移动通信技术 第三章 移动信道的传播特性

合集下载

2022移动通信第三章移动信道的传播特性

2022移动通信第三章移动信道的传播特性

2022移动通信第三章移动信道的传播特性在当今的信息时代,移动通信已经成为我们生活中不可或缺的一部分。

无论是日常的沟通交流,还是工作中的信息传递,都离不开移动通信的支持。

而要实现稳定、高效的移动通信,就必须深入了解移动信道的传播特性。

这一章,我们就来探讨一下 2022 年移动通信中移动信道的传播特性。

移动信道是指移动终端(如手机)和基站之间的无线传播路径。

它的传播特性非常复杂,受到多种因素的影响。

首先,地形地貌是影响移动信道传播特性的重要因素之一。

在城市环境中,高楼大厦林立,会导致信号的反射、折射和散射。

信号可能会在建筑物之间来回反射,形成多径传播。

这就好比我们在一个有很多镜子的房间里说话,声音会经过多次反射才到达对方的耳朵,从而使得声音变得复杂和不稳定。

在山区,地形起伏较大,信号可能会被山峰阻挡,出现阴影效应,导致某些区域信号较弱甚至完全没有信号。

其次,气候条件也会对移动信道的传播特性产生影响。

例如,在雨天,雨水会吸收和散射无线电波,从而导致信号衰减。

大雾天气中,水汽会对信号产生类似的影响。

此外,雷电等恶劣天气还可能会产生电磁干扰,影响信号的质量。

移动信道的传播特性还与信号的频率有关。

一般来说,频率越高,信号的穿透力越弱,但能够提供更高的数据传输速率。

在移动通信中,不同的频段具有不同的传播特性。

低频段的信号传播距离较远,但带宽较窄,数据传输速率相对较低;高频段则相反,虽然传输速率快,但传播距离较短,覆盖范围较小。

多径传播是移动信道的一个重要特性。

当信号从发射端发出后,可能会通过多条不同的路径到达接收端。

这些路径的长度和传播环境各不相同,导致信号到达接收端的时间、相位和幅度都有所差异。

这种多径效应会引起信号的衰落,包括瑞利衰落和莱斯衰落。

瑞利衰落通常发生在没有直射路径的情况下,信号幅度服从瑞利分布;而当存在较强的直射路径时,则会出现莱斯衰落。

为了应对移动信道的复杂传播特性,移动通信系统采用了一系列的技术手段。

移动通信第三章移动信道的传播特性

移动通信第三章移动信道的传播特性

移动通信第三章移动信道的传播特性在我们的日常生活中,移动通信已经成为了不可或缺的一部分。

无论是打电话、发短信,还是上网浏览、在线视频,都离不开移动通信的支持。

而要实现稳定、高效的移动通信,就必须深入了解移动信道的传播特性。

这一章,咱们就来好好聊聊这个话题。

移动信道的传播特性是相当复杂的。

想象一下,当您在移动中打电话时,信号会受到各种各样的影响。

比如建筑物的阻挡、地形的起伏、天气条件的变化,甚至是人群的干扰等等。

首先,我们来谈谈多径传播。

这就好比您在一个充满镜子的房间里说话,声音会从不同的方向反射回来,形成多个路径到达接收点。

在移动通信中,信号也会通过多条不同的路径从发射端到达接收端。

这些路径的长度和传播条件各不相同,导致信号到达的时间、强度和相位都有所差异。

这就会引起信号的衰落和失真。

信号的衰落可以分为大尺度衰落和小尺度衰落。

大尺度衰落主要是由于距离的增加和障碍物的遮挡导致信号强度的大幅下降。

比如说,您在远离基站的地方,或者身处高楼大厦密集的区域,信号可能就会变得很弱。

小尺度衰落则是由于多径传播引起的信号快速波动。

这种衰落可能在很短的时间内发生,甚至在几分之一秒内,让您的通话出现断断续续的情况。

接下来,说说多普勒效应。

当移动台相对于信号源运动时,接收到的信号频率会发生变化。

这就好比一辆鸣笛的汽车从您身边驶过,您会听到声音的音调发生变化。

在移动通信中,如果您在快速移动,比如在高铁上,多普勒效应就会比较明显,可能会影响信号的质量。

除了这些,移动信道还受到阴影衰落的影响。

这通常是由于大型障碍物,如山脉、高楼等阻挡了信号的传播,造成某些区域的信号强度明显低于其他区域,形成了所谓的“阴影区”。

再来说说传播损耗。

信号在传播过程中会不断损耗能量,这包括自由空间传播损耗、反射损耗、绕射损耗等等。

自由空间传播损耗是指信号在没有任何障碍物的理想空间中传播时,随着距离的增加而逐渐减弱。

反射损耗则是当信号遇到光滑的表面时,一部分能量被反射回去,导致接收端接收到的信号强度降低。

移动通信重点知识总结

移动通信重点知识总结

第一章概论1、移动通信的特点。

1、移动通信必须利用无线电波进行信息传输2、移动通信是在复杂的干扰环境中运行的3、移动通信可以利用的频谱资源非常有限4、移动通信系统的网络结构多种多样,网络管理和控制必须有效5、移动台必须适合于在移动环境中使用2、移动通信按多址方式分为频分多址(FDMA),时分多址(TDMA),码分多址(CDMA )。

按信号形式分为模拟网和数字网。

3、移动通信的传输方式分:单向传输(广播式)、双向方式(应答式)。

双向传输工作方式有单工、双工、半双工。

4、单工通信:通信双方电台交替地进行收信和发信。

根据收、发频率的异同,又可分为同频单工和异频单工。

例:寻呼系统。

5、双工通信:指通信双方可同时进行传输消息的工作方式。

双工通信一般使用一对频道,以实施频分双工(FDD)工作方式,接受和发射可同时进行,故耗电量较大。

为了缓解这个问题和减少对系统频带的要求,可在通信设备中采用同步的半双工通信方式,即时分双工(TDD)。

故频分双工(FDD)和时分双工(TDD)相结合。

例:手机。

(FDD:用不同载频来区分两个通信方向。

TDD:收、发采用同一载频,通过时间上的交替使用同一载频来区分两个通信方向。

)6、半双工通信,移动台采用类似单工的“按讲”方式,即按下按讲开关,发射机才工作,而接收机总是工作的。

基站工作情况与双工方式完全相同。

例:对讲机。

7、数字移动通信系统有哪些优点?答:数字通信系统的主要优点可归纳如下:(1)频谱利用率高,有利于提高系统容量。

(2)能提供多种业务服务,提高通信系统的通用性。

(3)抗噪声、抗干扰和抗多径衰落的能力强(4)能实现更有效、灵活的网络管理和控制。

(5)便于实现通信的安全保密。

(6)可降低设备成本和减小用户手机的体积和重量。

8、若干年来,移动通信基本上围绕着两种主干网络在发展,这就是基于话音业务的通信网络和基于分组数据传输的通信网络。

9、蜂窝式组网的目的是解决常规移动通信系统的频谱匮乏,容量小,服务质量差,频谱利用率低等问题。

移动通信电子课件教案-第3章_移动信道的传播特性

移动通信电子课件教案-第3章_移动信道的传播特性
d(km )d1d2又d1 2Reht,d2 2Rehr 2Re( ht hr) 4.12( ht hr)(m)
第3章 移动信道的传播特性
3.1.4 障碍物的影响与绕射损耗
P
x T
d1 h1
x 为菲涅尔余隙
T d1
d2
R d2
h2
x
h1
P
R h2
(a)
(b)
图 3 - 3 障碍物与余隙
(a) 负余隙; (b) 正余隙
第3章 移动信道的传播特性
t = t0 t= t0+
t1 t1+ 1 1 t1+ 1 2 (a)
t2 t2+ 2 2t2+ 2 3 t2+ 2 1 (b)
t= t0+
t3
(c)
图 3 - 11 时变多径信道响应例如 (a) N=3; (b) N=4; (c) N=5
t3+ 3 4
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.2.4 多径时散与相关带宽 ——续
时延扩展Δ:最大传输时延和最小传输时延的差值,即最后 一个可分辨的时延信号与第一个时延信号到达时间的差值, 实际上就是脉冲展宽的时间。
表示时延扩展的程度。
归一化时延信号的包络E(t):将移动通信中接收机接收 到的多径的时延信号强度进行归一化。
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.1 无线电波传播特性 3.2 移动信道的特征 3.3 陆地移动信道的传输损耗 3.4 移动信道的传播模型 思考题与习题
第3章 移动信道的传播特性
引言
三种研究无线移动通信信道的根本方法: 理论分析:用电磁场理论和统计理论分析电波在移动
环境中的传播特性,并用数学模型来描述移动信道。 现场电波实测:在不同的传播环境中,做电波实测实

移动通信(第六版)(章坚武)课件章 (3)

移动通信(第六版)(章坚武)课件章 (3)
第3章 移动通信的电波传播
第3章 移动通信的电波传播
3.1 VHF、 UHF频段的电波传播特 性 3.2 电波传播特性的估算 3.3 传输模型的校正——路测
第3章 移动通信的电波传播
3.1 VHF、 UHF频段的电波传播特性
当前陆地移动通信主要使用的频段为VHF和UHF,即 150 MHz、450 MHz、900 MHz、1800 MHz。移动通信中的传播方式 主要有直射波、反射波和地表面波等传播方[JP2]式。 由于地 表面波的传播损耗随着频率的增高而增大, 传播距离有限, 因此在分析移动通信信道时, 主要考虑直射波和反射波的影 响。 图3-1表示出了典型的移动信道电波传播路径。
第3章 移动通信的电波传播
已知地球半径为R=6370 km, 设发射天线和接收天线高度 分别为hT和hR(单位为m), 理论上可得视距传播的极限距离d0为
d0 3.57( hR hT )km
(3-2)
由此可见, 视距决定于收、发天线的高度。天线架设越高,
视线距离越远。
第3章 移动通信的电波传播
第3章 移动通信的电波传播 设
A2
K 10 lg 2 2 dB
若A→0, K→-∞,则莱斯分布趋近于瑞利分布。
第3章 移动通信的电波传播
3.1.6 阴影衰落 当电波在市区传播时,必然会经过高度、位置、占地面积
等都不同的建筑物, 而这些建筑物之间的距离也是各不相同 的。 因此, 接收到的信号均值就会产生变化, 这就是阴影 衰落。由于阴影衰落造成的信号电平变化较缓慢, 因此又称 为慢衰落。
实际上,当考虑了空气的不均匀性对电波传播轨迹的影响 后, 在标准大气折射情况下,等效地球半径R=8500 km, 可得 修正后的视距传播的极限距离d0为

移动通信第三章(无线信道特性)

移动通信第三章(无线信道特性)
移 动 通 信 Mobile Communications
华南农业大学 胡洁
1
3.1
VHF、UHF电波传播特性
影响电磁波传播的三种基本传播机制:反射 、绕射、散射
基站天线
散射波 直射波
基站天线
绕射波
移动台天线
地面反射波 山峰
移动台天线
2
3.1
VHF、UHF电波传播特性
电磁波的传播方式 传播路径:
3.2
3.2.1 传播路径与信号衰落
移动信道的特征
d2 hb
d hm θ
θ
d1
10
图 3 – 6 移动信道的传播路径
3.2.1
传播路径与信号衰落
假设反射系数R=-1(镜面反射), 则合成场强E为
E E0 (1 a1e
j
2

d1
a2e
j
2

d 2
)
式中,E0是直射波场强,λ是工作波长,α1和α2
图 3-15 时变多径信道响应示例
27
(a) N=3; (b) N=4; (c) N=5
3.2.4
N
多径时散与相关带宽
接收到的信号为N个不同路径传来的信号之和,即
S0 (t ) ai Si [t i (t )]
ai是第i条路径的衰减系数,τi(t)为第i条路径的相对延时差
i 1
28
hb>200m时,Hb(hb, d)>0dB;反之,当hb <200m时,
Hb(hb, d)<0 dB。 同理,当移动台天线高度不是3m时,需用移动台 天线高度增益因子Hm(hm, f)加以修正,参见图 3 - 24(b)。 当hm>3m时,Hm(hm, f)>0dB; 反之,当hm<3m时, Hm(hm, f)<0dB。

移动通信PPT课件

移动通信PPT课件
2. 移动台受噪声的干扰并在强干扰情况下工作
移动台所受到的噪声影响主要来自于城市噪声、各 种车辆发动机点火噪声、微波炉干扰噪声等;
(1) 互调干扰 (2) 邻道干扰 (3) 同频干扰
3. 通信系统复杂
移动台的移动需要频率、功率控制,地址登记,越区切换,漫游跟 踪等技术,入网、计费管理
4. 对移动台的要求高
移动通信中建立一个呼叫是由BSS和SS共同完成的; BSS提供并管理MS和SS之间的无线传输通道,SS负责呼 叫控制功能,所有的呼叫都是经由SS建立连接的;OMS 负责管理控制整个移动网。
MS也是一个子系统。它实际上是由移动终端设备和用户 数据两部分组成的,移动终端设备称为移动设备;用户数 据存放在一个与移动设备可分离的数据模块中,此数据模 块称为用户识别卡(SIM)。
多普勒频移产生调制噪声
由于移动台的不断运动,当达到一 定速度时,如超音速飞机,固定点 接收到的载波频率将随运动速度v 的不同,产生不同的频移,即产生 多普勒效应,使接收点的信号场强 振幅、相位随时间、地点而不断地 变化
fd
v
cos
2021/7/1
图1.3 多普勒效应
10
1.1.1 移动通信的特点
③ 微小区:小区半径r=0.1~1km ④ 微微小区:小区半径r<0.1km,适于办公室、家庭等移动应用
环境。
2021/7/1
12
1.1.2 移动通信的组网理论
2. 频率覆盖
蜂窝系统的基站工作频率,由于传播损耗提供足够的隔离度, 在相隔一定距离的另一个基站可以重复使用同一组工作频率,称 为频率复用。.1.1 移动通信的特点
1.移动通信利用无线电波进行信息传输 传播环境复杂:直射波与随时间变化的绕 射波、反射波、散射波的叠加 多普勒效应:移动台的高速运动

移动通信教案

移动通信教案

《移动通信》教案授课单位:信息工程学院授课人:***授课对象:信工041-2授课时间:2007~2008学年第一学期1、本课程教学目的:“移动通信”是信息工程专业的专业课程.该课程较详细地介绍了移动通信的原理和实际应用系统。

通过本课程的学习使学生掌握和了解移动通信的基本理论,以及移动通信的发展、蜂窝移动通信系统的基本概念、移动通信的信道、移动通信系统的调制和组网技术、移动通信中的多址接入、移动通信网以及GSM 系统、CDMA系统和第三代移动通信技术等。

2、本课程教学要求:1.掌握移动通信的概念、特点;了解移动通信组网理论的基本内容;理解移动通信的发展历程及发展趋势;了解第三代移动通信系统的主要差别;了解移动通信的应用系统。

2.理解关于蜂窝的概念;了解频率复用的概念以及频率复用的模型;理解信道分配策略以及切换策略;理解干扰与系统容量之间的关系,了解如何在实际系统中用功率控制减少干扰以提高系统容量;了解各种提高系统容量的方法。

3.了解无线电波的传播特性,移动通信中的快衰落与慢衰落;掌握无线信道中信号的多径衰落和多普勒频移,掌握多径传播与快衰落、阴影衰落、时延扩展与相关带宽以及信道的衰落特征;掌握分集技术的基本概念;掌握分集信号的合并技术。

4.掌握多址接入的基本概念和多址接入方式,掌握FDMA技术的原理及系统的特点,了解FDMA系统中的干扰问题,掌握TDMA技术的原理及系统的特点,熟悉TDMA的帧结构,了解TDMA系统的同步与定时,掌握CDMA技术的原理及系统的特点,了解空分多址(SDMA)技术的原理;掌握系统容量的定义,熟悉FDMA、TDMA、CDMA系统容量的分析与比较。

5.掌握FDMA模拟蜂窝网,TDMA数字蜂窝网,CDMA移动通信系统。

3、使用的教材:郭梯云编,《移动通信》,西安电子科技大学出版社主要参考书目:啜钢王文博常永宇等编,《移动通信原理与应用》,北京邮电大学出版社,赵长奎编,《GSM数字移动通信应用系统》,国防工业出版社,顾肇基译,《GSM网络与GPRS》,电子工业出版社,第一章概论本章的教学目标和要求:重点掌握移动通信的概念、特点;了解移动通信组网理论的基本内容;理解移动通信的发展历程及发展趋势;;掌握移动通信的三种工作方式;了解移动中继方式;了解移动通信的应用系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移动台的速度也会对信号电平的衰落带来 影响。
2/16/2019
移动通信技术
3
VHF、UHF频段的电波传播特性
u 传播模型的建立
p
集中于给定范围内平均接收场强的预测, 和特定位置附近场强的变化。 p 分为大尺度传播模型和小尺度传播模型: ① 大尺度传播模型:描述发射机和接收机之 间(T-R)长距离(几百米或几千米)上 的场强变化的模型。 ② 描述短距离(几个波长)或短时间(秒级) 内的接收场强的快速波动的传播模型。
移动通信技术 12
p
2/16/2019
VHF、UHF频段的电波传播特性
p
菲涅尔余隙 :设障碍物与发射点、接收 点的相对位置如图3-3所示,图中x表示障 碍物顶点P至直线TR之间的垂直距离,在 传播理论中x称为菲涅尔余隙。
2/16/2019
移动通信技术
13
VHF、UHF频段的电波传播特性
(a)负余隙
2/16/2019 移动通信技术 7
VHF、UHF频段的电波传播特性
1. 直射波
p
p
直射波传播 :在自由空间中,电波沿直线传 播而不被吸收,也不发生反射、折射和散射 等现象而直接到达接收点的传播方式。 直射波传播损耗可看成自由空间的电波传播 损耗:
L 32 . 45 20 lg d 20 lg f( dB ) bs
p
2 h h T R d a b c d
2/16/2019 移动通信技术 17
VHF、UHF频段的电波传播特性
图3-5 反射波和直射波
2/16/2019 移动通信技术 18
VHF、UHF频段的电波传播特性
两路信号到达接收天线的时间差换算成相 位差为: t 2 2 d 0 T p 再加上地面反射时大都要发生一次反相, 实际的两路电波相位差Δφ为
2/16/2019 移动通信技术 4
VHF、UHF频段的电波传播特性
u 当前陆地移动通信主要使用的频段VHF和
UHF, 即150MHz、450MHz、900MHz、 1800MHz。
u 其频率收发间隔分别为:5.7MHz 、
10MHz 、 45MHz 、 95MHz。
2/16/2019
移动通信技术
其中,d为距离(km),f为工作频率(MHz)。
2/16/2019 移动通信技术 8
VHF、UH距离称为视线距离 d0。 p 已知地球半径为R=6370km,设发射天线 和接收天线高度分别为hT和hR(单位m), 理论上可得视距传播的极限距离为:
i 1
n
(3-8)
式中 为第 为第 R i ( t ) i条路径的接收信号; ii条路径 (t ) i (t ) 的传输时间; 为第i条路径的相位滞后, t ) t ) i( o i(
2/16/2019
(b)正余隙
14
图3-3 菲涅尔余隙 移动通信技术
VHF、UHF频段的电波传播特性
p
障碍物引起的绕射损耗与菲涅尔余隙之间 的关系如图3-4所示。其中x1称菲涅尔半 径(第一菲涅尔半径)。
结论:当横坐标x/x1>0.5时,则障碍物对 直射波的传播基本上没有影响。当x=0时, TR直射线从障碍物顶点擦过时,绕射损 耗约6dB;当x<0时,TR直射线低于障碍 物顶点,损耗急剧增加。
2/16/2019
移动通信技术
10
VHF、UHF频段的电波传播特性
2/16/2019
移动通信技术
11
VHF、UHF频段的电波传播特性
3. 绕射损耗
p
绕射:当接收机和发射机之间的无线路 径被尖利的边缘阻挡时发生绕射。由阻 挡表面产生的二次波散布于空间,甚至 于阻挡体的背面。 绕射损耗 :各种障碍物对电波传输所引 起的损耗 。
第三章
移动通信的电波传播
2/16/2019
移动通信技术
1
本章纲要
u 3.1 VHF、UHF频段的电波传播特性;
u 3.2 电波传播特性的估算(工程计算)
2/16/2019
移动通信技术
2
VHF、UHF频段的电波传播特性
u 无线电波传播特点:
p
由移动所带来的随机性;
p
p
复杂的路径带来信号电平的衰耗;
移动通信技术 15
p
2/16/2019
图3-4 绕射损耗与菲涅尔余隙之间的关系
2/16/2019 移动通信技术 16
VHF、UHF频段的电波传播特性
4. 反射波
电波在传输过程中,遇到两种不同介质 的光滑界面时,就会发生反射现象。 p 图3-5给出了从发射天线到接收天线的电 波由反射波和直射波组成的情况。反射 波与直射波的行距差为:
p
d 3 . 57 (h ( m ) h ( m )) ( km ) 0 R T
2/16/2019 移动通信技术 9
VHF、UHF频段的电波传播特性
p
当考虑空气的不均匀性对电波传播轨迹的 影响后,等效为地球半径R=8500km,可 得修正后的视距传播的极限距离:
d 4 . 12 (h ( m ) h ( m )) ( km ) 0 R T
5
VHF、UHF频段的电波传播特性
u 移动通信中传播的方式主要有直射波、反
射波、绕射波、散射波和地表面波等传播 方式。 和反射波的影响 。
u 在分析移动通信信道时,主要考虑直射波 u 图3-1为典型的移动信道电波传播路径。
2/16/2019
移动通信技术
6
VHF、UHF频段的电波传播特性
图3-1 典型的移动信道电波传播路径
p
2 d 0

2/16/2019
移动通信技术
19
VHF、UHF频段的电波传播特性
5. 散射
p
散射:当波穿行的介质中存在小于波长 的物体并且单位体积内阻挡体的个数非 常巨大时,发生散射。 散射波产生于粗糙表面,小物体或其他 不规则物体。在实际的通信系统中,树 叶、街道标志和灯柱等会引发散射。
移动通信技术 20
p
2/16/2019
VHF、UHF频段的电波传播特性
6. 多径效应与瑞利型衰落特性
Acos ct 设发射机发出的信号为: 则接收机接收端收到的合成信号为:
R ( t ) R t ) cos{ [ t t )]} i( c i(
i 1 n
R t ) cos {[ t t )]} i( c i(
相关文档
最新文档