos ,|||||||5n n n n n n θ⋅=<>==⋅,因sin θ=25=255,即二面角E -BF -C 的正弦值为255. 20.(Ⅰ)设切点坐标为0000(,)(0,0)x y x y >>,则切线斜率为0x y -,切线方程为0000()x y y x x y -=--,即004x x y y +=,此时,两个坐标轴的正半轴与切线围成的三角形面积为000014482S x y x y =⋅⋅=.由22000042x y x y +=≥知当且仅当002x y ==时00x y 有最大值,即S 有最小值,因此点P 得坐标为(2,2) , 由题意知222222213a ba b a ⎧-=⎪⎨⎪+=⎩解得221,2a b ==,故1C 方程为2212y x -=. (Ⅱ)由(Ⅰ)知2C 的焦点坐标为(3,0),(3,0)-,由此2C 的方程为22221113x y b b +=+,其中10b >.由(2,2)P 在2C 上,得22112213b b +=+,解得b 12=3,因此C 2方程为22163x y += 显然,l 不是直线y =0.设l 的方程为x =my +3,点1122(,),(,)A x y B x y由223163x my x y ⎧=+⎪⎨+=⎪⎩ 得22(2)2330m y my ++-=,又12,y y 是方程的根,因此12212223232my y m y y m ⎧+=-⎪⎪+⎨-⎪=⎪+⎩①②,由11223,3x my x my =+=+得1212222121212243()232663()32x x m y y m m x x m y y m y y m ⎧+=++=⎪⎪+⎨-⎪=+++=⎪+⎩③④因1122(2,2),(2,2)AP x y BP x y =--=--由题意知0AP BP ⋅=,所以121212122()2()40x x x x y y y y -++-++=⑤ ,将①,②,③,④代入⑤式整理得222646110m m -+-=,解得3612m =-或3612m =-+,因此直线l 的方程为36(1)302x y ---=,或36(1)302x y +--=. 21.(Ⅰ)当(0,)2x π∈时,2'()(1sin )(2)2cos 03f x x x x x π=-++--<,函数()f x 在(0,)2π上为减函数,又2816(0)0,()0323f f πππ=->=--<,所以存在唯一0(0,)2x π∈,使0()0f x =. (Ⅱ)考虑函数3()cos 2()4ln(3),[,]1sin 2x x h x x x x ππππ-=--∈+,令t x π=-,则[,]2x ππ∈时,[0,]2t π∈, 记3cos 2()()4ln(1)1sin t t u t h t t t ππ=-=-++,则3()'()(2)(1sin )f t u t t t π=++ , 由(Ⅰ)得,当0(0,)t x ∈时,'()0u t >,当0(,)2t x π∈时,'()0u t <.在0(0,)x 上()u t 是增函数,又(0)0u =,从而当0(0,]t x ∈时,()0u t >,所以()u t 在0(0,]x 上无零点. 在0(,)2x π上()u t 是减函数,由0()0,()4ln 202u x u π>=-<,存在唯一的10(,)2t x π∈ ,使1()0u t =.所以存在唯一的10(,)2t x π∈使1()0u t =.因此存在唯一的11(,)2x t πππ=-∈,使111()()()0h x h t u t π=-==.因为当(,)2x ππ∈时,1sin 0x +>,故()(1sin )()g x x h x =+与()h x 有相同的零点,所以存在唯一的1(,)2x ππ∈,使1()0g x =.因1110,x t t x π=->,所以01x x π+<请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(Ⅰ)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又由于∠PGD =∠EGA ,故∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PF A .由于AF 垂直EP ,所以∠PF A =90°,于是∠BDA =90°,故AB 是直径. (Ⅱ)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°, 在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD , 从而Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA . 又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . 由于,,AB EP DC EP DCE ⊥⊥∠所以为直角 于是ED 是直径,由(Ⅰ)得ED =AB .23.(Ⅰ)设11(,)x y 为圆上的点,在已知变换下位C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t ⎧⎨⎩== (t 为参数). (Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12P P 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-, 化极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24.(Ⅰ)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤.(Ⅱ)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4MN x x =≤≤.当x MN ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.。
2014辽宁省高考压轴卷 数学理试题含答案
2014辽宁省高考压轴卷数学试卷(理)第I 卷(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.全集U =R ,集合{10}A x x =+<,{30}B x x =-<,那么集合()U C A B =( )A {13}x x -≤<B {13}x x -<<C {1}x x <-D {3}x x >2.已知复数20141i z i=+,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.“4a <-”是“函数()3f x ax =+在区间[-1,1]上存在零点”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.某大学生在22门考试中,所得分数如下茎叶图所示,则此学生考试分数的极差与中位数之和为A .117B .118C .118.5D .119.55.在ABC ∆中,90C =,且3CA CB ==,点M 满足2,BM MA CM CB =⋅则等于( )A .2B .3C .4D .66. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为 ( ) A .2π-=x B .4π-=x C .8π=x D .4π=x7. 已知,a b 为两条不同的直线,,αβ为两个不同的平面,且a α⊥,b β⊥,则下列命题中的假命题是A .若a ∥b ,则α∥βB .若αβ⊥,则a b ⊥C .若,a b 相交,则,αβ相交D .若,αβ相交,则,a b 相交8.阅读右边的程序框图,输出的结果s 的值为A .0 BCD.-9.实数y x ,满足条件2,4,20,x x y x y c ≥⎧⎪+≤⎨⎪-++≥⎩目标函数3z x y =+的最小值为5,则该目标函数y x z +=3的最大值为( )A. 10B. 12C. 14D. 1510. 如图,直角坐标系xOy 所在的平面为α,在锐二面角βα--y 的 β面上的曲线1C 在α上的正射影为曲线2C .2C 在xOy 系下的方程 为:()10122≤≤=+x y x ,平面α上的直线1:-=x y l 与平面β所成角的正弦值为46,曲线1C 的离心率为e ,则 A .1=e B .1>e C .23=e D .21=e11.设函数11,(,2)()1(2),[2,)2x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()1F x xf x =-的零点的个数为A .4B .5C .6D .712.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-.若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .74,63ππ⎛⎫⎪⎝⎭B .43,32ππ⎛⎫⎪⎝⎭C .74,63ππ⎡⎤⎢⎥⎣⎦D .43,32ππ⎡⎤⎢⎥⎣⎦第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答二、填空题(本大题共4小题,每小题5分,共20分。
14年高考真题——理科数学(辽宁卷)
2014年普通高等学校招生全国统一考试(辽宁)卷数学(理科)一.选择题(本大题共12小题,每小题5分,共60分。
在每小题给也的四个选项中,只有一项是符合题目要求的)1.已知全集U R =,{}|0A x x =≤,{}|1B x x =≥,则集合()U AB =ð( )(A ){}|0x x ≥ (B ){}|1x x ≤ (C ){}|01x x ≤≤ (D ){}|01x x <<2.设复数z 满足()()225z i i --=,则z =( )(A )23i + (B )23i - (C )32i + (D )32i -3.已知132a -=,21211log ,log 33b c ==,则( ) (A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>4.已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( ) (A )若//m α,//n α,则//m n (B )若m α⊥,n α⊂,则m n ⊥ (C )若m α⊥,m n ⊥,则//n α (D )若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题p :若0a b ⋅=,0b c ⋅=,则0a c ⋅=;命题q :若//a b ,//b c ,则//a c ,则下列命题中真命题是 ( )(A )p q ∨ (B )p q ∧ (C )()()p q ⌝∧⌝ (D )()p q ∨⌝ 6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( ) (A )144 (B )120 (C )72 (D )247.某几何体三视图如图所示,则该几何体的体积为( ) (A )82π- (B )8π- (C )82π-(D )84π-8.设等差数列{}n a 的公差为d ,若数列{}12na a 为递减数列,则( ) (A )0d < (B )0d > (C )10a d < (D )10a d >9.将函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应函数( ) (A )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 (C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增10.已知点()2,3A -在抛物线C :22y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )(A )12 (B )23 (C )34 (D )4311.当[]2,1x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )(A )[]5,3-- (B )[]6,9-- (C )[]6,2-- (D )[]4,3--12.定义在[]0,1上的函数()f x 满足:①()()010f f ==;②对所有[],0,1x y ∈,且x y ≠,有()()1||||2f x f y x y -<-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试(辽宁卷)理科数学
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项
是符合题目要求的.
1.已知全集,{|0},{|1}URAxxBxx,则集合()UCAB( )
A.{|0}xx B.{|1}xx C.{|01}xx D.{|01}xx
2.设复数z满足(2)(2)5zii,则z( )
A.23i B.23i C.32i D.32i
3.已知132a,21211log,log33bc,则( )
A.abc B.acb C.cab D.cba
4.已知m,n表示两条不同直线,表示平面,下列说法正确的是( )
A.若//,//,mn则//mn B.若m,n,则mn
C.若m,mn,则//n D.若//m,mn,则n
5.设,,abc是非零向量,学科 网已知命题P:若0ab,0bc,则0ac;命题q:若
//,//abbc
,则//ac,则下列命题中真命题是( )
A.pq B.pq C.()()pq D.()pq
6.6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )
A.144 B.120 C.72 D.24
7.某几何体三视图如图所示,则该几何体的体积为( )
A.82 B.8 C.82 D.84
8.设等差数列{}na的公差为d,若数列1{2}naa为递减数列,则( )
A.0d B.0d C.10ad D.10ad
9.将函数3sin(2)3yx的图象向右平移2个单位长度,所得图象对应的函数( )
A.在区间7[,]1212上单调递减 B.在区间7[,]1212上单调递增
C.在区间[,]63上单调递减 D.在区间[,]63上单调递增
10.已知点(2,3)A在抛物线C:22ypx的准线上,学 科网过点A的直线与C在第一象限相切
于点B,记C的焦点为F,则直线BF的斜率为( )
A.12 B.23 C.34 D.43
11.当[2,1]x时,不等式32430axxx恒成立,则实数a的取值范围是( )
A.[5,3] B.9[6,]8 C.[6,2] D.[4,3]
12.已知定义在[0,1]上的函数()fx满足:
①(0)(1)0ff;
②对所有,[0,1]xy,且xy,有1|()()|||2fxfyxy.
若对所有,[0,1]xy,|()()|fxfyk,则k的最小值为( )
A.12 B.14 C.12 D.18
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.执行右侧的程序框图,若输入9x,则输出y .
(7题) (13题) (14题)
14.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)ABCD分别在抛物线2yx和2yx上,如图所
示,若将一个质点随机投入正方形ABCD中,学科网则质点落在阴影区域的概率是 .
15.已知椭圆C:22194xy,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,
B,线段MN的中点在C上,则||||ANBN .
16.对于0c,当非零实数a,b满足224240aabbc,且使|2|ab最大时,345abc的最
小值为 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.(本小题满分12分)
在ABC中,内角A,B,C的对边a,b,c,且ac,已知2BABC,1cos3B,3b,求:
(1)a和c的值;
(2)cos()BC的值.
18. (本小题满分12分)
一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50
个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望
()EX
及方差()DX.
19. (本小题满分12分)
如图,ABC和BCD所在平面互相垂直,且2ABBCBD,0120ABCDBC,E、F
分别为AC、DC的中点.
(1)求证:EFBC;
(2)求二面角EBFC的正弦值.
20. (本小题满分12分)
圆224xy的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点
为P(如图),双曲线22122:1xyCab过点P且离心率为3.
(1)求1C的方程;
(2)椭圆2C过点P且与1C有相同的焦点,直线l过2C的右焦点且与2C交于A,B两点,若以
线段AB为直径的圆心过点P,求l的方程.
21. (本小题满分12分)
已知函数8()(cos)(2)(sin1)3fxxxxx,2()3()cos4(1sin)ln(3)xgxxxxx.
证明:(1)存在唯一0(0,)2x,使0()0fx;
(2)存在唯一1(,)2x,使1()0gx,且对(1)中的01xx.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B
铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
22. (本小题满分10分)选修4-1:几何证明选讲学科网
如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且PGPD,连接DG并延长交圆于
点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:AB=ED.
23. (本小题满分10分)选修4-4:坐标系与参数方程
将圆221xy上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线:220lxy与C的交点为12,PP,以坐标原点为极点,x轴正半轴为极坐标建立
极坐标系,求过线段12PP的中点且与l垂直的直线的极坐标方程.
24. (本小题满分10分)选修4-5:不等式选讲
设函数()2|1|1fxxx,2()1681gxxx,记()1fx的解集为M,()4gx的解集为N.
(1)求M;
(2)当xMN时,证明:221()[()]4xfxxfx.
答案: