移动通信信道-2

合集下载

移动通信__知识点

移动通信__知识点

第1章1、什么是移动通信?与其他通信方式相比,移动通信有哪些特点?答:移动通信是指通信的一方或双方在移动状态中或临时停留在某一非预定位置上进行信息传递和交换的方式。

特点:1)移动通信的电波传播环境恶劣;2)多普勒频移会产生附加调制;3)移动通信受干扰和噪声的影响;4)频谱资源紧缺;5)建网技术复杂;6)由于移动环境恶劣,对设备的可靠性和工作条件要求较高。

2、移动通信主要使用VHF(甚高频)和UHF(特高频)频段的主要原因有哪些?答:(1)VHF/UHF 频段较适合移动通信。

(2)天线较短,便于携带和移动。

(3)抗干扰能力强。

3、移动通信有哪几种工作方式?分别有什么特点?答:1)单工制(同频单工):指通信双方使用相同的工作频率的按键通信方式。

通信双方设备交替进行接收和发射,即发射不能接收,接收时不能发射。

2)半双工制(异频单工):指收、发信机分别用两个不同频率的按键通话方式。

3)全双工制:指通信双方收、发信机同时工作,任一方发话的同时,也能收到对方的语音,无需PTT按键。

特点:参见课本Page54、蜂窝移动通信系统的组成(由哪些功能实体组成?):交换网络子系统(NSS)、基站子系统(BSS)、移动台(MS)。

5、FDD和TDD的概念和各自的应用场合是什么?答:频分双工(FDD)适合于宏小区、较大功率、高速移动覆盖;时分双工(TDD)适合微小区、低功率、慢速移动覆盖。

6、第一代移动通信系统(1G)(模拟蜂窝移动通信系统)缺点:频谱利用率低,系统容量有限,抗干扰能力差,业务质量比有线电话差,有多种系统标准,跨过漫游难,不能发送数字信息,不能与综合业务数字网(ISDN)兼容。

7、2G(数字蜂窝移动通信系统)缺点:系统带宽有限,限制了数据业务的发展,也无法实现移动多媒体业务,而且由于各国的标准不统一,无法实现各种体制之间的全球漫游。

8、3G 的提出主要有三个目的:一是解决频谱资源问题,提高频谱使用的效率;二是解决移动通信的全球漫游问题;三是提供移动多媒体业务。

第2讲-大尺度衰落信道

第2讲-大尺度衰落信道

概述(2) 移动通信信道中的3种电磁波传播:
反射:当电磁波遇到比其波长大得多得物体时发生 反射,反射发生于地球表面、建筑物和墙壁表面。 绕射:当接收机与发射机之间的无线路径被尖利的 边缘阻挡时发生绕射。 散射:当波穿行的介质中存在小于波长的物体并且 单位体积内阻挡体的个数非常巨大时,发生散射。 散射产生于粗糙表面、小物体或其他不规则物体。
Okumura模型
Okumura模型
丘陵地的修正因子Kh 丘陵地的地形参数用地形起伏高度Δh表征。它的 定义是:自接收点向发射点延伸10 km的范围内, 地形起伏的90%与10%的高度差即为Δh。这一定 义只适用于地形起伏达数次以上的情况,对于单 纯斜坡地形将用后述的另一种方法处理。
Okumura模型
Okumura模型
Okumura模型 移动台天线修正因子Hm(hm,f)
当移动台天线高度不是 3m时,需用移动台天线高度增益因子 Hm(hm,f)加 以修正,见上页右图。当hm >3m时,Hm(hm, f)>0 dB;反之,当hm< 3m时,Hm(hm, f)<0 dB。 当移动台天线高度大于5 m以上时,其高度增益因子Hm(hm, f)不仅与天线 高度、频率有关,而且还与环境条件有关。例如,在中小城市, 因建筑 物的平均高度较低,故其屏蔽作用较小,当移动台天线高度大于4m时, 随天线高度增加,天线高度增益因子明显增大;若移动台天线高度在1~ 4m范围内,Hm(hm, f)受环境条件的影响较小,移动台天线高度增高一倍 时,Hm(hm,, f)变化约为3 dB。
Okumura模型
适用范围:适用于城市宏小区。 频率f:150~1500MHz 距离d:1~100km 基站天线高度 hb:30~100m
Okumura模型

移动通信中无线信道特性的研究

移动通信中无线信道特性的研究

移动通信中无线信道特性的研究作者:胡博来源:《城市建设理论研究》2013年第25期【摘要】在无线通信中,无线信道对信号的影响是巨大的,因此,研究移动通信中的无限信道很有必要,这也是提高移动通信性能的一个很关键的环节。

本文将从以下几个方面来分析移动通信中无线信道特性。

【关键词】移动通信;无线信道;特性中图分类号:E965 文献标识码:A 文章编号:一、前言目前,在国内的移动通信中,相关人员对无限信道的研究还不够深入,不能够很好的掌握无线信道的规律,因此,研究移动通信中无线信道特性很有必要。

二、无线信道对信号的影响信号在无线信道中传播一般可归结为反射、绕射和散射三种基本传播方式,无线信号无论是在前向链路还是在反向链路的传播,都会以多种方式受到物理信道的影响。

由于无线信道的复杂性和时变性,信号通过无线信道时会受到各个方面的衰减损耗。

总的说来,信道对无线信号的影响可归纳为自由空间路径损耗、阴影衰落和多径衰落三种。

在无线信道中,有三种最重要的多径衰落效应:信号强度在一段很小的传播距离或时间间隔内快速变化产生的多径衰落;不同路径信号的多普勒频移引起的随机频率变化以及多径传播时延扩展引起的多径衰落效应。

无线信道的多径衰落会导致信号在不同维(时间、频率、空间)的扩展,对无线通信信号具有明显的影响。

三、通信系统中信道模型的演变通过进行实地测量和分析,我们可以将各种无线信道抽象为模型,然后依据这些模型对无线通信系统进行设计和优化。

理论上来说,无线通信信道就是一个线性滤波器。

发射的信号通过这个滤波器后被接收,所以信号传输就是一个信号处理的过程。

信道模型给出了信道的基本统计信息,因此它是信道估计的基础。

我们这里要讨论的信道模型有以下几类:TU模型,ITU信道模型,LTE扩展信道模型。

在GSM网络投入运行之前,TU模型就已经被用来决定GSM中均衡器的需求和性能。

后来3GPP组织提出的一个新的TU模型,其与旧TU模型的最大区别在于新模型的最大时延只有旧模型的一半。

LTE移动通信系统 第2章 OFDM技术

LTE移动通信系统 第2章 OFDM技术

单载波传输系统
单载波调制与多载波调制
多载波传输通过把数据流分解为若干个子比特流,构成 多个低速率符号并行发送的传输系统。
g (t )
g (t )
g (t )
e jw0t e jwkt
e jwN t
信道
e jw0t
g (t)
e jwkt
g (t)
e jwN t
g (t)
多载波通信系统基本结构
单载波调制与多载波调制
编码
串/并 变换
IFFT
并/串 变换
增加循环
前缀
D/A
信道
解码
并/串 变换
均衡
FFT
串/并 变换
去循环前 缀
A/D
OFDM系统框图
第2章 OFDM技术
➢单载波调制与多载波调制 ➢OFDM的优缺点 ➢OFDM基本原理 ➢OFDM的IFFT实现 ➢OFDM系统的抗多径原理 ➢OFDM系统中的信道估计方法 ➢OFDM中的同步技术 ➢MC-CMDA(OFDM-CDMA)技术
是 xg n 和 hn 的线性卷积,即 r(n) xg (n)h(n),这里*表示线性卷积,
hn =[h(nM,0) h(nM,1) … h(nM,L-1)]。
在接收端,首先从接收到的信号向量中去掉保护间隔,形成向量
T
yn=[r(n,G) r(n,G+1) … r(n,M+G+1)]。很明显,xg n是由
OFDM的IFFT实现
OFDM调制信号的数学表达形式为:
M 1
D(t) d (n) exp( j2 fnt),t [0,T ] n0
各子载波的频率为
fn f0 n / Ts
当不考虑保护间隔时,则由(2.1)、(2.2)可得:

移动通信电子课件教案-第3章_移动信道的传播特性

移动通信电子课件教案-第3章_移动信道的传播特性
d(km )d1d2又d1 2Reht,d2 2Rehr 2Re( ht hr) 4.12( ht hr)(m)
第3章 移动信道的传播特性
3.1.4 障碍物的影响与绕射损耗
P
x T
d1 h1
x 为菲涅尔余隙
T d1
d2
R d2
h2
x
h1
P
R h2
(a)
(b)
图 3 - 3 障碍物与余隙
(a) 负余隙; (b) 正余隙
第3章 移动信道的传播特性
t = t0 t= t0+
t1 t1+ 1 1 t1+ 1 2 (a)
t2 t2+ 2 2t2+ 2 3 t2+ 2 1 (b)
t= t0+
t3
(c)
图 3 - 11 时变多径信道响应例如 (a) N=3; (b) N=4; (c) N=5
t3+ 3 4
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.2.4 多径时散与相关带宽 ——续
时延扩展Δ:最大传输时延和最小传输时延的差值,即最后 一个可分辨的时延信号与第一个时延信号到达时间的差值, 实际上就是脉冲展宽的时间。
表示时延扩展的程度。
归一化时延信号的包络E(t):将移动通信中接收机接收 到的多径的时延信号强度进行归一化。
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.1 无线电波传播特性 3.2 移动信道的特征 3.3 陆地移动信道的传输损耗 3.4 移动信道的传播模型 思考题与习题
第3章 移动信道的传播特性
引言
三种研究无线移动通信信道的根本方法: 理论分析:用电磁场理论和统计理论分析电波在移动
环境中的传播特性,并用数学模型来描述移动信道。 现场电波实测:在不同的传播环境中,做电波实测实

2G 移动通信原理

2G 移动通信原理

2G 移动通信原理2G 移动通信原理1. 简介2G移动通信(第二代移动通信)是指数字化的移动通信系统,相比于第一代移动通信系统,2G系统具有更高的容量、更好的音频质量和更强的数据传输能力。

本文将介绍2G移动通信的原理。

2. 2G移动通信技术2G移动通信系统采用数字信号替代了模拟信号,主要使用的技术有以下几种:2.1 TDMATDMA(时分多址)是一种多址技术,将时间分成多个时隙,每个时隙都可以用于一个通信用户的数字信号传输,以实现多个用户传输数据。

2.2 FDMAFDMA(频分多址)是一种多址技术,将频谱分成一系列的子信道,每个子信道都可以给一个通信用户使用,以实现多个用户进行通信。

2.3 CDMACDMA(码分多址)是一种多址技术,通过在信号中引入编码序列来区分不同的用户,实现多个用户使用同一频率进行通信。

3. 2G移动通信网络结构2G移动通信网络主要由以下几部分组成:3.1 基站子系统(BSS)基站子系统由基站控制器(BSC)和多个基站(BTS)组成,BTS 负责无线信号的传输,BSC负责对多个BTS进行管理与控制。

3.2 主控制器(MSC)主控制器是网络的核心节点,负责处理用户的呼叫、系统间的信令传输等。

3.3 数据库数据库存储用户的注册信息、呼叫记录等。

4. 2G移动通信的工作原理2G移动通信的工作原理如下:4.1 首次接入当一个移动设备首次接入2G移动通信网络时,需要进行注册。

设备向网络发送注册请求,网络接收到后,将设备的信息存储到数据库中,并为设备分配一个临时标识。

4.2 呼叫过程当用户发起呼叫时,移动设备会向网络发送呼叫请求,网络接收到后,查找目标用户的位置,并将呼叫请求转发给目标用户所在的基站。

基站接收到呼叫请求后,向目标用户发起寻呼,当目标用户接听时,呼叫建立。

4.3 呼叫结束呼叫结束时,设备和网络会进行一系列的信令交互,最终释放呼叫资源。

5. 2G移动通信的优缺点2G移动通信系统具有以下优点:- 高容量:2G系统支持多用户通信,提供更高的容量。

移动通信专业术语全解

移动通信专业术语全解

移动通信专业术语全解移动通信专业术语全解一、无线通信基础概念1. 频段(Frequency Band):指用于传输无线信号的频率范围,常用的频段有2G(GSM)、3G(CDMA2000、WCDMA)、4G(LTE)等。

2. 带宽(Bandwidth):指无线信号的传输能力,通过单位时间内传输的数据量来衡量。

3. 信道(Channel):用于无线信号传输的特定频段或频带。

4. 调制解调器(Modem):将数字信号与模拟信号相互转换的设备。

5. 天线(Antenna):用于接收和发射无线信号的装置。

6. 信噪比(Signal-to-Noise Ratio,SNR):衡量有用信号与噪声之间的比例关系,信噪比越高,信号质量越好。

二、移动通信网络1. 基站(Base Station):用于提供无线通信服务的设备,也称为移动通信基础设施。

2. 小区(Cell):基站覆盖的一个特定范围,用于提供无线信号覆盖。

3. 蜂窝网络(Cellular Network):由多个小区组成的移动通信网络,每个小区都有一个基站。

4. 漫游(Roaming):指移动用户在本地网络之外使用其他网络的服务。

5. 话务(Traffic):指移动通信网络中的数据传输,如语音通话、短信、数据传输等。

6. 网络覆盖(Network Coverage):指移动通信网络的信号覆盖范围。

三、移动通信技术1. 2G(第二代移动通信技术):指第二代移动通信技术,如GSM(Global System for Mobile Communications)。

2. 3G(第三代移动通信技术):指第三代移动通信技术,如CDMA2000、WCDMA(Wideband Division Multiple Access)。

3. 4G(第四代移动通信技术):指第四代移动通信技术,如LTE(Long Term Evolution)。

4. 5G(第五代移动通信技术):指第五代移动通信技术,为更高速、更可靠的移动通信提供支持。

移动通信第2讲调制

移动通信第2讲调制
h=0.5是移频键控为保证良好误码性能所允许的最小调制指数 h=0.5时,波形相关系数为0,信号是正交的
MSK也是一类特殊形式的OQPSK,用半正弦脉冲取代 OQPSK的基带矩形脉冲

信号表达式: S (t ) cos ct ak t xk 2Tb
2PSK
Eb 4N0
Eb 2N0

2FSK
BER
-6 -7 -8 -9 -10 -11
2PSK
-12 0
1
1 P 3 5 6erfc9 10 2b 4 7 8 Eb/N0 (dB) 2
Eb 11 12 13 N0
14
移动通信中常用的调制技术
2.数字调制方法的分类
3. 基本调制方法原理及性能简要分析
2ASK、2FSK、2PSK和2DPSK调制原理波形如下图所示。
基带信号 1 0 1 1 0 0 1
2ASK
2FSK
2PSK
2DPSK
性能简要分析
欧式空间距离法 将二进制的已调信号矢量表达为二维欧式空间的距离,显 然距离越大,抗干扰性就越强。 2ASK 当基带信号为“0”时,不发送载波,记A0=0V; 当基带信号为“1”时,发送归一化载波,记A1=1V; 则可用下列图型表示
高斯滤波器满足以上要求
输入数据 预调制滤波器 FM 调制器 调制指数为0.5
不归零(NRZ)
图 2 - 11 GMSK信号的产生原理
1. 高斯低通滤波器
冲击响应为:
g(t) 1.0
h(t ) exp( a t )
2 2 2
BT = bb 0.7 0.4 0.3

2 Bb 1n 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

移动通信信道-2
1. 引言
在移动通信系统中,信道是指传输无线电信号的介质。

移动信
道分为下行信道和上行信道,分别用于移动通信系统中的BS(基站)向UE(用户设备)发送数据,以及UE向BS发送数据。

2. 下行信道
下行信道是指BS向UE发送数据的信道。

在移动通信系统中,
下行信道经常用于传输语音、数据和控制信号。

下行信道可以分为
广播信道和多址信道。

2.1 广播信道
广播信道是指BS向所有UE广播信息的信道。

在这种信道上,
BS发送的数据可以被所有UE接收到。

广播信道常用于发送系统信息、公告、广告等信息。

2.2 多址信道
多址信道是指BS向多个UE发送数据的信道。

在这种信道上,
BS发送的数据会经过调度算法分配给不同的UE。

多址信道常用于传
输用户数据和控制信号。

3. 上行信道
上行信道是指UE向BS发送数据的信道。

在移动通信系统中,
上行信道用于传输用户数据、控制信号和反馈信息。

上行信道可以
分为分时信道和分频信道。

3.1 分时信道
分时信道是指UE在不同的时间片段上向BS发送数据的信道。

在这种信道上,BS会根据时隙分配算法将不同的UE的数据进行分
时传输。

分时信道常用于传输用户数据和控制信号。

3.2 分频信道
分频信道是指UE通过不同的频率向BS发送数据的信道。

在这
种信道上,不同的UE在不同的频段上进行数据传输,从而避免了频
率冲突。

分频信道常用于传输用户数据和反馈信息。

4.
移动通信信道是移动通信系统中非常重要的一部分,它承载着
数据和控制信号的传输。

下行信道用于BS向UE发送数据,上行信
道用于UE向BS发送数据。

下行信道可以分为广播信道和多址信道,上行信道可以分为分时信道和分频信道。

了解移动通信信道的工作
原理和分类对于理解移动通信系统的运行原理和性能优化具有重要
意义。

相关文档
最新文档