一元一次不等式组

合集下载

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:,。

要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。

解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。

知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。

要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。

一元一次不等式组的概念及其解法

一元一次不等式组的概念及其解法

一元一次不等式组的概念及其解法在代数学中,不等式组是一种包含有两个或更多个不等式的数学表达式。

这些不等式之间可以通过逻辑连接诸如“且”或者“或者”等来关联起来,形成一个不等式组。

而一元一次不等式组则是其中一种特殊形式的不等式组,其中每个不等式均为一元一次不等式。

为了更清晰地理解一元一次不等式组的概念及其解法,让我们从简单的例子开始。

假设我们有一个一元一次不等式组:1. 2x + 3 > 72. x - 5 < 2在这个不等式组中,我们有两个一元一次不等式,分别为2x + 3 > 7和x - 5 < 2。

要解决这个不等式组,我们需要先单独解决每个不等式,然后将它们的解集合起来,以得出整个不等式组的解。

我们来解决第一个不等式2x + 3 > 7。

要解这个不等式,我们可以按照以下步骤进行:1. 将2x + 3 > 7化简为2x > 42. 再将2x > 4化简为x > 2第一个不等式2x + 3 > 7的解为x > 2。

接下来,我们来解决第二个不等式x - 5 < 2。

解决这个不等式的步骤如下:1. 将x - 5 < 2化简为x < 7第二个不等式x - 5 < 2的解为x < 7。

现在,我们得到了每个不等式的解,即第一个不等式的解为x > 2,第二个不等式的解为x < 7。

要得到整个不等式组的解,我们需要将这两个不等式的解进行合并。

由于这是一个“且”的关系,所以整个不等式组的解为同时满足这两个不等式的解,即2 < x < 7。

通过以上例子,我们可以看到解决一元一次不等式组的关键步骤。

首先是单独解决每个不等式,然后根据逻辑连接的关系合并这些解来得到整个不等式组的解。

在实际应用中,一元一次不等式组常常出现在数学建模和实际问题的求解中。

比如在工程、经济学、物理学等领域,人们经常需要通过建立不等式组来描述某一问题的限制条件,然后利用不等式组的解来得出问题的答案。

初中数学一元一次不等式组

初中数学一元一次不等式组
2<x<7+a,且x的整数解为3,4,5,
因此,5<7+a≤6,即 -2<a≤-1.
练习 1. 若不等式组
a的取值范围是( A.a>3 B.a≥3
)B C.a<3
的解集为空集,则
D.a≤3
解析:由①得x<3, 因为不等式组的解集为空集, 所以a的取值范围为 a≥3. 故选B.
2.
不等式组
3x 1<x 1 2(2x 1) 5x
1
2( x 1 2 x
3)>3x 7,
1>3
3 2
x.
解:解不等式,得 x<1, 解不等式,得 x>2, 所以此不等式无解.
2
2x x 3,
x
3
2
>x.
解:解不等式,得 x≥﹣3,
解不等式,得 x<1,
所以此不等式组的解集为﹣3≤x<1.
一元一次不等式组解法的应用
例1 求不等式组
数满足x≥0,y>0,求m的取值范围并在数轴上应
表示出来.
解:①×2﹣②得 3x=3m+6,即x=m+2,
把x=m+2代入②得 y=3﹣m,
由x≥0,y>0,得到
m 2 0, 3 m>0,

m 2, m<3.
1. 下列选项中是一元一次不等式组的是( D )
A. x y>0
y
z>0
B. x2 x>0
x
2<0

y 2>0
x
y<0

4 x 8<9
一元一次不等式组的解集
不等式组
x<80
x>60
中,和的解集分别在数轴上

《一元一次不等式组》教案

《一元一次不等式组》教案

《一元一次不等式组》教案——九年义务教育七年级下册第九章第三节执教者:性质:时间:2014年6月《一元一次不等式组》教案教材分析本节课的内容是人教版七年级下册第九章第三节《一元一次不等式组》。

本节课,是在学生学习了一元一次不等式,知道了一元一次不等式的有关概念及其解法的基础上学习的。

本节主要学习一元一次不等式组及其解法,这是学好利用一元一次不等式组解决实际问题的基础和关键。

教材通过一个实例入手,引出要解决的问题必须同时满足两个不等式,进而通过一元一次不等式的概念及其解法等,来类推学习一元一次不等式组及其相关解法。

学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,善于发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力,这为顺利完成本节课的教学任务打下了基础,但对于不等式基本性质的理解,由于其抽象程度较高,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

教学目标1、知识与技能:了解一元一次不等式组的概念,在了解一元一次不等式组的解集的概念的基础上会求解一元一次不等式组的解集。

2、过程与方法:经历一元一次不等式组解集的探究过程,体会不等式之间的内在联系,通过利用数轴解一元一次不等式组,培养学生数形结合的思想方法。

3、情感、态度与价值观:学生充分参与数学学习活动,从而获得成功的体验,建立良好的自信心。

教学重点:掌握一元一次不等式组的含义及其解法。

教学难点:1、将两个不等式的解表示在同一数轴上,并通过找公共部分确定不等式组的解集;2、理解不等式的解集。

一元一次不等式(组)的复习教案

一元一次不等式(组)的复习教案

一元一次不等式(组)的复习教案第一章:一元一次不等式的概念与性质1.1 复习一元一次不等式的概念解释一元一次不等式的定义强调不等式的符号“<”和“>”表示大小关系1.2 复习一元一次不等式的性质性质1:当a>0时,不等式ax>b的解集是x>b/a性质2:当a<0时,不等式ax>b的解集是x<b/a性质3:当a=0时,不等式ax>b无解第二章:一元一次不等式的解法2.1 复习解一元一次不等式的步骤去分母:将不等式两边乘以分母的相反数移项:将含有未知数的项移到不等式的一边,常数项移到另一边合并同类项:将同类项合并化简:将不等式化简为最简形式2.2 举例解一元一次不等式举例不等式:2x-3>7按照解步骤进行解答,得到解集第三章:一元一次不等式组的解法3.1 复习一元一次不等式组的定义解释不等式组的含义:由两个或多个不等式组成的集合3.2 复习解一元一次不等式组的方法同大取大:将不等式组中所有大于号的不等式合并,取最大的解集同小取小:将不等式组中所有小于号的不等式合并,取最小解集大小小大中间找:将不等式组中大于号和小于号的不等式分别合并,找出中间的解集无解则无解:当不等式组中存在矛盾时,无解3.3 举例解一元一次不等式组举例不等式组:3x-4<2和5x+1>-3按照解步骤进行解答,得到解集第四章:一元一次不等式(组)的应用题4.1 复习解应用题的步骤理解题意:弄清题目中的已知条件和所求解的内容列式:根据题目条件列出不等式或不等式组解不等式或不等式组:求解不等式或不等式组的解集检验并解答:检验解是否符合题意,得出最终答案4.2 举例解一元一次不等式(组)的应用题举例题:某商店举行打折活动,原价100元的商品打8折,求购买该商品实际支付的价格范围按照解步骤进行解答,得到最终答案第五章:巩固练习5.1 复习本章重点知识回顾一元一次不等式、不等式组的定义与解法强调解应用题的步骤与注意事项5.2 布置练习题提供若干练习题,让学生独立完成题目包括选择题、填空题和解答题等形式5.3 答案与解析提供练习题的答案与解析解析中包括解题思路、步骤和错误分析第六章:一元一次不等式与坐标系6.1 介绍坐标系复习笛卡尔坐标系的概念强调坐标系中点、线和面的表示方法6.2 复习一元一次不等式在坐标系中的表示解释如何将一元一次不等式表示在坐标系中强调不等式对应的线段和半平面6.3 举例分析一元一次不等式在坐标系中的图像举例不等式:x>2在坐标系中表示该不等式,并解释图像第七章:一元一次不等式组的图像分析7.1 复习一元一次不等式组的图像表示解释如何将一元一次不等式组表示在坐标系中强调不等式组对应的区域7.2 举例分析一元一次不等式组在坐标系中的图像举例不等式组:x>2和x<4在坐标系中表示该不等式组,并解释图像7.3 分析不等式组图像的交集与并集解释交集和并集的概念举例说明不等式组图像的交集和并集第八章:一元一次不等式(组)与函数的关系8.1 介绍一元一次函数的概念解释一元一次函数的定义强调函数图像的特点8.2 复习一元一次不等式与一元一次函数的关系解释如何从一元一次函数的图像得到不等式的解集强调函数图像与不等式解集的对应关系8.3 举例分析一元一次不等式(组)与函数图像的关系举例函数:y=2x+1给出与函数图像相关的不等式,解释解集与图像的关系第九章:一元一次不等式(组)的综合应用9.1 复习一元一次不等式(组)在实际问题中的应用强调不等式(组)在生活中的实际意义举例说明一元一次不等式(组)在不同领域的应用9.2 介绍一元一次不等式(组)在几何中的应用解释一元一次不等式(组)在几何问题中的作用举例说明一元一次不等式(组)在几何问题中的应用9.3 举例分析一元一次不等式(组)在其他学科中的应用举例说明一元一次不等式(组)在物理、化学等学科中的应用第十章:总结与拓展10.1 总结一元一次不等式(组)的重要概念和解法强调一元一次不等式(组)的基本性质和解法步骤提醒学生注意解题中的常见错误10.2 提出一元一次不等式(组)的拓展问题鼓励学生思考一元一次不等式(组)的深入问题提供一些拓展问题供学生思考和讨论10.3 鼓励学生进行自主学习强调自主学习的重要性提供一些学习资源和建议,帮助学生进一步学习一元一次不等式(组)的知识重点解析本文为一元一次不等式(组)的复习教案,共包含十个章节。

一元一次不等式组的概念和解法

一元一次不等式组的概念和解法

一元一次不等式组,记作
? x ? 2,
? ?
x
?
3.
? x ? 2,
? ?
x
?
3.
① ②
在同一数轴上表示不等式①,②的解集:
2
3
①,②的解集的公共部分记作: 2<x<3,
?x
叫做一元一次不等式组
? ?
x
? ?
2,
的解集
3.
在数轴上表示不等式的解集时应注意:
大于向右画,小于向左画;有等号的 画实心圆点,无等号的画空心圆圈.
(4)不等式组
? ? ?
x x
≥-2,
??
5
的解集在数轴上表示为(
B
)
A. -5
-2
B. -5
-2 C. -5
-2
D. -5 -2
(5)如图,
-1
A. ?1? x? 2.5,
则其解集是( C )
2.5 4
B. ?1? x≤4, C. 2.5? x≤4 D. 2.5? x? 4
小结:
1. 由几个一元一次不等式组所组成的不等式组叫做一 元一次不等式组
(2)? ?
xห้องสมุดไป่ตู้
?
? 3.
-3 -2 -1 0 1 2 3 4
解:原不等式组的解集为
x? 2
(3)?? ?
x x
? ?
? 2, ? 5.
? x ? 0,
(4)? ?
x
?
? 4.
解:原不等式组的解集为
-5 -4 -3 -2 -1 0
x ? ?2
解:原不等式组的解集为
-5 -4 -3 -2 -1 0 1 2

一元一次不等式组教案

一元一次不等式组教案

一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。

二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。

是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。

2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2.了解一元一次不等式组及解集的概念。

3.会利用数轴解较简单的一元一次不等式组。

4.培养学生分析、解决实际问题的能力。

5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。

培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。

3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。

三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。

但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。

这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

一元一次不等式组

一元一次不等式组

例 10、解下列不等式: (1) | |≤4; (2) <0 (3) (3x-6)(2x-1) >0
【课堂练习】
3
例 1.若不等式
的解集为
,求 k 值。
3 B、m=3 C、m<3 D、m≤3
的解集是 x>3,则 m 的取值范围是( )。
例 3.若不等式组
8
类型(设 a>b)不等式组的解集 1. (同大型,同大取大)x>a
数轴表示
2.
(同小型,同小取小) x<b
3.
(一大一小型,小大之间) b<x<a
4.
(比大的大,比小的小空集)无解
【经典例题】 3x 1 2 x 1 例 1、解不等式组 2 x 8
① ②
1
例 2、解不等式组
例 3、解不等式组
6
x 1 13、不等式组 x≥2 x 5
的解集是_________________
x 2 14、不等式组 的解集为 x>2,则 a 的取值范围是_____________. x a 2 x a 1 15、若不等式组 的解集为-1<x<1,那么(a+1) (b-1)的值等于________. x 2b 3 4a x 0 16、若不等式组 无解,则 a 的取值范围是_______________ x a 5 0

1 2
2、在数轴上从左至右的三个数为 a,1+a,-a,则 a 的取值范围是( B、a<0 C、a>0 D、a<-
x 1≤ 0, 3、不等式组 的解集在数轴上表示为( 2 x 3 5
1
A

1
x
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式组
一元一次不等式组是数学中的重要概念,在学习中,对它的理解和运用至关重要。

下面,我们就从定义、解法、特殊情况和应用几个方面来深入讨论一元一次不等式组。

一元一次不等式组是由多个一元一次不等式组成的组合,由数学符号“≤”、“≥”、“<”、“>”来定义不等式关系,以逻辑运算与算术运算结合而成。

一般情况下,一元一次不等式组由n个一元一次不等式组成。

一元一次不等式组的解法基本上可以被分为算术解法、图形解法和几何解法。

算术解法主要是用一元一次不等式的乘法和除法解法来求解。

图形解法是基于图形的绘制来求解一元一次不等式组的方法,是将数学问题中的一元一次不等式转化为在坐标平面上的不等式问
题求解的方法。

几何解法是利用几何的基本规律来求解的另一种方法。

一元一次不等式组也有特殊情况,比如一元一次不等式组中只有一个不等式,此时可以把这个不等式看做一元一次不等式组。

另外,当一元一次不等式组中含有多个不等式时,如果其中一组不等式完全包含在另一组不等式中,则只需要考虑最大不等式组中的解就不会错过其他情况。

一元一次不等式组的应用也十分广泛,它可以用来解决许多实际问题,比如团体消费中的人头计数问题,例如2人消费20元,4人
消费32元,这种问题可以用一元一次不等式组来求解;另外,在计
算机编程中,也有许多涉及到不同约束和条件的问题,也可以用一元
一次不等式组来解决,比如零件声明中的规格约束、参数限制等等。

以上讲解了一元一次不等式组的定义、解法、特殊情况和应用,总的来说,一元一次不等式组在数学中占据重要地位,在学习和实际应用中都有着重要的作用。

只要掌握好一元一次不等式的知识,就能在多个方面帮助我们解决实际问题。

相关文档
最新文档