沉积盆地分析

合集下载

准噶尔盆地南缘沙湾组沉积环境及沉积相分析

准噶尔盆地南缘沙湾组沉积环境及沉积相分析

准噶尔盆地南缘沙湾组沉积环境及沉积相分析摘要:南缘西部第三系的油气勘探由来已久, 而且几经波折。

丰富的地面和井下油气显示以及非常发育的构造圈闭都预示着该区具有良好的勘探前景。

但复杂的工程和地质条件一直制约着勘探进展。

沙湾组是该地区重要的勘探层系,其砂体成因类型、沉积环境及沉积相分析是该地区研究的重点。

关键词:南缘;准噶尔盆地;沙湾组;沉积环境;沉积相1、前言准噶尔盆地南缘以其丰富的地面油气显示和众多的构造圈闭而著称。

一直是勘探工作者关注和寄予厚望的含油气区带。

对该区的油气勘探和研究可追溯至本世纪初。

1909年,俄国地质学家B·A·奥布鲁切夫对准噶尔盆地南缘进行了地质调查并记叙了独山子油气苗。

1937年发现独山子油田。

50年代在独山子背斜上进行了大规模的钻探,至50年代未,仅在背斜东部探明含油面积1.18km2,探明原油地质储量239×104t。

俄国学者M·H·沙依道夫及我国地质学家黄汲清、宋汉良在五十年代对独山子背斜进行了研究。

1964年,曾繁善对独山子油田的油气地质特征进行了系统总结。

同年宋国初等完成了“准噶尔盆地中西部第三系岩相古地理总结报告”,这是第一本也是截止目前论述第三系沉积相发育特征最详尽和系统的论著,为本区第三系岩相古地理研究奠定了良好的基础。

60年代至70年代,南缘的勘探基本属于停顿状态。

1979年在西湖背斜上钻西参2井。

80年代曾繁善、况军、尤绮妹等及魏景明等对南缘地层构造进行了详细研究。

周经才等在研究南缘侏罗系沉积成岩作用时对沙湾组进行了一些研究。

2、区域地质特征盆地南缘属于乌鲁木齐山前坳陷,该区受海西期、印支期、燕山期及喜山期多期构造运动影响,尤其是强烈的喜马拉雅期构造运动对该区影响巨大。

使山前表层的中新生界发育了成排成带的背斜构造及与之伴生的断裂以及断鼻。

同时还形成了一些大型的重力滑脱构造(如霍玛吐滑片)。

南缘西部地区的局部构造和断裂十分发育,其延伸方向大多与北天山的走向近于平行,呈近东西向。

沉积盆地知识点总结归纳

沉积盆地知识点总结归纳

沉积盆地知识点总结归纳一、沉积盆地的概念沉积盆地是一种广泛存在的地质构造单元,是由地壳运动和地表形貌、构造活动、气候环境的变迁,以及河流、湖泊、海洋等水体的沉积作用所形成的一个或一组大而凹陷的地质构造单位。

盆地是一种典型的复式地质构造,指的是一个或多个凹陷部分环绕着一个或多个凸起部分的一系列地质构造单位。

盆地凹陷部分的形成与地壳运动有关。

沉积盆地是一种主要由沉积岩构成的构造单位,沉积盆地地面呈盆状或平坦,内部多具有层状堆积的岩石,是重要的地质资源区域,也是地震、火山、地壳运动等自然灾害比较频繁的地方。

二、沉积盆地的形成机制沉积盆地是由一系列地质构造活动和地壳运动造成的,主要有以下几种形成机制。

1. 构造运动造成的凹陷地壳板块的运动是造成沉积盆地形成的主要原因。

当地壳板块发生挤压、拉伸及断裂等构造活动时,会形成凹陷,形成凹陷的地区就有可能形成沉积盆地。

2. 火山活动造成的凹陷火山活动也是形成沉积盆地的重要原因之一。

由于火山活动产生的地形变化会造成地质构造单位形成凹陷,形成了火山喷发凹陷盆地。

3. 重力崩塌造成的凹陷重力崩塌是指山体和岩体发生垮塌、滑坡等运动,造成地表形成凹陷的地质现象,这种地质现象也可能形成沉积盆地。

4. 地表侵蚀造成的凹陷地表的侵蚀作用也是形成沉积盆地的原因之一。

江河侵蚀、海洋侵蚀都有可能造成凹陷,形成沉积盆地。

以上这些机制共同作用,形成了沉积盆地的地质现象及构造形态。

三、沉积盆地的特征沉积盆地具有一些明显的地质特征,主要包括:1. 形态特征沉积盆地地表一般是平坦或呈盆状,其外围一般是山脉或高原,内部地势较低,周围地质体系多为较老的地层。

2. 沉积特征沉积盆地内部主要是由各种沉积岩堆积而成,其沉积物一般经历了古老地质时期的沉积作用,如河流、湖泊、海洋的沉积,堆积岩种类丰富。

3. 地质资源特征沉积盆地一般具有丰富的地质资源,主要包括石油、天然气、煤炭、铁矿石以及其他矿产资源,因此是地质勘探和开发的重要区域。

盆地分析

盆地分析

一、整体分析
早在60年代早期,P.Potter和
F.J.Pettijohn首先提出了把盆地作为 一个整体进行研究的思路 (PotterandPettuohn,1963第一版; 1977第二版)。整体分析着眼于整个盆地, 就是把沉积盆地作为一个成因上统一的地 质体。


整体分析的涵义包括:(1)从整个沉积盆地范围着 眼进行分析:(2)对一个沉积盆地的整个充填序 列进行分析。事实上,如果不重建整个沉积盆地 的轮廓,确定原始沉积边界、弄清盆地的充填序 列和整体古地理环境,局部的环境研究有时会得 出片面的乃至错误的结论。整体分析则便于客观 地掌握盆地发生和发展过程中各系统的相互联系 和规律性,其实际的目的是更有效地确定沉积矿 产及能源资源在盆地中的分布规律。鉴于目前盆 地这一术语通常指目前保存下来的实体,即经过 后期形变与剥蚀保留下来的部分,与原来的沉积 范围相比较,有时二者相近,有时则相差甚远, 因此,整体分析应指整个同沉积盆地的重建 .
存的基本单位。
为了区分这几类盆地,Selley(1976)曾建
议使用同沉积盆地(syndepositional basin)和后沉积盆地(postdepositional basin).前者代表原始沉 积时的盆地,而后者则是由于后期构造运动 所形成的构造盆地。盆地内沉积物的搬运、 沉积相的分布与后期构造运动无关。区分这 两类盆地的另一有效标志是鉴别盆地边界类 型,是沉积边界还是侵蚀边界。同沉积盆地 的原始边界为沉积边界,这类盆地边界往往 有盆地边缘相,如冲积扇、辫状河沉积,剥 蚀边界则是经过后期改造剥蚀残留的边界。
第七章 盆地热历史分析
第一节
盆地热历史分析的基本知识 第二节 地热场研究 第三节 古地温场研究

第13章 岩相古地理研究(朱锐)

第13章 岩相古地理研究(朱锐)

沉积岩癿某些结构不构造不盐度有关
在超咸水或清水环境中形成癿鲕粒是呈放射状,而丌是同心状 在浅水中,蒸収速率高,盐度增高,当超过沉积物孔隙水中癿盐度时, 形成收缩裂隙幵被沉积物充填
沉积盆地癿古地理分析
• 古水深分析
古水深分析对再造沉积盆地癿古环境和盆地构造具有重要癿意义, 确定绝对水深较困难,经常是确定相对深度。确定古水深癿标志包括: 自生矿物标志,地球化学标志、生物学标志和沉积学标志等
第13章
岩相古地理研究
• 沉积盆地癿古地理分析
• 盆地地层格架癿建立
• 沉积相及其演化分析 • 沉积古地理研究不编图方法
盆地地层格架癿建立
建立区域地层格架癿要点:
1. 区域丌整合面癿识别不追索 (1)丌整合面上、下岩层癿几何关系 (2)古风化壳标志 (3)岩性、岩相标志 (4)丌整合癿剥蚀标志 (5)地层缺失和古生物带癿缺失 2. 凝缩殌癿追索不识别 3. 特殊形态岩石单位癿填图 4. 遥感图象解译 5. 沉积序列垂向变化研究 6. 地层时代研究 7. 地层格架癿建立
• 基本思路
沉积相及其演化分析
• 基本思路
点 → 线 → 面
第13章
岩相古地理研究
• 沉积盆地癿古地理分析
• 盆地地层格架癿建立
• 沉积相及其演化分析 • 沉积古地理研究不编图方法
沉积古地理研究不编图方法
编图工作癿设计和准备
全面收集资料
地表地质资料 地下地质不地球物理资料 室内分析资料
统一地层划分对比方案,确定编图单元
野外工作
野外踏勘 剖面癿类型、布署原则和精度要求 剖面测制程序和样品采集
室内工作 综合图件癿编图
实际材料图 沉积相柱状剖面图 地层厚度等值线图 岩性图 岩相古地理综合图

盆地分析(概论与盆地类型)

盆地分析(概论与盆地类型)
中南大学地学院
旷理雄
沉积盆地分析原理与方法
主 讲 人: 旷理雄
中南大学地学院地质所
2011年4月
2011年4月
中南大学地学院
旷理雄
91年研究生毕业后一直从事与盆地分析有关的研究工作:
2011年 主持油田横向课题《靖安油田大路沟一区长 2油藏二次精细油藏描述》
2010年 主持油田横向课题《绥靖油田建产有利区目标研究》
M.W.Bally(1975):指出盆地的定义包含有超过1km厚沉积物 的沉降体制,它现今仍或多或少保存有原来的形状。
这个定义不包括有厚的和常有复杂变形的沉积物的褶皱带,虽
然它们有时也会产出一定数量的油气。
2011年4月
中南大学地学院
旷理雄
W.R.Dickinson(1974):提出了盆地的两重含义。一种含义是盆地 仅仅是一个等深的或地形上的洼陷;另一种更重要的含义在于盆 地是形成一厚层沉积层序的岩石棱柱体。
第五章 盆地石油地质学分析
盆地油气形成与富集的基本条件及其合理配置,包括油气源条件(烃源岩的类型与分布、 有机质丰度与类型及成熟度),储集条件(储集层类型、物性与非均质性),盖层条件 (盖层类型、封闭机理及评价方法),圈闭条件(圈闭类型及有效性),油气运移和聚集 过程分析,保存条件(构造运动、水文地质条件、岩浆活动与油气保存),盆地模拟原 理、方法、主要参数和结果,油气系统,盆地的形成、演化、地质作用与成藏要素关系, 区带和圈闭评价及其资源量估算。
2011年4月
中南大学地学院
旷理雄
课程的目的与要求
究思路,为以后从事矿藏的调查和勘 探的生产和科学研究打下坚实的理论基础。是资源勘 查工程专业、地质工程专业、石油地质专业和辅修专 业研究生的主要课程。

沉积盆地形成的动力学机制

沉积盆地形成的动力学机制

四.类型划分
四、 转 换 型 板 块 边 缘
(三)与两条或多条断层活动有关
7. 拉分盆地: 拉分盆地:
由两条或多条近于平行展布、侧向相接的走滑断层, 由两条或多条近于平行展布、 侧向相接的走滑断层, 在走滑运动 后方拉张而形成的盆地。 后方拉张而形成的盆地。
8. 渗漏盆地: 渗漏盆地:
拉分盆地发育的晚期所形成,基底断裂深度很大, 拉分盆地发育的晚期所形成 , 基底断裂深度很大 , 已经出现了洋 壳的盆地。 壳的盆地。
基本思想:沉积物在重力作用下发生局部沉 基本思想: 降形成盆地。 降形成盆地。 动力来源: 地球物质在不同层次, 动力来源: 地球物质在不同层次,不同尺度 上存在的纵横向上的非均一性. 上存在的纵横向上的非均一性. 不同层次: 不同层次:
垂向上:地壳、 垂向上:地壳、地幔物质分布的不均一 平面上:地槽(复理石建造)、 平面上:地槽(复理石建造)、 大陆边缘(巨厚,不含火山岩, 大陆边缘(巨厚,不含火山岩, 以三角洲或浊流为主的沉积物) 以三角洲或浊流为主的沉积物)
均衡作用
体积变化 由大→ (由大→小) 密度增大
沉 降 盆地形成
热胀冷缩
三、沉积盆地 热力沉降成因 沉积盆地 热力沉降 沉降成因
特征复杂、类型多样。 特征复杂、类型多样。 塌陷型热力构造 早期受热上拱、 早期受热上拱、隆升剥蚀 晚期冷却收缩、 晚期冷却收缩、塌陷沉积 两个特征不同、 两个特征不同 、 性质 截然相反的发育阶段, 截然相反的发育阶段,在同 一地区上、下叠置。 一地区上、下叠置。 其总体构造面貌常呈 放射状或同心圆状。 放射状或同心圆状。 热鼓胀说
沉积盆地地质学沉积盆地地质学-02
沉积盆地形成的 沉积盆地形成的 动力学பைடு நூலகம்制

龙归盆地第四纪沉积环境分析

龙归盆地第四纪沉积环境分析摘要:本文选择钻孔HD15、HD16、HD17、HD18、HD19、HD20、HD21、W4为研究对象,根据沉积物粒度特征、古水流方向及沉积物组合等沉积学特征并结合广从断裂活动来反映龙归盆地第四纪以来的沉积环境演化和气候变化。

关键词:龙归盆地;新生代;沉积环境一、前言龙归盆地,位于广州市白云山以北的嘉禾、太和、人和、钟落潭、太平和神岗圩一带,行政区划上各占广州白云区、花都区、从化市一部分,总面积约235km2。

流溪河从东北至西南流经盆地西缘,广从公路和广花公路分别通过盆地东部和西南部。

龙归断陷盆地严格受广从断裂带张性活动和基底地形起伏的双重因素控制,总体看,近广从断裂南东侧凹陷较深,沉积厚度大,往北西沉积厚度变薄,由于受基底起伏的制约,盆地南西部蚌湖一带存在次级沉积中心。

盆地北西边缘部分受广从断裂带的影响,即北东部与上古生界、早白垩世纪花岗岩呈断层接触,南西部则不整合于上古生界之上,总体表现为一斜坡带。

盆地内部由于受基底地形起伏的制约,岩层呈平缓起伏,构成一些次级的背、向斜拱曲构造。

二、龙归盆地第四系概况1、大湾镇组(Qhdw)在龙归盆地内,此套地层主要分布在流溪河两岸,在“广州城市地质调查项目施工钻孔及搜集到的钻孔资料中都有发现,主要岩性为灰色粉质粘土、黄色砂砾、黄色砂卵石层、局部为淤泥或淤泥质土等,纵向上岩性由下往上,粒度由粗变细,并出现1~2个旋回。

可以判断为河流沉积。

张德维等(1996)以高要大湾镇ZK16孔为正层型创名,指分布于西江现代河漫滩、阶地的黄色砂卵石层、浅土黄色含砾中粗砂层及细砂层、砂质粘土,为河流一级阶地沉积物,时代属全新世。

2、小市组(Qpx)主要分布于太和、嘉禾、新市等地,岩性以浅黄、灰白、红褐、灰黄色的卵石、砾石、含卵石的砂层及浅黄、灰白、红褐、灰黄、花斑色粉质粘土砂质粘土、为主,局部夹有灰色~灰黑色粘土或泥炭土,厚0.4~61.59m不等。

第三节 常见沉积相

第三节常见沉积相、岩相古地理及岩相古地理图一、大陆环境沉积1、山麓及山间盆地沉积类型特征:形成于山间和山前地带。

地势起伏悬殊,高差和坡度大,以快速堆积为特征。

如:洪积扇或冲积扇堆积,以粗砾为主,多呈棱角状,分选和磨圆极差,砾径大小混杂2、河流相分为河床、堤岸、河漫及牛轭湖亚相。

1)河床:可分为河床滞留、心滩或边滩微相。

河床滞留——砾石沉积,与下伏岩层呈冲刷侵蚀接触心滩——辫状河沉积,可见砾石;边滩——曲流河沉积,环流侧向加积。

2)堤岸亚相:主要细砂、粉砂和泥互层3)河漫:垂向加积。

发育层面构造和水平层理。

河漫滩(发育粉砂岩、泥岩)河漫湖(发育泥岩)河漫沼泽(泥炭沉积发育)4)牛轭湖:河流截弯取直留下废弃河道,发育粉砂和富含有机质粘土沉积,有化石河流沉积具有明显的二元结构:河床沉积(下);河漫滩沉积(上)。

呈现间断正韵律,韵律底部常有冲刷面。

3、湖泊相湖水深度分为:滨湖、浅湖和深湖。

特点:水体封闭,沉沉积相分布基本上呈环带状分布。

3、沼泽相:发育在潮湿区,水体滞留。

低能环境,暗色泥岩为主,夹煤层或煤线。

4、冰川沉积:寒冷地区,冰碛物多为棱角状,混杂堆积,砾石表面具擦痕。

二、海陆过渡环境沉积相以三角洲环境为典型代表。

沉积体由相互连接的三部分组成。

1)、三角洲平原(顶积层):是三角洲的陆上部分,陆生生物化石丰富;2)、三角洲前缘(前积层)3)、前三角洲(底积层):海(湖)生生物化石增多由于三角洲沉积体不断向海(湖)方向推近,这时则以侧向加积为主,形成反旋回序列反旋回序列:在剖面上,沉积物自下而上呈现出由细到粗,是三角洲沉积的一个主要识别标志。

(三)海洋环境沉积分为滨海(潮汐带)、浅海(陆棚或陆架)、半深海(大陆斜坡)、深海(大洋盆地)1、滨海沉积相类型:也称滨岸沉积环境。

受潮汐和海浪的影响最为强烈a有障壁的海岸:潮坪环境(有沉积作用),无沉积作用的称为潮浦。

以潮汐作用为主。

潮坪可划分为潮上、潮间和潮下(亚浅海),0—50m 三个带。

盆地 分析

埋藏史恢复方法:1回剥技术:由今溯古的恢复地层埋藏史的反演模拟技术。

原理:基于沉积压实原理,随着埋藏深度的增加,地层的上覆盖负载也增加,导致孔隙度变小,体积变小。

假定地层在沉降过程中横向不变,而仅是纵向变化,则地层体积变小就归结为地层厚度变小。

再根据地层的骨架厚度始终不变的假设,求取同一地层在不同时期的埋深技术思路是:各地层在保持其骨架厚度不变的条件下,从今天盆地分层现状出发,按地质年代逐层剥去,直至全部剥完为止。

适用于正常压实的地区或地层段。

应用条件:孔隙度变化是不可逆性的;同一地层(同一井点)只遭到一次剥蚀;已知剥蚀厚度、剥蚀时间;已知孔隙度随深度的变化。

2超压技术:从古到今恢复古地层压力史的正演模拟技术原理:从地表开始,计算一个地层的古超压史,同时算出相应的古厚度史,一直计算到今天。

这个古厚度史可能与实际厚度不一致,这时调整计算该地层的骨架厚度,进行第二次从古到今的计算;直至古厚度史的今天值与实际厚度吻合。

超压技术所用的关键参数是渗透率,更确切地说,是超压地层的顶界和底界的渗透率。

超压计算的数学模型包括古超压方程和古厚度方程两部分。

剥蚀厚度恢复方法:1、不连续镜质体反射率曲线图解法:在连续沉积的地层剖面中,镜质体反射率与深度的关系为一条连续的曲线;当存在较大的剥蚀面时,剥蚀面上下的反射率曲线发生不连续,根据剥蚀面上下镜质体反射率的差值可以大致估算剥蚀厚度。

2、泥岩压实曲线法:泥岩压实曲线即泥岩的声波时差(孔隙度)随深度的变化曲线在正常压实的情况下,在半对数坐标图上,时差与深度的关系成一条直线。

在无剥蚀的情况下,将正常压实趋势线外推到地表,可得到地表声波时差值t0。

3、构造横剖面法:根据未剥蚀部位地层厚度的变化趋势恢复被剥蚀部位的剥蚀厚度。

4、数值模拟法:首先假定剥蚀厚度,用数值模拟法获得埋藏史及热演化史,对比实测的热指标剖面与理论剖面,反复调整剥蚀厚度,直至二者相符,此时的剥蚀厚度即为所求的值。

青海囊谦古近纪盆地沉积特征及沉积环境分析

隆升 的 速 率 ( un r e a , 9 3 Mo a P e a , T re t 1 19 ; l r t 1 . n .
等 , 9 8 潘 裕 生 等 , 9 8 莫 宣 学 等 , 0 3 张 克 信 19 ; 19 ; 20 ;
等 ,0 7 。地 处 于班 公 湖一 江 缝 合 带 与 金 沙 江 缝 20 ) 怒 合带 之 间 , 地构 造位 置属 羌塘 微板 块东 部 , 沧 江 大 澜 断裂 带从 区 内穿 过 。盆 地 沿 Nw—E 向展 布 , 基 S 其
底 向东倾 斜 呈 不 对称 条 状 , 约 5 k 东 西 宽 8 长 5 m, ~
1 9 )青 藏高原形成 演化 与发 展 ( 桂 棠等 , 90 孙 93 , 潘 19 ;
鸿 烈 ,9 8 LuT Se a ,9 6 等方 面对青 藏高原新 19 ; i 1 1 9 ) t .
作 用 的基本 特 点和 环境 变化信 息 ( 朱利 东 等 ,0 4 。 2 0 ) 2 世纪 9 O 0年代 以来 , 国内外 学者先 后 从不 同角
度 就青藏高 原隆升 与气候 环境效应 、 气候 与青 藏高原
隆升 的耦合 关系 ( 吉均 等 ,9 8 王 世峰 等 ,9 9 顾 李 19 ; 19 ; 延 生等 ,0 0 郑度 等 ,0 6 陈诗越 ,0 8 , 20 ; 20 ; 2 0 ) 青藏 高原
础上 , 通过 区域划 分 对 比、 沉积 充 填及 沉 积 特征 的研 究, 对囊谦 盆地 的古 气候特征 、 盆地充 填序列 、 物源 和 沉积环境做 进一步探讨 。
桂 棠 等 , 9 0 姜勇彪 等 ,0 9 。囊 谦 盆地是 藏 东北 19 ; 20 )
缘 第 三纪拉 分 盆地 的典 型 代 表 , 伴 有 大规 模 的高 并 钾 质 火 山岩 ( 万 明 等 , 0 1 朱 丽等 , 0 6 。拉 分 邓 20 ; 20 ) 盆 地是 沉积 作用 有 利 场 所 , 积 反应 为造 山带 发 展 沉
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沉积盆地分析沉积盆地是由各种沉积及构造要素有机地组合在一起的包括格架和各级构成单位的整体系统, 其演化过程中各项参数的变化显示了有序性, 如充填序列和构造序列, 并受控于多重地质因素相互作用的地球动力系统。

沉积盆地分析的理论和方法正由于地质学领域多学科的最新进展而成为一种较为完整的认识系统和方法体系。

一、盆地分析主要内容盆地研究领域的下列重要进展正在推动着较完整的盆地分析科学系统的形成:(1)层序地层学以及与之密切相关的沉积体系分析、旋回和事件地层分析等为盆地充填研究带来了新的概念体系与方法;(2)构造一地层分析使盆地的构造演化与沉积充填的关系更为密切地结合起来;(3)盆地的形成机制与主要类型盆地的动力学模型, 深部地球物理研究则提供了重要支柱;(4)盆地热历史研究的理论与新技术;(5)盆地模拟技术;(6)盆地演化与地球深部背景和板块相互作用的关系;(7)盆地演化过程中油气的形成、运移与聚集以及成矿作用的关系。

沉积盆地的基本思想就是把盆地作为一个基本研究单元,进行整体解剖和综合分析。

这种旨在阐明沉积环境和气候环境,了解各地层单元形成时的沉积条件和它们之间的古地理关系,探讨构造作用对盆地成因、盆地形成期的构造格架和现今构造轮廓所施加的影响。

这种方法正符合系统中具体分析结构怎样决定系统功能的原则。

油气的形成、演化与现今存在的形式,是整个盆地演化过程中各结构要素间相互作用达到动态平衡的产物,故整体性研究对含油气盆地分析具有更重要的现实意义。

通过地质、地球物理等基础观测资料, 可对盆地进行以下五个方面的分析:沉积分析、层序地层分析、构造分析、能量场与流体系统分析、背景分析。

(一)沉积分析通过能源盆地分析的多年实践可将主要参数概括为四类:(1)沉积参数包括盆地充填的岩性特征、充填序列、沉积体系的配置等;(2)构造参数包括盆地构造架、地层厚度和分布、古构造运动面、低级别同生构造的类型和配置、充填期后形变特征等;(3)热过程参数包括同期和准同期岩浆活动,反映热历史的各项指标,如镜质体反射率,粘土矿物的变化和矿物包体测温等;(4)成矿作用参数包括矿体的质量和数量参数,以煤盆地分析为例,主要煤体分带性和煤质分带性。

在上述各项参数中沉积参数常常是最基本的研究内容,因为沉积充填乃是盆地的实体, 沉积环境是各种矿产形成的最直接控制因素。

地震勘探技术的进步和层序地层学方法的出现,使得在盆地研究中能快速地识别不整合间断面及其相应的整合面,并追踪层序界面,划分各级层序地层单元,并建立等时地层格架。

在此基础上可以进一步研究沉积体系域及沉积体系的类型和分布,并重建各个时期盆地的古地理环境和沉积体系的分布。

对于中国东部北、中新生代断陷型含煤和含油气盆地分析中,发现盆地的演化阶段具有明显的共性,一般存在个阶段,作者按演化阶段划分成因地层单元,并通过追索和编图,重建了沉积体系域。

这阶段是初始充填阶段,以冲积扇和辫状河沉积占优势,明显分化阶段,盆地中心形成浅水湖,周缘形成浅水三角洲和扇三角洲最大水进阶段,或称大湖阶段,湖面扩大,并逐渐转化为深水湖, 冲积沉积体系缩小, 湖相沉积中水下重力流广泛发育, 最好的生油岩形成于此阶段快速充填阶段, 由于构造背景的变化, 源区的上升,三角洲和扇三角洲快速进积, 深水湖泊不再存在全面淤浅阶段, 在盆地中形成平坦的洪泛平原或洼地, 有的地区发育网结河道, 本阶段为最好的聚煤时期, 许多数十亿吨和百亿吨级煤盆地的主煤层皆形成于此阶段, 如胜利、霍林河、伊敏等盆地, 结束充填阶段, 处于区域总体上升背景,冲积沉积体系再次回春, 但发育时期短暂。

盆地构造背景的研究表明, 上述沉积充填演化取决于构造体制的变化, 即古构造应力场由右旋张扭向左旋压扭的转化, 前一体制下形成了总体水进程阶段一, 而后几依制下造成了总体水退过程, 直到结束充填。

上述个演化阶段沉积体系域的恢复为找煤和油气曾起了重要作用, 多次成功地进行了预测。

(二)层序地层分析盆地的地层格架是盆地分析最基本、最重要的参数之一, 它是指沉积盆地的外部和内部几何形态以及组成盆地的层的堆积性质。

概括地说, 地层格架不仅指盆地的固体几何形态和盆地所包含的地层单元或单元序列的固体几何形态, 而且涉及到单个地层单元的性质, 最终体现了沉积环境。

美国科罗拉多州和犹地州盆地二叠系的地层格架是一典型实例(图1)。

该盆地平面上为不规则半圆状, 剖面上显示出不对称形态。

盆地内部几何形态采用岩性地层单元来反映。

盆地北东部Cutler群被看作一个单元, 由厚达5000m以上的砾岩、长石砂岩和红色页岩组成, 代表沿Uncompahgre隆起带边缘一线的冲积扇和河流沉积。

盆地西南部四个组分别构成四个单元, 厚均1000m,最老的Halgaito组为红色粉砂岩、砂岩和页岩, 组Ceder Mesa组为砂岩,Organ Rock组为红色粉砂岩和页岩, 顶部的Dechelly组为风成砂岩, 总体上代表了Cutler冲积扇、河流向外侧的古地理扩展和当时的冰水沉积相。

当然, 如果描绘整个paradox 盆地的地层格架时, 则二叠系的五个岩性地层单元均可看成一个时间地层单元。

在研究盆地的地层格架的同时, 很有必要了解其控制因素。

一般说来, 其控制因素不外乎三种:(1)沉积物的沉积速率;(2)盆地的沉降速率;(3) 海平面的变化速率。

这些因素及其相互关系决定了盆地的地层格架。

Curtis 在假定海平面不变的前提下例举了盆地三角洲复合体充填过程中沉积速率(Rd)和沉降速率(Rs)之间的关系( 图2)。

这种关系对地层格架的形成起到了控制作用。

当沉积速率大于沉降速率时,地层格架表现出前积型;当沉积速率小于沉降速率时, 地层格架表现为退积型;当沉积速率等于沉降速率时,地层格架趋于稳定。

图2 三角洲复合体中沉积速率(Rd)与沉降速率(Rs)之间相互关系层的堆积性质是指地层单元的性质, 最终涉及到沉积环境。

区域和地方性层的式样的圈定能提供许多有关沉积过程和沉积环境的信息。

按盆地分析流程, 在详细研究地层格架前期必须做大量地层对比、沉积相分析和沉积体系研究工作, 这样才能正确地选择和划分出地层单元的界线, 确定地层单元的性质。

尤其在这种基础上的岩性地层单元或岩性单元的划分无疑更能有效地反映层的堆积性质, 最终体现出沉积环境。

例如,前陆盆地在剖面上具明显的不对称性, 靠近褶皱山系一侧为陡坡地形, 靠近地台一侧为缓坡( 图3)。

由于这种地形上的不对称性, 致使前陆盆地中沉积相的平面分布出现不对称性。

盆地发育早期, 靠近褶皱山系一侧以深海浊积扇沉积为主, 靠近地台一侧为浅水台地相沉积。

盆地发育中期, 褶皱山系一侧为大陆斜坡相沉积, 中间为过渡型沉积, 地台一侧为三角洲河流相沉积; 盆地发育晚期, 褶皱山系一侧为扇三角洲, 地台一侧为河流、冲积扇、沼泽等, 中间为湖泊、三角洲沉积, 其中以扇三角洲、冲积扇、河流相沉积为主。

从整个发展阶段看, 前陆盆地沉积序列早期以深海沉积和台地沉积为主, 到了中晚期则以陆相沉积为主, 沉积最厚。

图3 阿巴拉契亚前陆盆地沉积相域几何结构图从垂向序列上看, 前陆盆地的沉积具反粒序特点, 其形成、发展和消亡的演化历程为一逐渐水退的过程。

早期为非补偿型沉积, 中期为近补偿型沉积, 晚期则为超补偿型沉积,反映了前陆盆地发生、发展及消亡的过程。

(三)构造分析在油气勘探活动中, 盆地构造分析是石油地质学家十分重视的课题之一。

盆地整体动态的研究, 就是分析盆地在时间和空间上的演化过程和地球动力学背景, 分析盆地在内外地质作用下其性质发生改变的过程、盆地内部的形变特征及其形成的周围构造环境, 包括盆地与造山带的相关关系。

构造分析主要包括了基底构造特性, 古构造运动面及构造演化阶段, 各演化阶段基本构造单元划分, 构造样式及其配置, 盆地整体构造格架。

其中古构造运动面的识别是划分盆地演化阶段确定高级别层序地层单元边界的重要基础, 识别和划分盆地中隆起和坳陷的次级单元及其配置关系是盆地整体构造格架分析的最重要的内容。

近年来, 随着盆地研究的逐步深入, 盆地构造分析在理论和实践方面均取得了重大进展。

盆地分析已开始从盆地分类学转向对盆地动力过程的研究, 强调盆地整体动力作用和盆地形成过程,注重盆地各演化阶段原型的分析。

1、盆地类型与地球动力学的关系从盆地形成的动力学系统来看, 主要有3种地壳应力环境:(1)裂陷盆地其最大主压应力轴是垂直的;(2)压陷盆地其最大主压应力轴是水平的;(3)走滑盆地其最大主压应力轴与最小主压应力轴都是水平的(图4)。

这种分类与板块边界的种基本类型和盆地边界的控盆断层是一致的,这一分类图解已为Miall 所引用。

图4 沉积盆地形成与3个主应力系方位多年来, 有关盆地分类学和动力学模型的研究已做了大量工作。

目前广泛采用的盆地分类方案主要有两种: 即以现今盆地的基本特征和与板块构造背景的密切关系为依据, 将盆地分为克拉通盆地, 陆内、陆间裂谷盆地, 被动大陆边缘盆地, 弧前、弧后盆地, 前陆盆地和走滑盆地等; 和以盆地形成的地球动力学特征为依据, 将盆地分为与张性(伸展) 、压性(缩短挠曲) 和与走滑作用有关的(扭性) 盆地。

很显然, 前者反映的是盆地的地貌构造类型, 而较少考虑地球动力学背景, 后者反映的则是盆地形成过程的应力状态。

沉积盆地作为基本的构造单元, 受盆地周围构造环境、边界条件和深部地质作用等因素的控制, 其演化和形成过程是复杂的, 在不同的阶段是变化的, 任何一种理想化的静态的盆地动力学模型往往很难概括盆地形成的具体过程与特性。

如我国西部塔里木盆地, 经历了由古生代被动大陆边缘盆地和中生代前陆盆地很长的历史演化过程, 各阶段盆地动力学特点不同。

即使是中、新生代盆地不同的阶段其动力学特点也不同, 如位于华北地块南缘褶皱基底上的周口坳陷为一个具挤压和伸展双重性质的复合性盆地, 中生代(J3—K1) 为与大别造山带造山和造山后伸展作用相关的缩短挠曲或前陆盆地; 新生代为发育在刚性岩石圈内的拉张断陷, 其形成机制与华北裂谷盆地在岩石圈深部地质作用和热活动等方面存在很大的差异。

因此, 近年来盆地分类趋向于由繁向简,向更具实用性的方向发展。

如1992 年Perrodon 将含油气盆地分为大陆裂谷型、地台型和造山带型3 种基本类型; 李德生将中国的含油气盆地分为拉张型、克拉通内坳陷型和造山带型挤压盆地。

朱夏根据中、新生代和古生代盆地两种截然不同的地球动力学背景将中国的沉积盆地分为两大范畴, 并提出活动论和阶段论的观点, 强调以历史观和活动论作为盆地分析的基本指导思想。

陈发景则认为中国的中、新生代盆地主要是板内盆地, 应在确定盆地动力学背景的前提下, 对盆地的基本原型作进一步细分。

相关文档
最新文档