第四章 杆件的应力
第四章 杆件的内力与内力图

第四章 杆件的内力与内力图一、选择题1.各向同性假设认为,材料沿各个方向具有相同的( ) A .应力 B .变形 C .位移 D .力学性质2.关于截面法下列叙述中正确的是( ) A .截面法是分析杆件变形的基本方法 B .截面法是分析杆件应力的基本方法 C .截面法是分析杆件内力的基本方法D .截面法是分析杆件内力与应力关系的基本方法 3.下列结论正确的是( )。
A.杆件某截面上的内力是该截面上应力的代数和B.杆件某截面上的应力是该截面上内力的平均值C.应力是内力的集度D.内力必大于应力4.常用的应力单位是兆帕(MPa ),1Mpa =( ) A .103N /m 2 B .106 N /m 2 C .109 N /m 2D .1012 N /m 25.长度为l 的简支梁上作用了均布载荷q ,根据剪力、弯矩和分布载荷间的微分关系,可以确定( )A .剪力图为水平直线,弯矩图是抛物线B .剪力图是抛物线,弯矩图是水平直线C .剪力图是斜直线,弯矩图是抛物线D .剪力图是抛物线,弯矩图是斜直线6.如图所示悬臂梁,A 截面上的内力为( )。
A.Q =ql ,M =0B.Q =ql ,M =21ql 2C.Q =-ql ,M =21ql 2D.Q =-ql ,M =23ql 27.AB 梁中C 截面左,右的剪力与弯矩大小比较应为( )。
A.Q c 左=Q c 右,M c 左<M c 右B.Q c 左=Q c 右,M c 左>M c 右C.Q c 左<Q c 右,M c 左=M c 右D.Q c 左>Q c 右,M c 左=M c 右8、为保证构件有足够的抵抗变形的能力,构件应具有足够的( ) A.刚度 B.硬度 C.强度 D.韧性 9.内力和应力的关系( )A 内力小于应力B 内力等于应力的代数和C 内力为矢量,应力为标量D 应力是单位面积上的内力 10、图示简支梁中间截面上的内力为( )。
钢结构基础第四章课后习题答案

第四章4.7 试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。
杆件由屈服强度2y f 235N mm =的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定不计残余应力。
320610mm E N =⨯2(由于材料的应力应变曲线的分段变化的,而每段的变形模量是常数,所以画出 cr -σλ 的曲线将是不连续的)。
解:由公式 2cr 2Eπσλ=,以及上图的弹性模量的变化得cr -σλ 曲线如下:4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为 2y f 235N mm =,弹性模量为 320610mm E N =⨯2,试画出 cry y σ-λ——无量纲关系曲线,计算时不计腹板面积。
f yyf (2/3)f y(2/3)f yx解:当 cr 0.30.7y y y f f f σ≤-=, 构件在弹性状态屈曲;当 cr 0.30.7y y y f f f σ>-=时,构件在弹塑性状态屈曲。
因此,屈曲时的截面应力分布如图全截面对y 轴的惯性矩 3212y I tb =,弹性区面积的惯性矩 ()3212ey I t kb =()322232232212212ey cryy y y yI t kb E E E k I tb πππσλλλ=⨯=⨯= 截面的平均应力 2220.50.6(10.3)2y ycr y btf kbt kf k f btσ-⨯⨯==-二者合并得cry y σ-λ——的关系式cry cry342cry σ(0.0273)σ3σ10y λ+-+-= 画图如下4.10 验算图示焊接工字型截面轴心受压构件的稳定性。
钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为0.6f yfyλσ0.20.40.60.81.0cryN=1500KN 。
解:已知 N=1500KN ,由支撑体系知对截面强轴弯曲的计算长度 ox =1200cm l ,对弱轴的计算长度 oy =400cm l 。
《工程力学》第4章 材料力学的基本概念

变或正应变”, 分别用 表示。
4.5 正应变与剪应变
(直角改变量)
➢ 在切应力作用下的微元体产生剪切变形; ➢ 剪切变形程度用微元体直角的改变量度量;
➢ 微元直角改变量称为切(或剪)应变, 用
表示。
4.5 正应变与剪应变
正负号规定
>0
<0
正应力 拉为正,压为负
32/60
4.4 杆件横截面上的应力----正应力与剪应力定义
梁
悬臂梁在集中力作用下,各个横截面上的弯矩不 相等;
固定端处的横截面上弯矩最大,该截面上各点处 内力不相等;
如何度量某点处内力的强弱程度----应力。
33/60
4.4 杆件横截面上的应力----正应力与剪应力定义
FP1 FP2
y
➢形变--形状的改变 物 体 的 形 状 可 用 它 各 部 分 的 长 度 和 角 度 来 表 示 , 因此,物体的形变可以归结为长度的改变和角度 的改变。
➢应变--可分为正应变(线应变)和切应变两种。
40/60
4.5 正应变与剪应变
x
dx
x x
u
x
u+du
x
du dx
➢ 在正应力作用下的微元,沿着正应力方向产生 伸长和垂直于正应力方向产生缩短,这种变形 称为线变形;
DFR
DA
p ΔFR ΔA
x
p
lim
ΔFR
z
ΔA0 ΔA
➢极限值反映了内力在该点处的强弱程度; ➢内力在一点的强弱程度称为集度。
34/60
4.4 杆件横截面上的应力----正应力与剪应力定义
➢应力是内力在一点处的集度; ➢应力可以理解为单位面积的内力; ➢工程构件,大多数情形下,内力非均匀分布,集度 的定义不仅准确而且重要,因为“ 破坏”或“ 失效” 往往从内力集度最大处开始; ➢单位为Pa或MPa(1kg·f、bar) ,工程上多用 MPa。
材料力学-杆件的变形计算

再进行一次积分,可得到挠度方程
EIzw ( M (x)dx)dx Cx D
其中, C 和 D 是积分常数,需要经过边界条件或者连续条件来拟
定其大小。
❖ 边界条件:梁在其支承处旳挠度或转角是已知旳, 这么旳已知条件称为边界条件。
❖ 连续条件:梁旳挠曲线是一条连续、光滑、平坦旳 曲线。所以,在梁旳同一截面上不可能有两个不同 旳挠度值或转角值,这么旳已知条件称为连续条件。
例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa,
= 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上旳正应力 σ (b) 螺栓旳横向变形△d
解:1) 求横截面正应力
l 0.04 7.4110-4
l 54 E 200 103 7.41104 148.2 MPa
M lBA BA GI p
180 7Ma π GI p
x
7 3
j
DB
2.33
第三节 梁旳变形
1、梁旳变形
梁必须有足够旳刚度,即在受载后不至于发生过大旳弯 曲变形,不然构件将无法正常工作。例如轧钢机旳轧辊,若 弯曲变形过大,轧出旳钢板将薄厚不均匀,产品不合格;假 如是机床旳主轴,则将严重影响机床旳加工精度。
dx
GI p
取
dj M x
dx GI p
单位长度扭转角 用来表达扭转变形旳大小
单位长度扭转角旳单位: rad/m
GI p 抗扭刚度
GI p 越大,单位长度扭转角越小
g
在一段轴上,对单位长度扭转角公式进行积分,
就可得到两端相对扭转角j 。
dj
dx
dj M x
轴向拉、压杆的内力及应力计算

AB段:用1-1截面在AB段内将杆截开,取左段为研究对象,以N1表示截面上的轴力,并假设为拉力。写出平
衡方程: ∑X=0,N1+P1=0
得 N1=-P1=-20KN 负号表示AB段轴力N1实际为压力。
BC段:同理写出平衡方程: ∑X=0,N2+P1-P2=0
得 N2=-P1+P2=-20+30=10KN 正号表示BC段轴力N2实际为拉力。
面垂直的应力为正应力,与截面相切的应力为剪应力。轴向拉伸、压缩时,杆件
截面上各点处产生正应力,且大小相等。若应力用σ表示,横截面积为A,轴力
为N,则
N
A
正应力的正负号规定:拉应力为正,压应力为负。
课题七 轴向拉、压杆的内力及应力计算
例:如图7-2a悬臂梁,已知P1=20KN,P2=30KN,P3=10KN,试画出杆的轴力图。
课题七 轴向拉、压杆的内力及应力计算
三、轴力图
表明沿杆长各横截面轴力变化规律的图形称为轴力图。用平行于杆轴线的坐 标表示横截面的位置,用垂直于杆轴线的坐标表示横截面上的轴力,按选定的比 例尺把正轴力画在轴的上方,负轴力画在轴的下方,并连成直线,就得到轴力 图。
四、轴向拉、压杆横截面上的应力
单位面积课题七 轴向拉、压杆的内力及应力计算
一、轴向拉伸和压缩
受力特点:直杆的两端沿杆轴线方向作用一对大小相等,方向相反的力。 变形特点:在外力作用下产生轴线方向的伸长或缩短。 当作用力背离杆端时,作用力是拉力,杆件产生伸长变形,叫做轴向拉伸。 见图7-1a 当作用力指向杆端时,作用力是压力,杆件产生压缩变形,叫做轴向压缩。 见图7-1b
图 7-1
课题七 轴向拉、压杆的内力及应力计算
杆件横截面上的应力

F
F:横截面上的轴力 A:横截面的面积
拉压杆斜截面上的应力
横截面----是指垂直杆轴线方向的截面; 斜截面----是指任意方位的截面。
F
F
F
①全应力:
②正应力:
③切应力:
1) α=00时, σmax=σ 2)α=450时, τmax=σ/2
试计算图示杆件1-1、2-2、和3-3截面上正 应力.已知横截面面积A=2×103mm2
在上下边缘处:
y = 0,
b
h
max
图示矩形截面简支梁受均布荷载作用,分别求最大剪力所在的截面上a,b,c三点处的切应力。 作出剪力图 各点处的切应力
矩形截面简支梁,加载于梁中点C,如图示。 求σmax , τmax 。
二、工字形截面梁的切应力
横截面上的切应力(95--97)%由腹板承担,而翼缘仅承担了(3--5) %,且翼缘上的切应力情况又比较复杂.为了满足实际工程中计算和设计的需要仅分析腹板上的切应力.
主应力及最大切应力
①切应力等于零的截面称为主平面 由主平面定义,令tα =0
可求出两个相差90o的a0值,对应两个互相垂直主平面。
②令
得:
即主平面上的正应力取得所有方向上的极值。
③主应力大小:
④由s1、s3、0按代数值大小排序得出:s1≥0≥s3
极值切应力:
①令:
②
可求出两个相差90o 的a1,代表两个相互垂直的极值切应力方位。
C
A
B
40
yc
FS
_
+
M
0.25
0.5
+
_
平面应力状态的应力分析 主应力
一、公式推导:
理论力学中的杆件受力分析与应力计算与设计
理论力学中的杆件受力分析与应力计算与设计杆件受力分析与应力计算是理论力学中的重要内容,它在工程设计和结构分析中起着至关重要的作用。
本文将介绍杆件受力分析的基本原理和方法,并探讨应力计算与设计中的一些关键问题。
一、杆件受力分析1. 弹性力学基本原理杆件受力分析的基础是弹性力学的基本原理。
根据胡克定律,杆件的应力与应变成正比。
而根据伯努利梁理论,杆件上的变形与施加的力和几何形状有关。
通过这些基本原理,可以推导出杆件受力分析的基本方程。
2. 杆件的静力学平衡在进行杆件受力分析时,需要根据静力学平衡条件,即力的平衡和力矩的平衡。
通过平衡条件,可以得到各个支点的受力情况,并进一步计算出杆件上各点的内力和外力。
3. 杆件的弯曲和剪切应力杆件在受力时会发生弯曲和剪切的变形,从而引起内力的产生。
根据梁的弯曲理论和材料的力学性质,可以计算出杆件在不同位置的弯曲和剪切应力。
这对于杆件的设计和选择材料具有重要意义。
二、应力计算与设计1. 杆件的选择和尺寸计算在进行杆件的应力计算与设计时,首先需要选择合适的杆件类型和材料。
不同杆件类型和材料的强度和刚度不同,因此需要根据具体情况进行选择。
同时,还需要计算出杆件的尺寸,以满足设计要求和使用条件。
2. 杆件的极限强度和安全系数在进行杆件设计时,需要考虑到杆件的极限强度和安全系数。
极限强度是指杆件能够承受的最大力或应力,而安全系数是指杆件的实际强度与设计所要求的强度之间的比值。
通过合理选择安全系数,可以保证杆件在使用过程中的安全性。
3. 杆件的疲劳和稳定性设计杆件在长期使用过程中会受到疲劳和稳定性的影响。
在进行杆件设计时,需要考虑到疲劳和稳定性的问题,并进行相应的计算和分析。
通过合理设计杆件的结构和选择合适的材料,可以提高杆件的疲劳寿命和稳定性。
三、杆件设计中的一些关键问题1. 材料的选择和力学性质杆件的设计离不开材料的选择和力学性质的了解。
不同材料具有不同的力学性质,如强度、刚度、韧性等。
杆件受力变形和应力分析
杆件受力变形和应力分析杆件受力变形和应力分析是工程力学中的一个重要内容,它们揭示了杆件在受到外力作用时的变形和内部应力分布情况,对结构的设计和计算具有重要意义。
本文将从杆件受力变形和应力分析的原理、常见方法和应用等方面进行详细阐述。
在进行杆件受力变形和应力分析时,通常可以采用以下方法:1.静力学方法:静力学方法是一种基于平衡方程的分析方法,通过分析杆件所受外力的平衡条件,求解杆件内部的应力分布。
其中常用的方法有力的分解、转矩平衡、杆件的变形和应力分析、杆件的受力等。
2.变形分析方法:变形分析方法是通过计算杆件在受力过程中的变形情况来求解杆件的应力分布。
常用的方法有杆件的伸长、缩短、弯曲和扭转等。
3.应力分析方法:应力分析方法是通过计算杆件内部的应力分布来确定杆件的受力状态。
常用的方法有拉伸、压缩、弯曲、剪切和扭转等。
以上方法是进行杆件受力变形和应力分析的基本方法,它们可以单独应用,也可以相互配合使用。
杆件受力变形和应力分析的应用非常广泛,特别是在结构工程中。
例如,在桥梁工程中,通过对桥梁杆件的受力变形和应力分析,可以确定桥梁的结构安全性和稳定性。
在建筑工程中,通过对建筑结构杆件的受力变形和应力分析,可以确定建筑物的结构强度和刚度。
此外,在机械工程、航空航天工程、汽车工程等领域,杆件受力变形和应力分析也被广泛应用。
总之,杆件受力变形和应力分析是工程力学领域中的基础内容,对于结构的设计和计算具有重要意义。
通过正确的受力变形和应力分析,可以确定杆件的受力状态和结构性能,为工程实践提供可靠的理论依据。
杆件应力及强度计算
P
BC
FNAB 30 103 149Mpa 6 AAB 201 10
FNBC 26 103 2.6Mpa 4 ABC 100 10
拉伸、压缩与剪切
•斜截面上的应力
P
拉压的内力和应力
有些材料在破坏时并不总是沿横截面,有的是沿斜截面。因此要进 一步讨论斜截面上的应力。 k 设拉力为P,横截面积 为A, P
材料力学
长沙理工大学
蔡明兮
2018年8月8日星期三
第四章
杆件应力与强度计算
拉伸、压缩与剪切
•横截面上的应力
A、几何方面: 根据实验现象,作如下假设:
拉压的内力和应力
平截面假设:变形前的横截面,变形后仍然保持为横截面, 只是沿杆轴产生了相对的平移。 应变假设:变形时纵向线和横向线都没有角度的改变,说明 只有线应变而无角应变。
o
o
拉伸、压缩与剪切
•高温短期
When t 250o ~ 300o C When t 2时间的影响
以低碳钢为例,当温度升高,E、S降低。
b b
& &
在低温情况下。象低碳钢, p 、S增大,减小。即发生冷脆现象。
max
s
拉伸、压缩与剪切
剪切的实用计算:
剪切和挤压的实用计算
FS A
剪切的强度条件:
P
P
FS [ ] A
Q
) [1 ] (塑性材料) (0.6 ~ 0.8 [] 0.8 ~ 1.0) [1 ] (脆性材料) ( [1 ] 为材料的许用拉应力
拉伸、压缩与剪切
2、选择截面
钢结构基础第四章课后习题答案
第四章4.7 试按切线模量理论画出轴心压杆的临界应力和长细比的关系曲线。
杆件由屈服强度 2y f 235N mm =的钢材制成,材料的应力应变曲线近似地由图示的三段直线组成,假定不计残余应力。
320610mm E N =⨯2(由于材料的应力应变曲线的分段变化的,而每段的变形模量是常数,所以画出 cr -σλ 的曲线将是不连续的)。
解:由公式 2cr 2Eπσλ=,以及上图的弹性模量的变化得cr -σλ 曲线如下:4.8 某焊接工字型截面挺直的轴心压杆,截面尺寸和残余应力见图示,钢材为理想的弹塑性体,屈服强度为2y f 235N mm =,弹性模量为 320610mm E N =⨯2,试画出 cry y σ-λ——无量纲关系曲线,计算时不计腹板面积。
解:当 cr 0.30.7y y y f f f σ≤-=, 构件在弹性状态屈曲;当 cr 0.30.7y y y f f f σ>-=时,构件在弹塑性状态屈曲。
因此,屈曲时的截面应力分布如图全截面对y 轴的惯性矩 3212y I tb =,弹性区面积的惯性矩 ()3212ey I t kb =截面的平均应力 二者合并得cry y σ-λ——的关系式画图如下4.10 验算图示焊接工字型截面轴心受压构件的稳定性。
钢材为Q235钢,翼缘为火焰切割边,沿两个主轴平面的支撑条件及截面尺寸如图所示。
已知构件承受的轴心压力为N=1500KN 。
解:已知 N=1500KN ,由支撑体系知对截面强轴弯曲的计算长度 ox =1200cm l ,对弱轴的计算长度oy =400cm l 。
抗压强度设计值 2215f N mm =。
(1) 计算截面特性毛截面面积 22 1.2250.850100A cm =⨯⨯+⨯=截面惯性矩 3240.850122 1.22525.647654.9x I cm =⨯+⨯⨯⨯=截面回转半径 ()()121247654.910021.83x x i I A cm ===(2) 柱的长细比 (3) 整体稳定验算从截面分类表可知,此柱对截面的强轴屈曲时属于b 类截面,由附表得到 0.833x ϕ=,对弱轴屈曲时也属于b 类截面,由附表查得 0.741y ϕ=。