人教版八年级上册 13.24 最短路径问题归纳小结
数学人教版八年级上第十三章134 课题学习 最短路径问题

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】课本P85页问题1练习、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址【例2】P86页问题2【课堂检测】课本P93页、15题。
人教版八年级上册数学13.4 课题学习 最短路径问题

1.能利用轴对称解决简单的最短路径问题.(难点) 2.体会图形的变化在解决最值问题中的作用,感悟转 化思想.(重点)
如图假定任选位置造桥MN,连接AM和BN,从A 到B的路径是AM+MN+BN,那么怎样确定什么情况下 最短呢?
●A
M
M
N
N
?
折
●B 移
1.把A平移到岸边. AM+MN+BN长度改变了
A
根据是“两点之间,线段
C
最短”,可知这个交点即
l
为所求.
B
问题2 如果点A,B分别是直线l同侧的两个点,又应该如 何解决?
B
想一想:对于问题2,如何将
A
点B“移”到l 的另一侧B′处,
l
满足直线l 上的任意一点C,
都保持CB 与CB′的长度相等?
利用轴对称,作出点B关于直线l的对称点B′.
方法揭晓
A′
讲授新课
一 牧人饮马问题
“两点的所有连线中,线段最短”“连接直线外 一点与直线上各点的所有线段中,垂线段最短”等的 问题,我们称之为最短路径问题.
现实生活中经常涉及到选择最短路径问题,本节 将利用数学知识探究数学史的著名的“牧马人饮马问 题”及“造桥选址问题”.
P ①
②
A ③B
A BC
Dl
如图,牧马人从点A地出发,到一条笔直的河边l
A.7.5
B.5
C.4
D.不能确定
方法总结:此类求线段和的最小值问题,找准对称 点是关键,而后将求线段长的和转化为求某一线段 的长,而再根据已知条件求解.
例2 如图,在直角坐标系中,点A,B的坐标分别
为(1,4)和(3,0),点C是y轴上的一个动点,
八年级数学讲义--最短路径问题-(含解析)

八年级数学讲义--最短路径问题-(含解析)第6讲最短路径问题知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。
本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。
知识梳理讲解用时:20分钟两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢?选A-B,因为两点之间,直线最短垂线段最短如图,点P是直线L外一点,点P与直线上各点的所有连线中,哪条最短?PC最短,因为垂线段最短两点在一条直线异侧如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短、连接AB交直线L于点P,则PA+PB最短、依据:两点之间:线段最短 A P L B相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦、有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B 地、到河边什么地方饮马可使他所走的路线全程最短?两点在一条直线同侧作法:1、作B点关于直线L的对称点B’;2、连接AB’交直线L于点C;3、点C即为所求、证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’、在△AB’C’中,AC’+B’C’>AB’∴AC’+BC’>AC+BC所以AC+BC最短、课堂精讲精练【例题1】已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是()A、B、C、D、【答案】 D【解析】根据作图的方法即可得到结论、解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小,∴D 的作法正确,故选:D、讲解用时:3分钟解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键、教学建议:学会处理两点在直线同侧的最短距离问题、难度:3 适应场景:当堂例题例题来源:无年份:【练习1、1】如图,直线L是一条河,P,Q是两个村庄、欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A、B、C、D、【答案】 D【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离、解:作点P关于直线L的对称点P′,连接QP′交直线L于M、根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短、故选:D、讲解用时:3分钟解题思路:本题考查了最短路径的数学问题、这类问题的解答依据是“两点之间,线段最短”、由于所给的条件的不同,解决方法和策略上又有所差别、教学建议:学会处理两点在直线同侧的最短距离问题、难度:3 适应场景:当堂练习例题来源:无年份:【练习1、2】如图,A、B在直线l的两侧,在直线l上求一点P,使|PA﹣PB|的值最大、【答案】见解析【解析】作点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P在一条直线上时,|PA﹣PB|的值最大、解:作点A关于直线l的对称点A′,连A′B并延长交直线l于P、讲解用时:3分钟解题思路:本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答此题的关键、教学建议:学会作对称点,通过“两点之间线段最短”进行解题、难度:4 适应场景:当堂练习例题来源:无年份:2021【例题2】如图,A、B在直线l的同侧,在直线l上求一点P,使△PAB的周长最小、【答案】【解析】由于△PAB的周长=PA+AB+PB,而AB是定值,故只需在直线l 上找一点P,使PA+PB最小、如果设A关于l的对称点为A′,使PA+PB最小就是使PA′+PB最小、解:作法:作A关于l的对称点A′,连接A′B交l于点P、则点P就是所要求作的点;理由:在l上取不同于P的点P′,连接AP′、BP′、∵A和A′关于直线l对称,∴PA=PA′,P′A=P′A′,而A′P+BP<A′P′+BP′∴PA+BP<AP′+BP′∴AB+AP+BP<AB+AP′+BP′即△ABP周长小于△ABP′周长、讲解用时:3分钟解题思路:本题考查了轴对称﹣最短路线问题解这类问题的关键是把两条线段的和转化为一条线段,运用三角形三边关系解决、教学建议:把三角形的周长用线段表示出来,通过转化成一条线段利用两点之间线段最短进行解题、难度:3 适应场景:当堂例题例题来源:无年份:【练习2、1】(Ⅰ)如图①,点A、B在直线l两侧,请你在直线l上画出一点P,使得PA+PB 的值最小;(Ⅱ)如图②,点E、F在直线l同侧,请你在直线l 上画出一点P,使得PE+PF的值最小;(Ⅲ)如图③,点M、N在直线l同侧,请你在直线l上画出两点O、P,使得OP=1cm,且MO+OP+PN的值最小、(保留作图痕迹,不写作法)【答案】见解析【解析】(I)图①,显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点;(II)图2,作E关于直线的对称点,连接FE′即可;(III)图③,画出图形,作N的对称点N′,作NQ∥直线l,NQ=1cm,连接MQ得出点O即可、解:(I)如图①,连接A、B两点与直线的交点即为所求作的点P,这样PA+PB最小,理由是:两点之间,线段最短;(II)如图②,先作点E关于直线l的对称点E′,再连接E′F交l于点P,则PE+PF=E′P+PF=E′F,由“两点之间,线段最短”可知,点P即为所求的点;(III)如图③,作N关于直线l的对称点N′,过N′作线段N′Q∥直线l,且线段N′Q=1cm,连接MQ,交直线l 于O,在直线l上截取OP=1cm,如图,连接NP,则此时MO+OP+PN 的值最小、讲解用时:5分钟解题思路:本题考查了轴对称﹣最短路线问题的应用,题目比较典型,第三小题有一定的难度,主要考查学生的理解能力和动手操作能力、教学建议:学会作对称点,通过“两点之间线段最短”进行解题、难度:4 适应场景:当堂练习例题来源:无年份:【例题3】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC 的垂直平分线EF分别交AC,AB边于E,F点、若点D为BC边的中点,点M为线段EF上一动点,求△CDM周长的最小值、【答案】10【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论、解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=4AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+4=8+2=10、讲解用时:5分钟解题思路:本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键、教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题、难度:4 适应场景:当堂例题例题来源:无年份:【练习3、1】如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,求BF+EF的最小值、【答案】5【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=5,即BF+EF=5、解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF 最小(根据两点之间线段最短;点到直线垂直距离最短),由于C 和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=5,即BF+EF=5、故答案为:5、讲解用时:4分钟解题思路:本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用、教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题、难度:4 适应场景:当堂练习例题来源:无年份:【例题4】如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A到B的距离最短?【答案】见解析【解析】虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸、关键在于使AP+BD最短,但AP与BD未连起来,要用线段公理就要想办法使P与D重合起来,利用平行四边形的特征可以实现这一目的、解:如图,作BB垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于P,作PD⊥GH,则PD∥BB′且PD=BB′,于是PDBB′为平行四边形,故PB′=BD、根据“两点之间线段最短”,AB′最短,即AP+BD最短、故桥建立在PD处符合题意、讲解用时:4分钟解题思路:此题考查了轴对称﹣﹣﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题、目前,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法、教学建议:将3条线段进行转化成一条线段、难度:4 适应场景:当堂例题例题来源:无年份:【练习4、1】作图题(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线、(2)如图2,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示、试问:桥CD建在何处,才能使A 到B的路程最短呢?请在图中画出桥CD的位置、【答案】见解析【解析】(1)把河岸看做一条直线,利用点到直线的所有连接线段中,垂直线段最短的性质即可解决问题、(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置、解:(1)根据垂直线段最短的性质,即可画出这条从草地到河边最近的线路,如图1所示:(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置、如图2,讲解用时:4分钟解题思路:此题考查了垂直线段最短的性质的在解决实际问题中的灵活应用,解题的关键是灵活运用垂直线段最短的性质作图、教学建议:掌握求最短路径的几种基本题型和方法、难度:3 适应场景:当堂练习例题来源:无年份:【例题5】如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是多少?【答案】30【解析】由于点C关于直线MN的对称点是B,所以当B、P、D三点在同一直线上时,PC+PD的值最小解:连接PB、由题意知,∵B、C关于直线MN对称,∴PB=PC,∴PC+PD=PB+PD,当B、P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴∠PCD=∠PAD=30讲解用时:3分钟解题思路:此题考查了线路最短的问题、等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型、教学建议:学会转移对称线段,利用垂线段最短进行解题、难度:3 适应场景:当堂例题例题来源:无年份:【练习5、1】已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为多少?【答案】10cm【解析】连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线、解:连接PC,∵△ABC为等边三角形,D 为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm、讲解用时:3分钟解题思路:此题主要考查有关轴对称﹣﹣最短路线的问题,注意灵活应用等边三角形的性质、教学建议:学会转移对称线段,利用垂线段最短进行解题、难度:3 适应场景:当堂练习例题来源:无年份:【例题6】如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹、【答案】见解析【解析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求、解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求、理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短、讲解用时:5分钟解题思路:本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型、教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点、难度:4 适应场景:当堂例题例题来源:无年份:【练习6、1】知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)【答案】见解析【解析】作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F、此时△PEF周长有最小值;作图如下:讲解用时:3分钟解题思路:题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出对称点的位置是解题关键、教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点、难度:4 适应场景:当堂练习例题来源:无年份:【例题7】如图,∠AOB=30,点P是∠AOB内一点,PO=8,在∠AOB的两边分别有点R、Q(均不同于O),求△PQR周长的最小值、【答案】【解析】根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接MN,根据两点之间线段最短得到最小值线段,根据等边三角形的性质解答即可、解:分别作P关于OA、OB的对称点M、N、连接MN交OA、OB交于Q、R,则△PQR符合条件、连接OM、ON,由轴对称的性质可知,OM=ON=OP=8,∠MON=∠MOP+∠NOP=2∠AOB=230=60,则△MON为等边三角形,∴MN=8,∵QP=QM,RN=RP,∴△PQR周长=MN=8,讲解用时:5分钟解题思路:本题考查了轴对称﹣最短路径问题,根据轴对称的性质作出对称点是解题的关键,掌握线段垂直平分线的性质和等边三角形的性质的灵活运用、教学建议:对称之后,角度也是相同的,做定点关于动点所在直线的对称点、难度:4 适应场景:当堂例题例题来源:无年份:【练习7、1】如图,∠AOB=30,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R、若△PQR周长最小,求它的最小值、【答案】10【解析】先画出图形,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM、作PN⊥O B与OB相交于N,并将PN延长一倍到F,即NF=PN、连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形、再根据线段垂直平分线的性质得出△PQR=EF,再根据三角形各角之间的关系判断出△EOF的形状即可求解、解:设∠POA=θ,则∠POB=30﹣θ,作PM⊥OA与OA 相交于M,并将PM延长一倍到E,即ME=PM、作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN、连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形、∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF、∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30﹣θ)=60,∴△EOF是正三角形,∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10、故答案为:10、讲解用时:4分钟解题思路:本题考查的是最短距离问题,解答此类题目的关键根据轴对称的性质作出各点的对称点,即把求三角形周长的问题转化为求线段的长解答、教学建议:做定点关于动点所在直线的对称点,利用轴对称的性质进行解题、难度:4 适应场景:当堂练习例题来源:无年份:2021课后作业【作业1】如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?【答案】见解析【解析】作点B关于直线l的对称点B′,连接AB′,交l于点C,则点C即为所求点、解:如图所示:讲解用时:3分钟难度:3 适应场景:练习题例题来源:无年份:【作业2】用三角板和直尺作图、(不写作法,保留痕迹)如图,点A,B在直线l的同侧、(1)试在直线l上取一点M,使MA+MB的值最小、(2)试在直线l上取一点N,使NB﹣NA最大、【答案】见解析【解析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大、讲解用时:3分钟难度:3 适应场景:练习题例题来源:无年份:【作业3】如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F是AD边上的动点,求BF+EF的最小值、【答案】 6【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB≌△CEB得CE=AD=6,即BF+EF=6、解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF 最小(根据两点之间线段最短;点到直线垂直距离最短),由于C 和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90,在△AD B和△CEB中,∵,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF=6、讲解用时:3分钟难度:3 适应场景:练习题例题来源:无年份:【作业4】如图,点P是∠AOB内部的一点,∠AOB=30,OP=8cm,M,N 是OA,OB上的两个动点,则求△MPN周长的最小值?【答案】8【解析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小、解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN、∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60,∴△COD是等边三角形,∴CD=OC=OD=8cm、∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8cm、故答案为:8、讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2021。
初中数学人教版八年级上册第一课时《最短路径问题》教育教学课件

如图: 点A,B分别在直线l的两侧,点C是直线l上的一个动点,当点C在什么
位置的时候,AC+BC的值最小?
A∙
l
B∙
解析:连接A,B两点,交直线l于点C,则点C即为所求的位置,可以使得 AC+BC的值最小. 依据:两点之间,线段最短.
你能利用两点分别在直线两侧的解题思路,来解决两点在直线同一侧的问题吗?
如图,直线l是线段AB的垂直平分线,点C是直线l上任意一点,则
AC和BC的大小关系是什么? l
C
A
B
容易得出,AC=BC. 依据“线段垂直平分线上的点到线段两端点的距离相等”.
1、利用轴对称解决简单的最短路径问题. 2、体会图形的变化在解决最值问题中的作用,感受由实 际问题转化为数学问题的思想.
∙B
A∙
你能证明这个结论吗?
∙
l
C
∙ B′
容易得出:连接AB′交直线l于点C,则点C即为所求.
证明:在直线l上任意取一点C′(不与点C重合),连接AC′,BC′,B′C′.
由轴对称的性质可得:BC=B′C,BC′=B′C′,
则AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.
在△AB′C′中,AB′<AC′+B′C′, 所以AC+BC<AC′+B′C′. 由点C′的任意性可知,AC+BC的值是 最小的,故点C的位置符合要求.
思考:相传古希腊亚历 大里亚城里有一位久负盛名的学者,名叫海伦.有一 天,一位将军专程拜访海伦,求教一个百思不得其解的问题: 从图1中的a地出发,到一条笔直的河边l饮马,然后到b地.到河边什么地方 饮马可使他所走的路线全程最短? 精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这 个问题后来被称为“将军饮马问题”.
人教版八年级上册数学专题最短路径问题复习精品课件PPT

人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
练习2.如图13-4-2,一个牧童在小河的南边A处牧马,他想把他的马牵到
小河边去饮水,然后回家(即图中的小屋B). 问:马牵到小河边什么地方饮 水,然后回家所走的路程最短?请在图中画出河边马饮水的位置.
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
完成作业2.24作业
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
15
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
蓦然回首
对自己说,你有什么收获? 对同学说,你有什么温馨提示? 对老师说,你还有什么困惑?
10
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
知识点一:利用轴对称解决最短路径问题
典例讲评
两线一点型
如图,已知点A是锐角∠MON内的一点,试分别在
OM,ON上确定点B,C,使△ABC的周长最小,写出你作
图的主要步骤,并标明你所确定的点.(要求画出草图,保留作图
作痕法迹:) 1、分别作点A关于 OM、ON的对称点A′,A′′;
解析:△ABC为等边三角形,点D是BC边的中点,即点B与点C关于直线 AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的 最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
人教版八年级上册数学13.4专题:最 短路径 问题复 习 课件
人教版初中数学八年级上册第十三章13.4课题学习 最短路径问题(ppt课件)

拓展延伸
2. 某班举行文艺晚会,桌子摆成AB,AC两行,如图13-4-27,AB桌面上 摆满了橘子,AC桌面上摆满了糖果,小明现在P处,准备先去拿橘子再 去拿糖果,然后回到P处.请你帮他设计一条行走路线,使其所走的总 路程最短.(保留作图痕迹,并简单写出作法)
拓展延伸
3. 如图,小华每天都要到李奶奶家做好事,在途中她要先到草场打
对点练习
4. 如图,AD为等腰三角形ABC底边上的高,E为AC边上一点,在AD
上求一点F,使EF+CF最小.
对点练习
5.如图,M为正方形ABCD的边CD的中点,BM=10,在对角线BD上求 作一点N,使MN+CN的值最小,并求出这个最小值.
拓展延伸
1、如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接 游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船 的最短路径.【来源:2教育
E
一只在E处的蚂蚁要爬到圆柱内侧D点处,试
画出其最短路径。
对点练习
2.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边L饮
马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
对点练习
3.点P是直线l上的一点,线段AB∥l,能使PA+PB 取得最小 值的点P的位置应满足的条件是 ( C ) A.点P为点A到直线l的垂线的垂足 B.点P为点B到直线l的垂线的垂足 C.PB=PA D.PB=AB
学习难点
确定最短距离及理论说明.
知识回顾:
思考:
(1)图①中从点A走到点B哪条路最短? (2)图②中点C与直线AB上所有的连线中哪 条线最短? 以上路径选择基于什么原理?
类型一:两点之间,线段最短——直接应用
人教版八年级数学上册13.4-课题学习--最短路径问题ppt精品课件

B
A C
轴对称 变换
小结归纳
B
转化
l B′
A
A'
M
a
b
N
B
A
C
l
B
两点之间,线段最短.
课堂练习
如图,A为马厩,牧马人某一天要从马厩牵出马,先到草地 一处牧马,再到河边饮马,然后回到马厩. 请你帮他确定这一天 短路线.
A
小
河
已知:如图,在l1、l2之间有一点A.
求作:分别在l1、l2上确定一点M、N,使AM+MN+NA 最小.
第十三章 轴对称
最短 路径 问题
复习引入
A
B
线段公理: 两点之间,线段最短.
A
l
B
垂线段性质: 垂线段最短.
问题1
如图,牧马人从A地出发,到一条笔直的河边 l 饮马,然后 B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
思考:
A
B
你能把这个问题转化
l
为数学问题吗?
分析:
B
A
A
l
CC
转化为数学问题 当点C在直线 l 的什么位置时,AC与BC的和最小?
点C、C′在对称轴上, ∴BC=B′C,BC′=B′C′. ∴AC+BC=AC+B′C=AB′. 在△AB′C′中,AB′< AC′+B′C′, ∴AC+BC < AC′+B′C′, 即AC+BC最小.
A C′ C
B A
l
解决实 际问题
B
A
C
l
B′
问题1 归纳
抽象为数学问题 用旧知解决新知
人教版-八年级数学讲义--最短路径问题-(含解析)

人教版-八年级数学讲义--最短路径问题-(含解析)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March第6讲最短路径问题知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。
本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。
知识梳理讲解用时:20分钟两点之间线段最短C DA BEA地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢?垂线段最短如图,点P是直线L外一点,点P与直课堂精讲精练【例题1】已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是()A.B.C.D.【答案】D【解析】根据作图的方法即可得到结论.解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB 的值最小,∴D的作法正确,故选:D.讲解用时:3分钟解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键.教学建议:学会处理两点在直线同侧的最短距离问题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A. B.C.D.【答案】D【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.解:作点P关于直线L的对称点P′,连接QP′交直线L于M.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选:D.讲解用时:3分钟解题思路:本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.教学建议:学会处理两点在直线同侧的最短距离问题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习】如图,A、B在直线l的两侧,在直线l上求一点P,使|PA﹣PB|的值最大.【答案】见解析【解析】作点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P在一条直线上时,|PA﹣PB|的值最大.解:作点A关于直线l的对称点A′,连A′B并延长交直线l于P.讲解用时:3分钟解题思路:本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答此题的关键.教学建议:学会作对称点,通过“两点之间线段最短”进行解题.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,A、B在直线l的同侧,在直线l上求一点P,使△PAB的周长最小.【答案】【解析】由于△PAB的周长=PA+AB+PB,而AB是定值,故只需在直线l上找一点P,使PA+PB最小.如果设A关于l的对称点为A′,使PA+PB最小就是使PA′+PB最小.解:作法:作A关于l的对称点A′,连接A′B交l于点P.则点P就是所要求作的点;理由:在l上取不同于P的点P′,连接AP′、BP′.∵A和A′关于直线l对称,∴PA=PA′,P′A=P′A′,而A′P+BP<A′P′+BP′∴PA+BP<AP′+BP′∴AB+AP+BP<AB+AP′+BP′即△ABP周长小于△ABP′周长.讲解用时:3分钟解题思路:本题考查了轴对称﹣最短路线问题解这类问题的关键是把两条线段的和转化为一条线段,运用三角形三边关系解决.教学建议:把三角形的周长用线段表示出来,通过转化成一条线段利用两点之间线段最短进行解题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】(Ⅰ)如图①,点A、B在直线l两侧,请你在直线l上画出一点P,使得PA+PB的值最小;(Ⅱ)如图②,点E、F在直线l同侧,请你在直线l上画出一点P,使得PE+PF的值最小;(Ⅲ)如图③,点M、N在直线l同侧,请你在直线l上画出两点O、P,使得OP=1cm,且MO+OP+PN的值最小.(保留作图痕迹,不写作法)【答案】见解析【解析】(I)图①,显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点;(II)图2,作E关于直线的对称点,连接FE′即可;(III)图③,画出图形,作N的对称点N′,作NQ∥直线l,NQ=1cm,连接MQ 得出点O即可.解:(I)如图①,连接A、B两点与直线的交点即为所求作的点P,这样PA+PB 最小,理由是:两点之间,线段最短;(II)如图②,先作点E关于直线l的对称点E′,再连接E′F交l于点P,则PE+PF=E′P+PF=E′F,由“两点之间,线段最短”可知,点P即为所求的点;(III)如图③,作N关于直线l的对称点N′,过N′作线段N′Q∥直线l,且线段N′Q=1cm,连接MQ,交直线l于O,在直线l上截取OP=1cm,如图,连接NP,则此时MO+OP+PN的值最小.讲解用时:5分钟解题思路:本题考查了轴对称﹣最短路线问题的应用,题目比较典型,第三小题有一定的难度,主要考查学生的理解能力和动手操作能力.教学建议:学会作对称点,通过“两点之间线段最短”进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,求△CDM周长的最小值.【答案】10【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S=BC•AD=×4×AD=16,解得AD=8,△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.讲解用时:5分钟解题思路:本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习】如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F 是AD边上的动点,求BF+EF的最小值.【答案】5【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB ≌△CEB得CE=AD=5,即BF+EF=5.解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,,∴△ADB≌△CEB(AAS),∴CE=AD=5,即BF+EF=5.故答案为:5.讲解用时:4分钟解题思路:本题考查的是轴对称﹣最短路线问题,涉及到等边三角形的性质,轴对称的性质,等腰三角形的性质、全等三角形的判定和性质等知识点的综合运用.教学建议:想办法利用对称的知识将两条线段转化成一条线段,利用垂线段最短进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直,设河的宽度不变,试问:桥架在何处,才能使从A到B的距离最短?【答案】见解析【解析】虽然A、B两点在河两侧,但连接AB的线段不垂直于河岸.关键在于使AP+BD最短,但AP与BD未连起来,要用线段公理就要想办法使P与D重合起来,利用平行四边形的特征可以实现这一目的.解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于P,作PD⊥GH,则PD∥BB′且PD=BB′,于是PDBB′为平行四边形,故PB′=BD.根据“两点之间线段最短”,AB′最短,即AP+BD最短.故桥建立在PD处符合题意.讲解用时:4分钟解题思路:此题考查了轴对称﹣﹣﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.教学建议:将3条线段进行转化成一条线段.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习】作图题(1)如图1,一个牧童从P点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD表示.试问:桥CD建在何处,才能使A到B的路程最短呢?请在图中画出桥CD的位置.【答案】见解析【解析】(1)把河岸看做一条直线,利用点到直线的所有连接线段中,垂直线段最短的性质即可解决问题.(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.解:(1)根据垂直线段最短的性质,即可画出这条从草地到河边最近的线路,如图1所示:(2)先确定AA′=CD,且AA′∥CD,连接BA′,与河岸的交点就是点C,过点C作CD垂直河岸,交另一河岸于点D,CD就是所求的桥的位置.如图2,讲解用时:4分钟解题思路:此题考查了垂直线段最短的性质的在解决实际问题中的灵活应用,解题的关键是灵活运用垂直线段最短的性质作图.教学建议:掌握求最短路径的几种基本题型和方法.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是多少?【答案】30°【解析】由于点C关于直线MN的对称点是B,所以当B、P、D三点在同一直线上时,PC+PD的值最小解:连接PB.由题意知,∵B、C关于直线MN对称,∴PB=PC,∴PC+PD=PB+PD,当B、P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴∠PCD=∠PAD=30°讲解用时:3分钟解题思路:此题考查了线路最短的问题、等边三角形的性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.教学建议:学会转移对称线段,利用垂线段最短进行解题.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习】已知,如图△ABC为等边三角形,高AH=10cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为多少?【答案】10cm【解析】连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.解:连接PC,∵△ABC为等边三角形,D为AB的中点,∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.解题思路:此题主要考查有关轴对称﹣﹣最短路线的问题,注意灵活应用等边三角形的性质.教学建议:学会转移对称线段,利用垂线段最短进行解题.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【答案】见解析【解析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.解题思路:本题考查轴对称﹣最短问题、两点之间线段最短等知识,解题的关键是学会利用对称解决最短问题,属于中考常考题型.教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习】知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短(保留作图痕迹不写作法)【答案】见解析【解析】作P关于OA、OB的对称点C、D,连接CD角OA、OB于E、F.此时△PEF周长有最小值;作图如下:讲解用时:3分钟解题思路:题主要考查了平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出对称点的位置是解题关键.教学建议:此类问题的解题技巧是做对称点,做定点关于动点所在直线的对称点.难度: 4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图,∠AOB=30°,点P是∠AOB内一点,PO=8,在∠AOB的两边分别有点R、Q(均不同于O),求△PQR周长的最小值.【答案】【解析】根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接MN,根据两点之间线段最短得到最小值线段,根据等边三角形的性质解答即可.解:分别作P关于OA、OB的对称点M、N.连接MN交OA、OB交于Q、R,则△PQR符合条件.连接OM、ON,由轴对称的性质可知,OM=ON=OP=8,∠MON=∠MOP+∠NOP=2∠AOB=2×30°=60°,则△MON为等边三角形,∴MN=8,∵QP=QM,RN=RP,∴△PQR周长=MN=8,讲解用时:5分钟解题思路:本题考查了轴对称﹣最短路径问题,根据轴对称的性质作出对称点是解题的关键,掌握线段垂直平分线的性质和等边三角形的性质的灵活运用.教学建议:对称之后,角度也是相同的,做定点关于动点所在直线的对称点. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习】如图,∠AOB=30°,∠AOB内有一定点P,且OP=10,OA上有一点Q,OB上有一定点R.若△PQR周长最小,求它的最小值.【答案】10【解析】先画出图形,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF 与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.再根据线段垂直平分线的性质得出△PQR=EF,再根据三角形各角之间的关系判断出△EOF的形状即可求解.解:设∠POA=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10.故答案为:10.讲解用时:4分钟解题思路:本题考查的是最短距离问题,解答此类题目的关键根据轴对称的性质作出各点的对称点,即把求三角形周长的问题转化为求线段的长解答.教学建议:做定点关于动点所在直线的对称点,利用轴对称的性质进行解题.难度:4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,在铁路l的同侧有A、B两个工厂,要在铁路边建一个货场C,货场应建在什么地方,才能使A、B两厂到货场C的距离之和最短?【答案】见解析【解析】作点B关于直线l的对称点B′,连接AB′,交l于点C,则点C即为所求点.解:如图所示:讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【答案】见解析【解析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=6,点F 是AD边上的动点,求BF+EF的最小值.【答案】6【解析】过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小,证△ADB ≌△CEB得CE=AD=6,即BF+EF=6.解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CF,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB=∠CEB=90°,在△ADB和△CEB中,∵,∴△ADB≌△CEB(AAS),∴CE=AD=6,即BF+EF=6.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则求△MPN周长的最小值【答案】8【解析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8cm.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8cm.故答案为:8.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册 13.24 最短路径问题归纳小结 1 / 6 八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题, 旨在寻找图(由结点和路径组成的)中两结
点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.
【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】 【问题1】 作法 图形 原理
在直线l上求一点P,使PA+PB值最小.
连AB,与l交点即为P. 两点之间线段最短. PA+PB最小值为AB.
【问题2】“将军饮马” 作法 图形 原理
在直线l上求一点P,使PA+PB值最小.
作B关于l的对称点B'连A B',与l交点即为P. 两点之间线段最短. PA+PB最小值为A B'.
【问题3】 作法 图形 原理
在直线1l、2l上分别求点M、N,使△PMN的周长最小.
分别作点P关于两直线的对称点P'和P'',连P'P'',与两直线交点即为M,N. 两点之间线段最短. PM+MN+PN的最小值为 线段P'P''的长.
【问题4】 作法 图形 原理
在直线1l、2l上分别求点M、N,使四边形PQMN的周长最小.
分别作点Q 、P关于直线1l、2l的对称点Q'和P'
连Q'P',与两直线交点即为M,N.
两点之间线段最短. 四边形PQMN周长的最小值为线段P'P''的长.
【问题5】“造桥选址” 作法 图形 原理
lABlPB
A
lBAlP
B'
AB
l1
l2
P
l1
l2N
M
P''
P'
P
l1
l2N
M
P'
Q'QP
l1
l2
PQ人教版八年级上册 13.24 最短路径问题归纳小结 2 / 6 直线m∥n,在m、n,上分别求点M、N,使MN⊥m,且AM+MN+BN的值最小. 将点A向下平移MN的长度单位得A',连A'B,交n于点N,过N作NM⊥m于M. 两点之间线段最短. AM+MN+BN的最小值为 A'B+MN. 【问题6】 作法 图形 原理
在直线l上求两点M、N(M在左),使aMN,并使AM+MN+NB的值最小. 将点A向右平移a个长度单位得A',作A'关于l的对称点A'', 连A''B,交直线l于点N,将N点向左平移a个单位得M. 两点之间线段最短. AM+MN+BN的最小值为 A''B+MN. 【问题7】 作法 图形 原理
在1l上求点A,在2l上求点B,使PA+AB值最小.
作点P关于1l的对称点P',作P'B⊥2l于B,交2l
于A. 点到直线,垂线段最短. PA+AB的最小值为线段P'B的长.
【问题8】 作法 图形 原理
A为1l上一定点,B为2l上一定点,在2l上求点M,在1l上求点N,使AM+MN+NB的值最小. 作点A关于2l的对称点A',作点B关于1l的对称点B',连A'B'交2l于M,交1l于N.
两点之间线段最短. AM+MN+NB的最小值为线段A'B'的长.
【问题9】 作法 图形 原理 在直线l上求一点P,使PBPA的值最小.
连AB,作AB的中垂线与直线l的交点即为P. 垂直平分上的点到线段两端点的距离相等. PBPA=0.
【问题10】 作法 图形 原理
mn
M
NA'
B
A
la
AB
MN
mn
A
BMN
lA''
A'BA
MN
l1
l2
A
B
P'P
l1
l2
P
l2
l1
ABNM
l2
l1
MN
A'
B'AB
lBAlP
B
A人教版八年级上册 13.24 最短路径问题归纳小结 3 / 6 在直线l上求一点P,使PBPA的值最大.
作直线AB,与直线l的交点即为P.
三角形任意两边之差小于第三边.PBPA≤AB.
PBPA的最大值=AB.
【问题11】 作法 图形 原理
在直线l上求一点P,使PBPA的值最大.
作B关于l的对称点B'作直线A B',与l交点即为P.
三角形任意两边之差小于第三边.PBPA≤AB'.
PBPA最大值=AB'.
【问题12】“费马点” 作法 图形 原理
△ABC中每一内角都小于120°,在△ABC内求一点P,使PA+PB+PC值最小. 所求点为“费马点”,即满足∠APB=∠BPC=∠APC=120°.以AB、AC为边向外作等边△ABD、△ACE,连CD、BE相交于P,点P即为所求.
两点之间线段最短. PA+PB+PC最小值=CD.
【精品练习】 1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有
一点P,使PD+PE的和最小,则这个最小值为( )
A.23 B.26 C.3 D.6
2.如图,在边长为2的菱形ABCD中,∠ABC=60°,若将△ACD绕点A旋转,当AC′、AD′分别与BC、CD交于点E、F,则△CEF的周长的最小值为( )
A.2 B.32
C.32 D.4
lBAlP
AB
lABlBP
AB'
ABC
P
E
D
CBA
A D
E P
B C 人教版八年级上册 13.24 最短路径问题归纳小结
4 / 6 3.四边形ABCD中,∠B=∠D=90°,∠C=70°,在BC、CD上分别找一点M、N,使△AMN的周长最小时,∠AMN+∠ANM的度数为( ) A.120° B.130° C.110° D.140°
4.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 .
5.如图,Rt△ABC中,∠C=90°,∠B=30°,AB=6,点E在AB边上,点D在BC边上(不与点B、C重合), 且ED=AE,则线段AE的取值范围是 .
6.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt△ABC中,∠C=90°,则有222ABBCAC)
7.如图,三角形△ABC中,∠OAB=∠AOB=15°,点B在x轴的正半轴,坐标为B(36,0). OC平分∠AOB,点M在OC的延长线上,点N为边OA上的点,则MA+MN的最小值是______.
DEABC
DAB
CMN
CAD
BM
N人教版八年级上册 13.24 最短路径问题归纳小结
5 / 6 8.已知A(2,4)、B(4,2).C在y轴上,D在x轴上,则四边形ABCD的周长最小值为 , 此时 C、D两点的坐标分别为 .
9.已知A(1,1)、B(4,2). (1)P为x轴上一动点,求PA+PB的最小值和此时P点的坐标;
(2)P为x轴上一动点,求PBPA的值最大时P点的坐标; (3)CD为x轴上一条动线段,D在C点右边且CD=1,求当AC+CD+DB的最小值和此时C点的坐标;
10.点C为∠AOB内一点. (1)在OA求作点D,OB上求作点E,使△CDE的周长最小,请画出图形; (2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值和此时∠DCE的度数.
yxB
OA
CD
yxB
OA
yxB
OA
COB
A
yxBA
O