2018年全国高考理科数学试题及答案-全国1

合集下载

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018年高考全国卷1理科数学(含答案)

2018年高考全国卷1理科数学(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018年全国卷1高考理科数学试题及答案

2018年全国卷1高考理科数学试题及答案

2018年全国卷1⾼考理科数学试题及答案绝密★启⽤前2018年普通⾼等学校招⽣全国统⼀考试(新课标I卷)理科数学注意事项:1.答卷前,考⽣务必将⾃⼰的姓名、考⽣号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每⼩题答案后,⽤铅笔把答题卡对应题⽬的答案标号涂⿊。

如需改动,⽤橡⽪擦⼲净后,再选涂其它答案标号。

回答⾮选择题时,将答案写在答题卡上。

写在本试卷上⽆效。

3.考试结束后,将本试卷和答题卡⼀并交回。

⼀、选择题:本题共12⼩题,每⼩题5分,共60分。

在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。

1.设,则A.B.C.D.2.已知集合,则A.B.C.D.3.某地区经过⼀年的新农村建设,农村的经济收⼊增加了⼀倍,实现翻番,为更好地了解该地区农村的经济收⼊变化情况,统计了该地区新农村建设前后农村的经济收⼊构成⽐例,得到如下饼图:建设前经济收⼊构成⽐例建设后经济收⼊构成⽐例则下⾯结论中不正确的是A.新农村建设后,种植收⼊减少B.新农村建设后,其他收⼊增加了⼀倍以上C.新农村建设后,养殖收⼊增加了⼀倍D.新农村建设后,养殖收⼊与第三产业收⼊的总和超过了经济收⼊的⼀半4.设为等差数列的前项和,若,,则A.B.C.D.5.设函数,若为奇函数,则曲线在点处的切线⽅程为A.B.C.D.6.在中,为边上的中线,为的中点,则A.B.C.D.7.某圆柱的⾼为2,底⾯周长为16,其三视图如图.圆柱表⾯上的点在正视图上的对应点为,圆柱表⾯上的点在左视图上的对应点为,则在此圆柱侧⾯上,从到的路径中,最短路径的长度为A.B.C.3D.28.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A.5B.6C.7D.89.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)10.下图来⾃古希腊数学家希波克拉底所研究的⼏何图形.此图由三个半圆构成,三个半圆的直径分别为直⾓三⾓形ABC的斜边BC,直⾓边AB,AC.△ABC的三边所围成的区域记为I,⿊⾊部分记为II,其余部分记为III.在整个图形中随机取⼀点,此点取⾃I,II,III的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.已知双曲线C:,O 为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直⾓三⾓形,则|MN|=A.B.3C.D.412.已知正⽅体的棱长为1,每条棱所在直线与平⾯α所成的⾓相等,则α截此正⽅体所得截⾯⾯积的最⼤值为A.B.C.D.⼆、填空题:本题共4⼩题,每⼩题5分,共20分。

2018高考全国1卷理科数学试卷及答案

2018高考全国1卷理科数学试卷及答案

2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。

$\{x|-1<x<2\}$B。

$\{x|-1\leq x\leq 2\}$C。

$\{x|x2\}$D。

$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。

$-12$B。

$-10$C。

10D。

125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。

$y=-2x$B。

$y=-x$XXXD。

$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。

$\frac{3}{11}AB-\frac{8}{11}AC$B。

$\frac{4}{11}AB-\frac{7}{11}AC$C。

$\frac{7}{11}AB-\frac{4}{11}AC$D。

(完整版)2018年高考全国一卷理科数学答案及解析

(完整版)2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018年高考全国一卷理科数学答案及解析

2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试题,每小题5分,共60分。
1、设z= ,则|z|=
A、0
B、
C、1
D、
【答案】C
【解析】由题可得 ,所以|z|=1
【考点定位】复数
2、已知集合A={x|x2-x-2>0},则 A=
A、{x|-1<x<2}
B、{x|-1 x 2}
D.[1,+∞)
【答案】C
【解析】
根据题意:f(x)+x+a=0有两个解。令M(x)=-a,
N(x)=f(x)+x =
分段求导:N‘(x)=f(x)+x = 说明分段是增函数。考虑极限位置,图形如下:
M(x)=-a在区间(-∞,+1]上有2个交点。
∴a的取值范围是C.[-1,+∞)
【考点定位】分段函数、函数的导数、分离参数法
【解析】
S1=2a1+1=a1∴a1=-1
n>1时,Sn=2an+1,Sn-1=2an-1+1 两式相减:Sn-Sn-1= an=2an-2an-1∴an=2an-1
an=a1×2n-1= (-1)×2n-1
则下面结论中不正确的是:
A、新农村建设后,种植收入减少。
B、新农村建设后,其他收入增加了一倍以上。
C、新农村建设后,养殖收入增加了一倍。
D、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A
【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,
【考点定位】简单统计
M、N的坐标(1,2),(4,4)
则 · =(0,2)·(3,4)=0*3+2*4=8

2018全国一卷理科数学高考真题及答案

2018全国一卷理科数学高考真题及答案

2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A 33B 23C 32D 3二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国1卷理科数学试题与答案详细解析(word版_精校版)

2018年高考全国1卷理科数学试题与答案详细解析(word版_精校版)

15 / 17系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当 a 〔ⅱ〕假设 a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时,当 x (0,2) U (2,1 ax 2 axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当a〔ⅱ〕假设a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时, 当 x (0,2) U (2,1 a x2axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕系,求得赔偿费用的期望;在解〔 ii 〕的时候,就通过比拟两个期望的大小,得到结果.解:〔 1〕 20 件产品中恰有2 件不合格品的概率为f ( p) C 202 p 2 (1 p)18.因此21 821 721 7). p( 1 1 0 )f ( p) C 2 0 [ 2p ( 1 p )1p 8 ( p1 ) 2]0 p2 C p( 1令 f ( p) 0 ,得 p 0.1 .当 p(0,0.1) 时, f ( p )0 ;当 p (0.1,1) 时, f ( p) 0 .所以 f ( p) 的最大值点为 p 00.1.〔 2〕由〔 1〕知,p0.1 .〔ⅰ〕令 Y 表示余下的 180 件产品中的不合格品件数,依题意知Y B(180,0.1) , X 20 2 25Y ,即 X 40 25Y .所以 EXE (40 25Y ) 40 25EY 490 .〔ⅱ〕如果对余下的产品作检验,那么这一箱产品所需要的检验费为 400 元.由于 EX400 ,故应该对余下的产品作检验.点睛:该题考察的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论 .21.【解析】分析: (1)首先确定函数的定义域,之后对函数求导,之后对进展分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2) 根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.解: 〔 1〕f ( x)的定义域为(0,) ,f ( x)12x〔ⅰ〕假设 a ≤ 2 ,那么 f ( x) ≤ 0 ,当且仅当a〔ⅱ〕假设a 2 ,令 f ( x) a a20 得, x2aa 2 4 a a 2 4) 时, 当 x (0,2) U (2,1 a x2axxx 22 , x 1 时 f( x)4a a 2或 x2f ( x)0 ;1.0 ,所以 f ( x) 在 (0,) 单调递减.4 .当 x(aa 24 , aa 24 ) 时, f ( x)0 . 所以 f ( x) 在 (0,aa 24 ) , (aa 2 4 , ) 单调递2222减,在 (a2, a2a 4 a 4 ) 单调递增.2 2〔 2〕由〔 1〕知,f ( x)存在两个极值点当且仅当a 2 .由于 f ( x) 的两个极值点2ax1 0 ,所以 x 1 x2 1 ,不妨设 x 1 x 2 ,那么 x 21 . 由于x 1, x 2满足 x理科数学试题第 15 页〔共 17 页〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A.0B.C.1D.2、已知集合A={x|x 2-x-2>0},则 A =( )A 、{x|-1<x<2}B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=( )A. -B. -C.+D.+建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A. 2B. 2C. 3D. 28.设抛物线C:y²=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( )A.5B.6C.7D.89.已知函数f(x)= g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC. △ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则( )A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p311.已知双曲线C: - y²=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N. 若△OMN为直角三角形,则∣MN∣=( )A. B.3 C. D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

13.若x,y满足约束条件则z=3x+2y的最大值为 .14.记Sn 为数列{an}的前n项和. 若Sn= 2an+1,则S6= .15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是 .三.解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC =,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把∆DFC折起,使点C 到达点P的位置,且PF⊥BF .(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.设椭圆C: + y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0). (1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20、(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件产品作检验,再根据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为P (0<P<1),且各件产品是否为不合格品相互独立。

(1)记20件产品中恰有2件不合格品的概率为f(P),求f(P)的最大值点。

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为P的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用。

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?已知函数. (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1 , x2, 证明: .(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C₁的方程为y=k∣x∣+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C₂的极坐标方程为²+2cos -3=0.(1)求C₂的直角坐标方程:(2)若C₁与C₂有且仅有三个公共点,求C₁的方程.23. [选修4-5:不等式选讲](10分)已知f(x)=∣x+1∣-∣ax-1∣.(1)当a=1时,求不等式f(x)﹥1的解集;(2)若x∈(0,1)时不等式f(x)﹥x成立,求a的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设z=1-i 1+i+2i ,则|z|=A .0B .12 C .1 D . 2解析:选C z=1-i1+i+2i=-i+2i=i2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A .-12B .-10C .10D .12 解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2x B .y=-x C .y=2x D .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC →7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM →·FN →=89.已知函数f(x)= ⎩⎪⎨⎪⎧e x, x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6;∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积∴p1=p211.已知双曲线C :x 23 - y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3, 3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。

相关文档
最新文档