初中数学试卷(八年级上册第一章) (含答案)
人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套《11.1.1 三角形的边》同步练习一、选择题(共15题)1、图中三角形的个数是()A、8个B、9个C、10个D、11个2、至少有两边相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、锐角三角形3、已知三角形的三边为4、5、x ,则不可能是()A、6B、5C、4D、14、以下三条线段为边,能组成三角形的是()A、1cm、2cm、3cmB、2cm、2cm、4cmC、3cm、4cm、5 cmD、4cm、8cm、2cm5、一个三角形的两边分别为5cm、11cm,那么第三边只能是()A、3cmB、4cmC、5cmD、7cm6、下列长度的各组线段中,不能组成三角形的是()A、1.5,2.5,3.5B、2,3,5C、6,8,10D、4,3,37、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm8、若三角形的三边长分别为3,4,x-1,则x的取值范围是( )A、0<x<8B、2<x<8C、0<x<6D、2<x<69、已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()A、2个B、3个C、5个D、7个10、小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A、3kmB、7kmC、3km或7kmD、不小于3km也不大于7km11、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个12、若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A、7B、6C、5D、413、已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A、8cmB、10cmC、8cm或10cmD、8cm或9cm14、△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形15、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A、6B、7C、8D、10二、填空题16、按照三个内角的大小,可以将三角形分为锐角三角形、________、________;按照有几条边相等,可以将三角形分为等边三角形、________、________.17、△ABC的三边分别为a , b , c.则同时有________,理由:________.18、等腰三角形的一边为6,另一边为12,则其周长为________.19、一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长________cm.20、某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.21、小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是________.________ ________ 。
2019年秋浙教版初中数学八年级上册《特殊三角形》单元测试(含答案) (61)

浙教版初中数学试卷2019-2020年八年级数学上册《特殊三角形》测试卷学校:__________题号一 二 三 总分 得分评卷人得分 一、选择题1.(2分)等腰直角三角形两直角边上的高所的角是( )A . 锐角B .直角C .钝角D . 锐角或钝角2.(2分)已知一个三角形的周长为l5 cm ,且其中两边长都等于第三边的2倍,那么这个三角形的最短边为( )A .1cmB .2cmC .3 cmD .4 cm3.(2分)如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .84.(2分)等腰三角形一边长等于4,一边长等于9,它的周长是( )A .17B .22C .17或22D .135.(2分)以下四组木棒中,可以做成一个直角三角形的是( )A .7 cm ,12 cm,15 cmB .8cm ,12cm ,15cmC .12 cm ,15 cm ,17 cmD .8 cm ,15 cm,17 cm6.(2分)如图,EA ⊥AB ,BC ⊥AB ,AB=AE=2BC ,D 为AB 的中点,有以下判断:(1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE ,其中不正确结论的个数有( )A .0个B .l 个C .2个D .以上选项均错误7.(2分)连结等边三角形各边的中点所得到的三角形是()A.等边三角形B.直角三角形C.非等边三角形D.无法确定8.(2分)下列四个图形中,轴对称图形的个数是()①等腰三角形, ②等边三角形, ③直角三角形, ④等腰直角三角形A. 1个B.2个C.3个D.4个9.(2分)如图,△ABC是等边三角形,CD是∠ACB的平分线,过D作BC的平行线交AC于E.已知△ABC的边长为 a,则EC的长是()A.12a B.a C.32a D.无法确定10.(2分)根据下列条件,能判断△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=48°,∠B=84°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°评卷人得分二、填空题11.(2分)在等腰三角形ABC 中,腰AB的长为l2cm,底边BC的长为6cm,D为BC边的中点,动点P从点B出发,以每钞 lcm 的速度沿B A C→→的方向运动,当动点P重新回到点B位置时,停止运动. 设运动时间为t,那么当t= 秒时,过D、P两点的直线将△ABC的周长分成两个部分,使其中的一部分是另一部分的 2倍.解答题12.(2分)等腰直角三角形的斜边上的中线长为 1,则它的面积是 .13.(2分)如图,∠BCA = ∠E = 90°,BC= E,要利用“HL”来说明 Rt△ABC≌Rt△ADE,则还需要补充条件 .14.(2分)如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.15.(2分)一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,则这个等腰三角形的底边长是 cm.16.(2分)有一个角等于70°的等腰三角形的另外两个角的度数是.17.(2分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A、B、C、D的面积的和为 cm2.18.(2分)如图所示,在Rt△ABC中,∠ACB=90°,且CD⊥AB于点D.(1)若∠B=50°,则∠A= ;(2)若∠B—∠A=50°,则∠A= .19.(2分)等腰三角形的周长是l0,腰比底边长2,则腰长为.评卷人得分三、解答题20.(7分)如图,AB=AC,BD=BC. 若∠A = 38°,求∠DBC的度数.图1 图2 DC E AB21.(7分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE .22.(7分)如图,△ABC 和△DBC 都是直角三角形,∠A=∠D=90°,AB=DC .说明:△EBC 是等腰三角形.23.(7分)如图,在四边形ABCD 中,AC ⊥DC ,∠ADC 的面积为30cm 2,DC=12 cm ,AB=3 cm ,BC=4 cm,求△ABC 的面积.24.(7分)如图所示,△ABC 和△ABD 是有公共斜边的两个直角三角形,且AC=2,BC=1.5,AD=2.4,求AB和BD的长.25.(7分)如图,一根旗杆在离地面9 m处的B点断裂,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前有多高?26.(7分)已知△ABC中,∠C=Rt∠,BC=a,AC=b.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.27.(7分)如图,Rt△ABC中,∠ACB=90°,D是AB的中点,过点D作DE⊥BC于E 点,F是BD的中点,连结EF.说明:CD=2EF.28.(7分)如图,已知Rt△ABC中,∠ACB=90°,AB=8 cm,D为AB中点,DE⊥AC于E,∠A=30°,求BC,CD和DE的长.29.(7分)如图,已知线段a,锐角∠α,画Rt△ABC,使斜边AB=a,∠A=∠α.30.(7分)如图,∠A=∠B,CE∥DA,CE交AB于E,△CEB是等腰三角形吗?说明理由.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B2.C3.C4.B5.D6.B7.A8.C9.A10.B二、填空题11.7或l712.113.AB=AD14.815.9或1316.55°,55°或70°,40°17.4918.(1)40°;(2)20°19.4三、解答题20.在△ABC 中.∵AB=AC ,∠A=38,∴∠ABC=∠C=12×(180°-∠A)=71°. 在△DBC 中,∵BD=BC ,∴∠BDC=∠C=71°.∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°.21.(1)解:图2中ABE ACD △≌△.证明如下: ABC △与AED △均为等腰直角三角形,AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=, 90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.22.说明Rt△ABC≌△Rt△DCF 23.6cm224.AB=2.5,BD=0.7 25.24 m26.(12)827.说明EF=12BD=12CD28.BC=4cm,CD=4 cm,DE=2 cm 29.略30.是等腰三角形,说明∠CEB=∠B。
几何复习专题卷(含答案)初中数学浙教版八年级上册

几何复习专题卷题号一二三总分得分一、选择题(每题3分,共30分)1.[母题·教材P41目标与评定T1 2024·温州期末]用三根木棒首尾相接围成△ABC,其中AC=6 cm,BC=9 cm,则AB的长可能是( )A.2 cm B.3 cm C.14 cm D.15 cm2.[新考向知识情境化]如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是( )(第2题)A.SSS B.ASA C.SAS D.AAS3.如图,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE 的周长为( )(第3题)A.10 cm B.8 cmC.12 cm D.20 cm4.[2024·宁波奉化区期末]下列命题的逆命题是假命题的是( ) A.直角三角形的两个锐角互余B.两直线平行,内错角相等C.三条边对应相等的两个三角形是全等三角形D.同角的余角相等5.过直线l外一点P作直线l的垂线PQ,下列尺规作图错误的是( )A B C D 6.[2024·杭州西湖区期末]如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=9,且AC+BC=10,则AB的长为( )(第6题)A.6B.7C.8D.627.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④CD平分∠ACB.其中正确的有( )(第7题)A.1个B.2个C.3个D.4个8.如图,在△ABC中,∠BAC=90°,点D在边BC上,AD=AB,则有( )(第8题)A.若AC=2AB,则∠C=30°B.若3AC=4AB,则7BD=18CDC.若∠B=2∠C,则AC=2ABD.若∠B=2∠C,则S△ABD=2S△ACD9.[2024·宁波奉化区期末]如图,在△ABC中,AB=23,∠B=60°,∠A=45°,D为BC上一点,点P,Q分别是点D关于AB,AC的对称点,则PQ的最小值是( )(第9题)A.6B.8C.32D.310.[2023·金华]如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q.若HF=FG,则S四边形PCQE的值是( )S正方形ABEF(第10题)A.14B.15C.312D.625二、填空题(每题4分,共24分)11.如图,在△ABC中,∠ACB=90°,D为AB的中点,AC=6,BC =8,则CD= .(第11题)12.如图,在△ABC的边AB上取点D,以D为圆心,DA长为半径画圆弧,交AC于点E;以E为圆心,ED长为半径画圆弧,交AB 于点F.若∠CEF=∠BFE,则∠A= °.(第12题)13.[2024·温州期末]如图,在等腰三角形ABC中,AD是底边BC 上的高线,CE⊥AB于点E,交AD于点F.若∠BAC=45°,AF =6,则BD的长为 .(第13题)14.如图,D为等边三角形ABC的AB边的中点,P是BC上的一个动点,连结DP,将△DBP沿DP翻折,得到△DEP,连结AE,若∠BAE=40°,则∠BDP的度数为 .(第14题)15.如图,在长方形ABCD中,AB=4,AD=3,长方形内有一个点P,连结AP,BP,CP,已知∠APB=90°,CP=CB,延长CP交AD于点E,则AE等于 .(第15题)16.[新考法分类讨论法]如图①是一副直角三角板,已知在△ABC和△DEF中,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B,D,C,F在同一直线上,点A在DE上.如图②,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°),得到△E'DF',当直线E'F'与直线AC,BC所围成的三角形为等腰三角形时,α的大小为 .(第16题)三、解答题(共66分)17.(6分) [新视角·动手操作题2024·金华月考]如图,在正方形网格中,每个小正方形的边长都为1,△ABC的三个顶点均在格点上,请按要求完成下列问题(仅用无刻度的直尺作图,且保留必要的作图痕迹):(1)在AB上找一点D,使CD⊥AB;(2)在AC上找一点E,使BE平分∠ABC.18.(6分)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB;(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.19.(6分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:测量示意图的全部数据就可以计算出风筝离地面的垂直高度AD.请完成以下任务.(1)如图,在Rt△ABC中,∠ACB=90°,BC=15 m,AB=17 m,求线段AD的长.(2)如果小明想要风筝沿DA方向再上升12 m,BC长度不变,则他应该再放出多少米线?20.(8分) [新考法构造全等三角形法]如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,且AE=AF,CE=CF.(1)求证:CB=CD;(2)若AE=CE=5,AB=AD=8,求线段EF的长.21.(8分)[2024·杭州西湖区期中]如图,在△ABC中,点D,E分别在边AB,AC上,连结CD,BE,BD=BC=BE.(1)若∠A=30°,∠ACB=70°,求∠BDC,∠ACD的度数;(2)设∠ACD=α,∠ABE=β,求α与β之间的数量关系,并说明理由.22.(10分)[2023·宁波七中期中]如图,在△ABC中,AB=AC=2,∠A=90°.D为BC边的中点,E,F分别在边AB,AC上,DE⊥DF.(1)求证:△DEF是等腰三角形;(2)求EF的最小值.23.(10分)[2024·衢州月考]如图①,在等腰三角形ABC中,AD是BC边上的中线,延长BC至点E,使AD=DE,连结AE.(1)求证:△ADE是等腰直角三角形;(2)如图②,过点B作AC的垂线交AE于点P,试判断△ABP的形状,并说明理由;(3)如图③,在(2)的条件下,AD=4,连结CP,若△CPE是直角三角形,求CE的长.24.(12分)如果两个顶角相等的等腰三角形具有公共的顶角顶点,并将它们的底角顶点分别对应连结起来得到两个全等三角形,那么我们把这样的图形称为“手拉手”图形.如图①,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连结BD,CE,则△ABD ≌△ACE.(1)请证明图①的结论成立;(2)如图②,△ABC和△ADE是等边三角形,连结BD,EC交于点O,求∠BOC的度数;(3)如图③,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠BCD的数量关系.答案一、1.C 2.A 3.A 4.D 5.C 6.C7.C 【点拨】∵∠DAB =∠CAE ,∴∠DAB +∠BAC =∠CAE +∠BAC .∴∠DAC =∠BAE .在△ADC 和△ABE 中,{AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△ADC ≌△ABE (SAS ).∴CD =BE ,∠ADC =∠ABE .又∵∠AFD =∠BFO ,∴∠DOB =∠DAB =50°,故①②③正确.现有条件无法得到CD 平分∠ACB .8.B 【点拨】A .若AC =2AB ,则BC =AB 2+AC 2=5AB ,若∠C =30°,则易得BC =2AB ,故A 选项错误.B .若3AC =4AB ,则AC =43AB ,∴BC =AB 2+AC 2=53AB .作AE ⊥BC ,则S △ABC =12AB ·AC =12BC ·AE ,可得AE =AB ·AC BC =45AB .∵AD =AB ,∴BE =DE =AB 2-AE 2=35AB .∴BD =65AB .∴DC =BC -BD =715AB .∴7BD =18CD ,故B 选项正确.C .若∠B =2∠C ,∵∠BAC =90°,∴∠B +∠C =90°.∴∠C =30°,∠B =60°.∴易得BC =2AB .∴AC <2AB ,故C 选项错误.D .若∠B =2∠C ,由选项C 可得∠C =30°,∠B =60°.∵AD =AB ,∴△ABD 为等边三角形.∴∠ADB=60°.∴∠DAC=∠ADB-∠C=30°=∠C.∴AD=DC=BD,即AD为△ABC的中线.∴S△ABD=S△ACD,故D选项错误.9.C 【点拨】连结AD,AP,AQ.∵点P,Q分别是点D关于AB,AC的对称点,∴AD=AP,AD=AQ,∠PAD=2∠DAB,∠QAD=2∠DAC.∴AD=AP=AQ,∠PAQ=2(∠BAD+∠CAD)=2∠BAC=90°.∴△PAQ是等腰直角三角形.∴易知PQ=2AP=2AD.∵D为BC上一点,∴当AD⊥BC时,AD取得最小值,此时PQ取得最小值.当AD⊥BC时,∠ADB=90°.∵∠ABD=60°,∴∠BAD=180°-∠ABD-∠ADB=30°.AB=3.∴AD=AB2-BD2=3.∴易得BD=12∴PQ=2AD=32.∴PQ的最小值为32.10.B 【点拨】设AC=b,AB=c,BC=a,HF=FG=x,则a2+b2=c2.∵四边形ACGH,四边形BCMN,四边形ABEF都是正方形,∴AC=AH=HG=b,AB=AF,∠H=∠G=∠EBA=∠AFE=∠BCM=90°.∴b=2x.在Rt△AHF与Rt△ACB中,∵AH=AC,AF=AB,∴Rt△AHF≌Rt△ACB(HL).∴HF=BC=FG=a=x,∠HFA=∠ABC,S△AHF=S△ACB.∵∠HFA+∠GFP=180°-90°=90°=∠ABC+∠CBQ,∴∠GFP =∠CBQ.在△GFP与△CBQ中,∵∠G=∠BCQ=90°,FG=BC,∠GFP=∠CBQ,∴△GFP≌△CBQ(ASA).∴S△GFP=S△CBQ.∵S正方形ACGH=S△AHF+S△PFG+S四边形ACPF=b2,∴S正方形ACGH=S△ABC+S△BCQ+S四边形ACPF=b2.∴S四边形PCQE=S正方形ABEF-(S△ABC+S△BCQ+S四边形ACPF)=S正方形ABEF-S正方形ACGH=c2-b2=a2.在Rt△ABC中,由勾股定理得c2=b2+a2=(2x)2+x2=5x2.∴S四边形PCQE S正方形ABEF =a2c2=x25x2=15.二、11.5 12.3613.3 【点拨】在等腰三角形ABC中,AD是底边BC上的高线,∴AD⊥BC,BD=CD.∴∠ADC=90°.∵CE⊥AB,∴∠AEF=∠CEB=90°.又∵∠BAC=45°,∴∠ACE=45°=∠BAC.∴AE=CE.∵∠ADC=∠AEF=90°,∠AFE=∠CFD,∴∠BAD=∠BCE.∴△AEF≌△CEB(ASA).∴AF=BC=6.∴BD=3.14.40° 【点拨】∵D为等边三角形ABC的AB边的中点,∴AD=BD,将△DBP沿DP翻折,得到△DEP,∴BD=DE=AD,∠BDP=∠PDE.∴∠BAE=∠AED=40°.∴∠BDE=40°+40°=80°.∠BDE=40°.∴∠BDP=12 【点拨】延长AP交CD于点F.15.43∵∠APB=90°,∴∠FPB=90°,∠OAB+∠ABP=90°.∴∠CPF+∠CPB=90°.∵四边形ABCD是长方形,∴∠D=∠DAB=∠ABC=90°,CD=AB=4,BC=AD=3.∴∠EAP+∠BAP=∠ABP+∠BAP=∠ABP+∠CBP=90°.∴∠EAP=∠ABP.∵CP=CB=3,∴∠CPB=∠CBP.∴∠CPF=∠ABP=∠EAP.又∵∠EPA=∠CPF,∴∠EAP=∠APE.∴AE=PE.在Rt△CDE中,CD2+DE2=CE2,.∴42+(3-AE)2=(3+AE)2,解得AE=4316.7.5°或75°或97.5°或120°【点拨】设直线E'F'与直线AC,BC分别交于点P,Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角.①当∠PCQ为顶角时,∠CPQ=∠CQP,若∠PCQ为钝角,如图①,∵∠BAC=90°,∠B=45°,∴∠ACB=45°.∴∠CPQ+∠CQP=∠ACB=45°.∴∠CQP=22.5°.∵∠E'F'D=30°,∴∠F'DQ=∠E'F'D-∠CQP=30°-22.5°=7.5°,即α=7.5°.若∠PCQ为锐角,如图②,则∠CPQ=∠CQP=67.5°.∵∠E'DF'=90°,∠F'=30°,∴∠E'=60°.∴∠E'DQ=∠CQP-∠E'=67.5°-60°=7.5°.∴α=90°+7.5°=97.5°.②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,如图③.∵∠DE'F'=∠CQP+∠QDE',∴∠QDE'=∠DE'F'-∠CQP=60°-45°=15°.∴α=90°-15°=75°.③当∠CQP为顶角时,∠CPQ=∠PCQ=45°,如图④,∴∠CQP=90°.∴∠QDF'=90°-∠DF'E'=60°.∴∠QDE'=∠E'DF'-∠QDF'=30°,∴α=90°+30°=120°.综上所述,α的大小为7.5°或75°或97.5°或120°.三、17.【解】(1)如图,点D即为所求.(2)如图,点E即为所求.18.(1)【证明】∵BD是△ABC的角平分线,∴∠CBD=∠EBD.∵DE∥BC,∴∠CBD=∠EDB.∴∠EBD=∠EDB.(2)【解】CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC.∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC.∴∠ADE=∠AED.∴AD=AE.∴CD=BE.由(1)得∠EBD=∠EDB,∴BE=DE.∴CD=ED.19.【解】(1)由题易知CD=1.7 m.∵在△ABC中,∠ACB=90°,BC=15 m,AB=17 m,∴AC=AB2-BC2=172-152=8(m).∴AD=AC+CD=8+1.7=9.7(m).(2)∵风筝沿DA方向再上升12 m后,AC=8+12=20(m),∴此时风筝线的长为202+152=25(m).25-17=8(m).答:他应该再放出8 m线.20.(1)【证明】如图,连结AC.在△AEC与△AFC中,{AC=AC,CE=CF,AE=AF,∴△AEC≌△AFC(SSS).∴∠CAE=∠CAF.又∵∠B=∠D=90°,∴CB=CD.(2)【解】如图,过F作FG⊥AB,垂足为G.∵AE=CE=5,AB=8,∴EB=3,AF=5,∠ACE=∠CAE.由勾股定理得BC=4.由(1)知△AEC≌△AFC,∴∠ECA=∠FCA.∴∠FCA=∠CAE.∴AE∥CF.∴FG=BC=4.易知AG=3,∴EG=2.在Rt△EFG中,易知EF=20.21.【解】(1)∵∠A+∠ACB+∠ABC=180°,∠A=30°,∠ACB=70°,∴∠ABC=80°.=50°.在△BDC中,BD=BC,∴∠BDC=∠BCD=180°-80°2∴∠ACD=∠BDC-∠A=20°.(2)2α=β.理由:设∠BCD=x,则∠BDC=x,∴∠DBC=180°-2x.∵BE=BC,∴∠BEC=∠BCE=α+x.∴∠EBC=180°-2(α+x).∴∠DBC-∠EBC=180°-2x°-[180°-2(α+x)]=2α.又∵∠DBC-∠EBC=∠ABE=β,∴2α=β.22.(1)【证明】如图,连结AD.∵AB=AC,∠BAC=90°,∴∠B=45°.∵D 为BC 边的中点,∴AD ⊥BC ,∠BAD =∠CAD =12∠BAC =45°=∠B .∴AD =BD =12BC ,∠ADB =90°.∵DE ⊥DF ,∴∠EDF =90°.∴∠ADF =90°-∠ADE =∠BDE .在△ADF 和△BDE 中,{∠DAF =∠B ,AD =BD ,∠ADF =∠BDE ,∴△ADF ≌△BDE (ASA ).∴DF =DE .∴△DEF 是等腰三角形.(2)【解】∵AB =AC =2,∠BAC =90°,∴BC =AB 2+AC 2=22+22=8.∴AD =12BC =12×8=82.如图,取EF 的中点G ,连结AG ,DG .∵∠EAF =∠EDF =90°,∴AG =DG =12EF .∴EF =2AG =AG +DG .又∵AG +DG ≥AD ,∴EF ≥82.∴EF 的最小值为82.23.(1)【证明】∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC .∴∠ADC =90°.又∵AD =DE ,∴△ADE 是等腰直角三角形.(2)【解】△ABP 是等腰三角形.理由如下:∵∠ADC =90°,∴∠CAD +∠DCA =90°.∵BP ⊥AC ,∴易得∠PBE +∠DCA =90°.∴∠CAD=∠PBE.∵AB=AC,AD是BC边上的中线,∴∠BAD=∠CAD.∴∠BAD=∠PBE.∵△ADE是等腰直角三角形∴∠DAE=∠E.∴∠BAD+∠DAE=∠PBE+∠E,即∠BAP=∠BPA.∴BA=BP.∴△ABP是等腰三角形.(3)【解】①如图①,若∠PCE=90°.在△ABD和△BPC中,{∠BDA=∠BCP=90°,∠BAD=∠PBC,AB=BP,∴△ABD≌△BPC(AAS)(证△ACD≌△BPC亦可).∴BC=AD=DE =4.∵AD是BC边上的中线,∴BD=CD.设CE=x,则CD=4-x,∴BD=4-x.∴BC=8-2x.∴8-2x=4,解得x=2,即CE=2.②如图②,若∠CPE=90°.作PF⊥CE于点F,同理可证△ABD≌△BPF,∴BF=AD=4.设EF=x,易知∠E=45°,∴易得CF=EF=x.∴CD=4-2x.∴BD=4-2x.∴BC=8-4x.∴BF=8-3x.∴8-3x =4,解得x =43.∴CE =2x =83.综上,CE 的长为2或83.24.(1)【证明】∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△ABD 和△ACE 中,{AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ).(2)【解】由题意可知△ABD ≌△ACE .∴∠ADB =∠AEC .在等边三角形ADE 中,∠DAE =60°.记AD 与CE 的交点为G .∵∠AGE =∠DGO ,∴∠DOE =∠DAE =60°.∴∠BOC =∠DOE =60°.(3)【解】如图,延长DC 至点P ,使DP =DB .∵∠BDC =60°,∴△BDP 是等边三角形.∴BD =BP ,∠DBP =60°.∵∠ABC =60°=∠DBP ,∴∠ABD =∠CBP .∵AB =CB ,∴△ABD ≌△CBP (SAS ).∴∠BCP =∠A .又∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.21。
北师大版初中数学八年级上册《3.1 确定位置》同步练习卷(含答案解析

北师大新版八年级上学期《3.1 确定位置》同步练习卷一.选择题(共25小题)1.小明乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km),若小艇C在游船的正南方2km,则下列关于小艇A、B的位置描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3kmB.游船在的小艇A北萄东60°,且距游船3kmC.小艇B在游船的北偏西30°,且距游船2kmD.小艇B在小艇C的北偏西30°,且距游船2km2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)3.中国象棋是中华名族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(﹣2,1)4.如图,已知棋子“车”的坐标为(﹣2,1),棋子“马”的坐标为(3,﹣1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)5.北京市为了全民健身,举办“健步走“活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育场→水立方)如图,体育局的工作人员在奥林匹克公园设计图上标记玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,3),则终点水立方的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,﹣1)6.如图是丁丁画的一张脸的示意图,如果用(1,3)表示靠左边的眼睛,用(3,3)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,2)C.(1,1)D.(3,1)7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)8.小刚从学校出发往东走500m是一家书店,继续往东走1000m,再向南走1000m 即可到家,若选书店所在的位置为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,若以点A表示小刚家的位置,则点A的坐标是()A.(1500,﹣1000)B.(1500,1000)C.(1000,﹣1000)D.(﹣1000,1000)9.如图,表示甲、乙、丙三人在排练厅所站的3块地砖.若甲、乙所站的地砖分别记为(2,2),(4,3),则丙所站的地砖记为()A.(5,6)B.(6,5)C.(7,6)D.(7,5)10.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)11.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)13.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)14.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为()A.(0,3)B.(3,2)C.(2,3)D.(3,0)15.如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)17.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)18.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)19.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A.(﹣2,4)B.(2,﹣4)C.(4,﹣2)D.(﹣4,2)20.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A 的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1B.点O2C.点O3D.点O421.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)22.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)23.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D24.从学校向东走600米,再向南走500米到小伟家;从学校向南走500米,再向西走300米到小亮家,则下列结论正确的是()A.小亮家在小伟家的正东600米处B.小亮家在小伟家的正南500米处C.小亮家在小伟家的正西900米处D.小亮家在小伟家的正北600米处25.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)二.填空题(共14小题)26.小聪出校门向东走100米,再向北走120米到达阳光文具店,若以学校校门所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向,1个单位长度代表1米建立平面直角坐标系,则阳光文具店的坐标是.27.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,已知所在位置的坐标为(﹣3,2),所在位置的坐标为(﹣1,0),在中国象棋的规则中,“马走日,象(相)飞田”,若下一步移动,则下一步可能走到的位置的坐标为.28.象棋是一项益智游戏,如图,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为.29.如图,若在象棋盘上建立平面直角坐标系xOy,使“帥”的坐标为(﹣1,﹣2),“馬”的坐标为(2,﹣2),则“兵”的坐标为.30.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果士所在位置的坐标为(﹣1,﹣2),相所在位置的坐标为(2,﹣2),那么将棋子炮右移一格后的位置的坐标为.31.如图,若棋盘中表示“帥”的点可以用(0,1)表示,表示“卒“的点可以用(2,2)表示,则表示“馬”的点用坐标表示为.32.如图,若小红的位置可以用坐标(﹣7,﹣4)表示,小明的位置可以用坐标(﹣5,﹣8)表示,则小亮的位置可以用坐标表示为.33.在如图的方格纸上,若用(﹣1,1)表示点A的位置,(0,3)表示点B的位置,那么点C的位置可表示为.34.如图是城市中某区域的示意图,小聪同学从点O出发,先向西走100米,再向南走200米到达学校,如果学校的位置用(﹣100,﹣200)表示,那么(300,200)表示的地点是.35.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是.36.如图所示的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是.37.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为.38.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1、1),则此“QQ”笑脸右眼B的坐标.39.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.三.解答题(共11小题)40.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,若游乐场的坐标为(3,2),宠物店的坐标为(﹣1,﹣2),解答以下问题(1)请在图中建立适当的平面直角坐标系,并写出汽车站的坐标;(2)若消防站的坐标为(3,﹣1),请在坐标系中标出消防站的位置.41.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的地方是哪个?(2)请用方向与距离描述学校、商场、停车场相对于小明家的位置.42.如图是学校的平面示意图,已知旗杆的位置是(﹣2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(﹣2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.43.如图,方格纸中每个小方格都是长为1个单位的正方形,已知学校位置坐标为A(1,2).(1)请在图中建立适当的平面直角坐标系;(2)写出图书馆B位置的坐标是.44.请你在图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明儿童公园、医院、李明家、水果店、宠物店和学校的位置.45.如图,已知火车站的坐标为(2,2),文化宫的坐标为(﹣1,3).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标;46.如图,这是某城市部分简图,请建立适当的平面直角坐标系,并分别写出各地的坐标.47.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(﹣4,4),点B位于点(3,1),则“帅”所在点的坐标为;“马”所在点的坐标为;“兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.48.这是一个动物园游览示意图,彤彤同学为了描述这个动物园图中每个景点位置建了一个平面直角坐标系,南门所在的点为坐标原点,回答下列问题:(1)分别用坐标表示狮子、飞禽、两栖动物,马所在的点.,,,.(2)动物园又新来了一位朋友大象,若它所在点的坐标为(3,﹣2),请直接在图中标出大象所在的位置.(描出点,并写出大象二字)(3)若丽丽同学建了一个和彤彤不一样的平面直角坐标系,在丽丽建立的平面直角坐标系下,飞禽所在的点的坐标是(﹣1,3)则此时坐标原点是所在的点,此时南门所在的点的坐标是.49.李老师到人民公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为(2,﹣2),(1)你能帮李老师在下图中建立平面直角坐标系求出其他各景点的坐标吗?(2)若图中一个单位长度代表实际距离100米,请你求出其中某两点(已用字母标记)间的实际距离.50.如图是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若光岳楼的坐标为(﹣3,1),请建立平面直角坐标系,并用坐标表示下列景点的位置:金凤广场(,);动物园(,);湖心岛(,);山峡会馆(,).北师大新版八年级上学期《3.1 确定位置》同步练习卷参考答案与试题解析一.选择题(共25小题)1.小明乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km),若小艇C在游船的正南方2km,则下列关于小艇A、B的位置描述,正确的是()A.小艇A在游船的北偏东60°,且距游船3kmB.游船在的小艇A北萄东60°,且距游船3kmC.小艇B在游船的北偏西30°,且距游船2kmD.小艇B在小艇C的北偏西30°,且距游船2km【分析】利用方向角的表示方法对各选项进行判断.【解答】解:小艇A在游船的北偏东30°,且距游船3km;小艇B在游船的北偏西60°,且距游船2km;游船在小艇的南偏西30°,且距游船3km;小艇B在小艇C的北偏西30°,且距游船2km.故选:D.【点评】本题考查了坐标确定位置:是熟练掌握平面内特殊位置的点的坐标特征.理解方向角的表示方法.2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2)B.(0,1)C.(2,﹣1)D.(2,1)【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【解答】解:根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选:D.【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.3.中国象棋是中华名族的文化瑰宝,它源远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(﹣2,1)【分析】根据“帅”位于点(﹣1,﹣2),“马”位于点(3,﹣2),建立平面直角坐标系,结合坐标系可得答案.【解答】解:如图所示,根据题意可建立如图所示平面直角坐标系,则“兵”位于点(﹣2,1),故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.4.如图,已知棋子“车”的坐标为(﹣2,1),棋子“马”的坐标为(3,﹣1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)【分析】先根据棋子“车”的坐标和棋子“马”的坐标,画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:根据题意可建立如图所示的坐标系:则棋子“炮”的坐标为(2,1),故选:B.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5.北京市为了全民健身,举办“健步走“活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育场→水立方)如图,体育局的工作人员在奥林匹克公园设计图上标记玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,3),则终点水立方的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(﹣3,﹣2)D.(﹣3,﹣1)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:终点水立方的坐标是(﹣2,﹣3).故选:A.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.6.如图是丁丁画的一张脸的示意图,如果用(1,3)表示靠左边的眼睛,用(3,3)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(2,1)B.(1,2)C.(1,1)D.(3,1)【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:根据题意:用(1,3)表示左眼,用(3,3)表示右眼,可以确定平面直角坐标系中的x轴为从下面数第一行向上为正方向,y轴为从左面数第一列向右为正方向.那么嘴的位置可以表示成(2,1).故选:A.【点评】此题主要考查了坐标确定位置,解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.7.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)【分析】根据点A、C的位置结合其表示方法,可得出相邻同心圆的半径差为1,结合点B在第四个圆上且在150°射线上,即可表示出点B.【解答】解:∵A(5,30°),C(3,300°),∴B(4,150°).故选:B.【点评】本题考查了坐标确定位置,根据点A、C的坐标找出点B的坐标是解题的关键.8.小刚从学校出发往东走500m是一家书店,继续往东走1000m,再向南走1000m 即可到家,若选书店所在的位置为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,若以点A表示小刚家的位置,则点A的坐标是()A.(1500,﹣1000)B.(1500,1000)C.(1000,﹣1000)D.(﹣1000,1000)【分析】由题意可知,小刚从学校出发往东走1500m,再向南走1000m即可到家,选书店所在的位置为原点建立坐标系,即可小刚家的坐标.【解答】解:选书店所在的位置为原点,分别以正东、正北方向为x,y轴正方向建立平面直角坐标系,所以书店的坐标是(0,0),小刚家的坐标是(1000,﹣1000),故选:C.【点评】主要考查了直角坐标系的建立和运用,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.9.如图,表示甲、乙、丙三人在排练厅所站的3块地砖.若甲、乙所站的地砖分别记为(2,2),(4,3),则丙所站的地砖记为()A.(5,6)B.(6,5)C.(7,6)D.(7,5)【分析】直接利用甲、乙所站的地砖分别记为(2,2),(4,3),即可得出最后一个位置的坐标.【解答】解:∵甲、乙所站的地砖分别记为(2,2),(4,3),∴丙所站的地砖记为:(7,5).故选:D.【点评】此题主要考查了坐标确定位置,正确应用已知点位置是解题关键.10.如图,象棋盘上,若“将”位于点(1,﹣1),“车”位于点(﹣3,﹣1),则“马”位于点()A.(3,2)B.(2,3)C.(4,2)D.(2,4)【分析】直接利用“将”位于点(1,﹣1),得出原点位置进而得出答案.【解答】解:如图所示:“马”位于点(4,2).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.11.如图是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,﹣1),则表示“天安门”的点的坐标为()A.(0,0)B.(﹣1,0)C.(1,0)D.(1,1)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:“天安门”的点的坐标为:(1,0).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(﹣3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(0,2).故选:B.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.13.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.14.如图是在方格纸上画出的小旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的位置可表示为()A.(0,3)B.(3,2)C.(2,3)D.(3,0)【分析】根据A点坐标,建立坐标系,可得C点坐标.【解答】解:点C的位置可表示为(3,2),故选:B.【点评】此题主要考查了坐标确定位置,关键是正确建立坐标系.15.如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【解答】解:如图所示:兵”位于点为:(﹣3,1).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.16.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)【分析】根据点的坐标的定义即可得.【解答】解:根据题意知小李所对应的坐标是(7,4),故选:C.【点评】本题主要考查坐标确定位置,解题的关键是掌握点的坐标的概念.17.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)【分析】根据题意画出坐标系,进而确定公园的坐标.【解答】解:如图所示:公园的坐标是:(﹣100,﹣250).故选:C.【点评】此题主要考查了坐标确定位置,正确理解题意是解题关键.18.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(0,3)C.(3,2)D.(1,3)【分析】根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.【解答】解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.19.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A.(﹣2,4)B.(2,﹣4)C.(4,﹣2)D.(﹣4,2)【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋③的坐标即可.【解答】解:建立平面直角坐标系如图,白棋③的坐标为(﹣4,2).故选D.【点评】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.20.如图,点A在观测点北偏东30°方向,且与观测点的距离为8千米,将点A 的位置记作A(8,30°).用同样的方法将点B,点C的位置分别记作B(8,60°),C(4,60°),则观测点的位置应在()A.点O1B.点O2C.点O3D.点O4【分析】根据点A的位置记作A(8,30°),B(8,60°),C(4,60°),进而得出观测点位置.【解答】解:如图所示:连接BC,并延长,即可得出,观测点的位置应在点O1.故选:A.【点评】此题主要考查了坐标确定位置,正确利用已知点得出观测点是解题关键.21.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1),故选:A.【点评】此题考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.22.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(6,4)表示的“炮”位置,那么“将”的位置应表示为()A.(6,4)B.(4,6)C.(1,6)D.(6,1)【分析】以帅的坐标向左两个单位,向上3个单位为坐标原点建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(1,6).故选C.【点评】本题考查了坐标确定位置,读懂题目信息,准确确定出坐标原点是解题的关键.23.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(﹣10,20)表示的位置是()A.点A B.点B C.点C D.点D【分析】根据点在平面直角坐标系中的确定方法解答即可.【解答】解:∵点M的位置用(﹣40,﹣30)表示,∴(﹣10,20)表示的位置是点A.故选:A.【点评】本题考查了坐标确定位置,主要利用了平面直角坐标系中点的位置的确定方法,是基础题.24.从学校向东走600米,再向南走500米到小伟家;从学校向南走500米,再向西走300米到小亮家,则下列结论正确的是()A.小亮家在小伟家的正东600米处B.小亮家在小伟家的正南500米处C.小亮家在小伟家的正西900米处D.小亮家在小伟家的正北600米处【分析】根据题意,以学校为“观测点”画出路线图,再据具体的路线长度,即可得到问题的答案.【解答】解:如图:小亮家在小伟家的正西600+300=900米处.故选:C.【点评】此题考查根据方向和距离确定位置,画出线路图是解决问题的关键.25.如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(3,0)【分析】根据已知两点坐标建立坐标系,然后确定其它点的坐标.【解答】解:用(0,0)表示A点,(0,4)表示B点,则以点A为坐标原点,AB所在直线为y轴,向上为正方向,x轴是过点A的水平直线,向右为正方向.所以点C的坐标为(3,2)故选:C.【点评】考查类比点的坐标及学生解决实际问题和阅读理解的能力.解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.解题的关键是确定原点及x,y轴的位置和方向.二.填空题(共14小题)26.小聪出校门向东走100米,再向北走120米到达阳光文具店,若以学校校门所在的位置为原点,分别以向东、向北方向为x轴、y轴正方向,1个单位长度代表1米建立平面直角坐标系,则阳光文具店的坐标是(100,120).【分析】根据描述得出阳光文具店在所建立直角坐标系的第一象限,再结合距离可得其坐标.【解答】解:由题意知阳光文具店在所建立直角坐标系的第一象限,其坐标为(100,120),故答案为:(100,120).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应,记住平面内特殊位置的点的坐标特征.27.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,已知所在位置的坐标为(﹣。
浙教版初中数学八年级上册专题50题(含答案)

浙教版初中数学八年级上册专题50题含答案一、单选题1.下列是我省几家著名煤炭企业的徽标,其中轴对称图形是( )A .B .C .D .2.若66x y >-,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -< 3.如图,已知,AB AD =,ACB AED ∠=∠,DAB EAC ∠=∠,则下列结论错误..的是( )A .B ADE ∠=∠B .BC AE = C .ACE AEC∠=∠ D .CDE BAD ∠=∠ 4.如图所示的容器内装满水,打开排水管,容器内的水匀速流出,则容器内液面的高度h 随时间x 变化的函数图象最接近实际情况的是( )A .B .C .D .5.下列图象中,表示y 是x 的函数的是( )A .B .C .D .6.在平面直角坐标系中,将点(2,3)向上平移1个单位,再向左平移2个单位,所得到的点的坐标是( )A .(-2,3)B .(-1,2)C .(0,4)D .(4,4) 7.下列四组数,是勾股数的是( )A .1,2,3B .2,3,4C .1,3D .5,12,13 8.在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,下列条件不能判定ABC 为直角三角形的是( )A .ABC ∠∠=∠+B .222a c b =-C .23a =,24b =,25c =D .5a =,12b =,13c =9.在平面直角坐标系中,若点()2P x -,在第二象限,则x 是( )A .正数B .负数C .正数或0D .任意数 10.如图是由圆和正方形组成的轴对称图形,对称轴的条数有 ( )A .2条B .3条C .4条D .6条 11.点A 的位置如图所示,下列说法正确的是( )A .点A 在点O 的30°方向,距点O 10.5km 处B .点A 在点O 北偏东30°方向,距点O 10.5km 处C .点O 在点A 北偏东60°方向,距点A 10.5km 处D .点A 在点O 北偏东60°方向,距点O 10.5km 处12.如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则A 2017的坐标为( )A .(505,504)B .(505,-504)C .(-504,504)D .(-504,-504)13.已知4<m ≤5,则关于x 的不等式组0420x m x -<⎧⎨-≤⎩的整数解的个数共有( ) A .2 B .3 C .4 D .514.若x y <,则下列不等式一定成立的是( )A .22x y -<-B .22x y -<-C .nx my >D .22x y > 15.如图,OA 和BA 分别表示甲乙两名学生练习跑步的一次函数的图象,图中S 和t 分别表示路程(米)和时间(秒),根据图象判定跑210米时,快者比慢者少用( )秒.A .4秒B .3.5秒C .5秒D .3秒 16.如图,在ABC 中,AD BC ⊥于D ,且AD BC =,以AB 为底边作等腰直角三角形ABE ,连接ED 、EC ,延长CE 交AD 于点F ,下列结论:①ADE BCE △△≌;①BD DF AD +=;①CE DE ⊥;①BDE ACE S S =△△,其中正确的有( ).A .①①B .①①C .①①①D .①①①① 17.如图,在△ABC 中,①A =80°,①C =60°,则外角①ABD 的度数是( )A .100°B .120°C .140°D .160° 18.如图,一个长方体的长宽高分别是6米、3米、2米,一只蚂蚁沿长方体的表面从点A 到点C '所经过的最短路线长为( )A B C D .以上都不对 19.如图,BAC ∠的平分线与BC 的垂直平分线相交于点D ,ED AB ⊥于点E ,11AB =,5AC =,则BE 的长为( )A .3B .4C .5D .6二、填空题20.若关于x 的方程7x 62a 5x +-=的解是负数,则a 的取值范围是__________. 21.如图,在ABC 和△FED 中,BD EC =,AB FE =,当添加条件______时,就可得到ABC EDF △≌△.(只需填写一个即可)22.点P(在第________象限. 23.若一次函数26y x =-的图像过点(),a b ,则21b a -+=______.24.我国古代称直角三角形为“勾股形”,并且直角边中较短边为勾,另一直角边为股,斜边为弦如图1所示,数学家刘徽(约公元225年~公元295年)将勾股形分割成一个正方形和两对全等的直角三角形,后人借助这种分割方法所得的图形证明了勾股定理如图2所示的长方形是由两个完全相同的“勾股形”拼接而成,若4a =,6b =,则长方形的面积为______.25.将直线21y x =-向上平移4个单位长度,平移后直线的函数解析式为 _____. 26.小明某天离家,先在A 处办事后,再到B 处购物,购物后回家.下图描述了他离家的距离s (米)与离家后的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)A 处与小明家的距离是_________米,小明在从家到A 处过程中的速度是________米/分;(2)小明在B 处购物所用的时间是_______分钟,他从B 处回家过程中的速度是________米/分;(3)如果小明家、A 处和B 处在一条直线上,那么小明从离家到回家这一过程的平均速度是_________米/分.27.关于x 的解集3x a -<<有五个整数解,则a 的取值范围为______.28.如图:已知,平行四边形ABCD 中,CE AB ⊥,E 为垂足,如果A 120︒∠=,则BCE ∠的度数是______________.29.若关于x 的方程3(4)25x a +=+的解大于关于x 的方程(41)(34)43a x a x +-=的解,则a 的取值范围为________. 30.若等腰三角形的一个内角为50,则它的底角的度数为______.31.随着各行各业有序复工复产,企业提倡员工实行“两点一线”上下班模式,减少不必要的聚集.小华爸爸早上开车以60/km h 的平均速度行驶20min 到达单位,下班按原路返回,若返回时平均速度为v ,则路上所用时间t (单位:h )与速度v (单位:/km h )之间的关系可表示为________.32.规定:经过三角形的一个顶点且将三角形的周长分成相等的两部分的直线叫做该角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”Rt △ABC 中,①C =90°,AC =4,BC =3,若直线l 为△ABC 的“等周线”,则△ABC 的所有“等周径”长为________.33.如图,已知EA=CE,①B=①D=①AEC=90°,AB=3 cm,CD=2 cm,则①CDE 和①EBA 的面积之和是____.34.(1)点(2,36)P a a -+到两坐标轴的距离相等,则点P 的坐标为__________; (2)正方形的两边与x ,y 轴的负方向重合,其中正方形的一个顶点坐标为(2,23)C a a --,则点C 的坐标为_______.35.已知长方形的两邻边的差为2,对角线长为4,则长方形的面积是________. 36.如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为_______m (容器厚度忽略不计).37.已知关于x 的不等式组1x x m>-⎧⎨<⎩的整数解共有2个,则m 的取值范围是___________38.如图,在①ABC 中,3∠=∠ABC C ,12∠=∠,BE AE ⊥,5AB =,3BE =,则AC =_____39.在直角坐标系中,直线1y x =+与y 轴交于点1A ,按如图方式作正方形111A B C O 、2221A B C C 、3332A B C C 、…,点1A 、2A 、3A 、…在直线1y x =+上,点1C 、2C 、3C 、…,在x 轴上,图中阴影部分三角形的面积从左到右依次记为1S 、2S 、3S 、…n S ,则1S =_______,=n S ________.(用含n 的代数式表示,n 为正整数)三、解答题40.如图,①MOP =60°,OM =5,动点N 从点O 出发,以每秒1个单位长度的速度沿射线OP 运动.设点N 的运动时间为t 秒,当△MON 是锐角三角形时,求t 满足的条件.41.如图所示,AE AC =,AB AD =,EAB CAD ∠=∠.求证:B D ∠=∠.42.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品43.给出如下规定:两个图形1G 和2G ,点P 为1G 上任一点,点Q 为2G 上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形1G 和2G 之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为()10A ,,则点()2,3B 和射线OA 之间的距离为 ,点(3,4)C -和射线OA 之间的距离为 .(2)点E 的坐标为(1,1),将射线OE 绕原点O 逆时针旋转90︒,得到射线OF ,在坐标平面内所有和射线OE OF ,之间的距离相等的点所组成的图形记为图形M .①在坐标系中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)①将抛物线22y x =﹣与图形M 的公共部分记为图形N ,射线OE ,OF 组成的图形记为图形W ,请直接写出图形W 和图形N 之间的距离.44.某城市居民用水实行阶梯收费,每户每月用水量如果未超过15吨,按每吨2元收费.如果超过15吨,未超过的部分仍按每吨2元收费,超过部分按每吨2.8元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水量未超过15吨和超过15吨时,y 与x 之间的函数表达式; (2)若该城市某用户5月份和6月份共用水50吨,且5月份的用水量不足15吨,两个月一共交水费120元,求该用户5月份和6月份分别用水多少吨?45.有一块木板(图中阴影部分),测得4AB =,3BC =,12DC =,13AD =,90ABC ∠=︒.求阴影部分面积.46.ABC 在平面直角坐标系中的位置如图所示,(1)画出ABC 关于y 轴对称的111A B C △,并写出点111,,A B C 的坐标;(2)在x 轴上取一点P ,使1PB PC +的值最小,在图上标出点P 的位置,(保留作图痕迹);(3)在y 轴上求作一点Q ,使QA QB =.(尺规作图,保留作图痕迹,不写作法)47.已知方程组31313x y m x y m +=-+⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:324m m -++.48.在①ABC 中,CD 是AB 边上的高,AC =4,BC =3,DB =1.8. (1)求CD 的长;(2)求AB 的长;(3)①ABC 是直角三角形吗?请说明理由.49.如图,ABC 中,=45ABC ∠︒,D 为BC 上一点,60ADC ∠=︒,AE BC ⊥于点E ,CF AD ⊥于点F ,AE 、CF 相交于点G ,15CAE ∠=︒(1)求ACF∠的度数;(2)求证:12DF AG=.参考答案:1.C【分析】根据轴对称图形的定义分析判断即可知道正确答案.【详解】A 、不是轴对称图形,选项不符合题意;B 、不是轴对称图形,选项不符合题意;C 、是轴对称图形,选项符合题意;D 、不是轴对称图形,选项不符合题意.故选:C【点睛】本题考查轴对称图形的识别,牢记相关定义是解题关键.2.A【分析】根据不等式的性质可判断不等式的变形是否正确.【详解】① 66x y >-,① 6+60x y >,① +0x y >.故A 正确,B ,C ,D 错误.故选:A .【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.3.B【分析】先根据三角形全等的判定定理证得ABC ADE ∆≅∆,再根据三角形全等的性质、等腰三角形的性质可判断A 、C 选项,又由等腰三角形的性质、三角形的内角和定理可判断出D 选项,从而可得出答案.【详解】DAB EAC ∠=∠DAB CAD EAC CAD ∴∠+∠=∠+∠,即BAC DAE ∠=∠在ABC ∆和ADE ∆中,BAC DAE ACB AED AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC ADE AAS ∴∆≅∆,,B ADE AC AE BC DE ∴∠=∠==,则A 选项正确ACE AEC ∴∠=∠(等边对等角),则C 选项正确AB AD =B ADB ∴∠=∠180B A B DB AD ∠+︒=∠+∠2180BA B D ∴∠=∠+︒,即1802B BAD ∠=︒∠-又180ADB A E DE CD ∠+∠+∠=︒180CDE B B ∠=∴∠+∠+︒,即1802B CDE ∠=︒∠-CDE BAD ∴∠=∠,则D 选项正确虽然,AC AE BC DE ==,但不能推出BC AE =,则B 选项错误故选:B .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出ABC ADE ∆≅∆是解题关键.4.A【分析】根据容器内的水匀速流出,可得相同时间内流出的水相同,根据圆柱的直径越长,等体积的圆柱的高就越低,可得答案.【详解】解:最上面圆柱的直径较长,水流下降较慢;中间圆柱的直径最长,水流下降最慢;下面圆柱的直径最短,水流下降最快.故选:A .【点睛】本题考查了函数图象,利用了圆柱的直径越长,等体积的圆柱的高就越低. 5.A【分析】根据函数的定义,对任意的一个x 都存在唯一的y 与之对应可求.【详解】解:根据函数的定义,对任意的一个x 都存在唯一的y 与之对应,而B 、C 、D 都是一对多,只有A 是对任意的一个x 都存在唯一的y 与之对应.故选:A【点睛】本题主要考查了函数定义与函数对应的应用,要注意构成函数的要素之一:必须形成一一对应,但是不能一对多,属于基础试题.6.C【详解】由平移规律可知:点(2,3)平移后的横坐标为2-2=0;纵坐标为3+1=4; ①平移后点的坐标为(0,4).选C .【点睛】本题考查了平移变换,根据左右平移,横坐标变化,纵坐标不变,上下平移,横坐标不变,纵坐标变化,熟记“左减右加,下减上加”是解题关键.7.D【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【详解】解:A 、①12+22≠32,①1,2,3不是勾股数,故本选项不符合题意;B 、①32+22≠42,①4,2,3不是勾股数,故本选项不符合题意;C 、①22213+≠,①13不是勾股数,故本选项不符合题意;D 、①52+122=132,①5,12,13是勾股数,故本选项符合题意;故选:D .【点睛】本题考查了勾股数和算术平方根,能熟记勾股数的意义是解此题的关键. 8.C【分析】根据三角形内角和定理求出最大内角,即可判断选项A 和选项B ,根据勾股定理的逆定理即可判断选项C 和选项D .【详解】解:A 、①A B C ∠∠=∠+,180A B C ∠+∠+∠=︒,①2180C ∠=︒,①90C ∠=︒,①ABC 是直角三角形,故本选项不符合题意;B 、①222a c b =-,①222+=a b c ,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意;C 、①23a =,24b =,25c =,2275a b +=≠,①222a b c +≠,①以a ,b ,c 为边不能组成直角三角形,故本选项符合题意;D 、①2251225144169+=+=,213169=,①22251213+=,①以a ,b ,c 为边能组成直角三角形,故本选项不符合题意.故选:C.【点睛】本题考查了勾股定理的逆定理和三角形内角和定理.理解和掌握勾股定理的逆定理是解题的关键,注意:如果一个三角形的两边a、b平方和等于第三边c的平方,那么这个三角形是直角三角形.9.A-,进行判断即可.【分析】根据第二象限,点的符号特征(),+-,【详解】解:①第二象限,点的符号特征是(),+①0x>,是正数;故选A.【点睛】本题考查坐标系下象限内点的符号特征.熟练掌握象限内点的符号特征,是解题的关键.10.C【详解】因为过圆心的直线都是圆的对称轴,所以这个图形的对称轴的条数即是正方形的对称轴的条数,而正方形有4条对称轴.故选C.11.D【分析】根据方向角的定义,即可解答.【详解】解:由题意得:90°-30°=60°,2.1×5=10.5(km),①点A在点O北偏东60°方向,距点O10.5km处,故选:D.【点睛】本题考查了方向角,熟练掌握方向角的定义是解题的关键.12.B【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),①2017÷4=504…1,①点A 2017在第四象限,点A 2016在第三象限, ①20164=504, ①A 2016是第三象限的第504个点,①A 2016的坐标为(−504,−504),①点A 2017的坐标为 (505,-504).故选:B .【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果. 13.B【分析】可先将不等式组求出解集,再通过m 的取值范围确定不等式组的解集中的整数解的个数即可.【详解】解:不等式组整理得:2x m x <⎧⎨≥⎩,解集为2x m ≤<, ①m 54<≤,①整数解为2,3,4,共3个,故选:B .【点睛】本题考查含参数的不等式,解题的关键是根据参数的范围来确定不等式组的解集. 14.B【分析】根据不等式的性质,依次分析各个选项,选出不等式的变形正确的选项即可.【详解】解:A 、①x y <,①22x y ->-,故该选项错误,不符合题意;B 、①x y <,①22x y -<-,故该选项正确,符合题意;C 、①x y <,①当0m n >>时,nx my <,故该选项错误,不符合题意;D 、①x y <,①22x y <,故该选项错误,不符合题意. 故选:B【点睛】本题考查了不等式的性质,能灵活运用不等式的性质进行变形是解本题的关键.不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.15.C【分析】利用图象分别得出快、慢者行驶的路程和时间,进而求出速度,再求出时间差.【详解】解:如图所示:快者的速度为:60÷10=6(米/秒),慢者的速度为:(60-10)÷10=5(米/秒),快者跑210米所用的时间为210÷6=35(秒),慢者跑210米所用的时间为(210-10)÷5=40(秒),①快者比慢者少用的时间为40-35=5(秒).故选:C .【点睛】此题主要考查了函数的图象,利用图象得出正确信息是解题关键.16.D【分析】①易证①CBE=①DAE ,用SAS 即可求证:①ADE①①BCE ;①根据①结论可得①AEC=①DEB ,即可求得①AED=①BEG ,即可解题;①证明①AEF①①BED 即可;①易证①FDC 是等腰直角三角形,则CE=EF ,S △AEF =S △ACE ,由①AEF①①BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】解:①AD 为①ABC 的高线①①CBE+①ABE+①BAD=90°,①Rt①ABE 是等腰直角三角形,①①ABE=①BAE=①BAD+①DAE=45°,AE=BE ,①①CBE+①BAD=45°,①①DAE=①CBE ,在①DAE 和①CBE 中,AE BE DAE CBE AD BC ⎪∠⎪⎩∠⎧⎨=== ①①ADE①①BCE (SAS );故①正确;①①ADE①①BCE ,①①EDA=①ECB ,AD=BC ,DE=EC ,①①ADE+①EDC=90°,①①EDC+①ECB=90°,①①DEC=90°,①CE①DE,①DEC是等腰直角三角形,易证①DFC是等腰直角三角形,故①正确,①DF=DC,①BC=BD+DC=BD+DF=AD,故①正确;①AD=BC,BD=AF,①CD=DF,①AD①BC,①①FDC是等腰直角三角形,①DE①CE,①EF=CE,①S△AEF=S△ACE,①①AEF①①BED,①S△AEF=S△BED,①S△BDE=S△ACE.故①正确;故选D.【点睛】本题考查了全等三角形的判定,等腰直角三角形的性质等知识,考查了全等三角形对应边相等的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,①ABD=①A+①C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.18.C【分析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.【详解】解:如图所示,此时:AC;'此时,'AC此时,'AC>故选:C.【点睛】此题考查平面的最短路径问题,关键是把长方体拉平后用了勾股定理求出对角线的长度.19.A【分析】连接CD ,BD ,由①BAC 的平分线与BC 的垂直平分线相交于点D ,DE①AB ,DF①AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,继而可得AF=AE ,易证得Rt △CDF①Rt △BDE ,则可得BE=CF ,继而求得答案.【详解】如图,连接CD ,BD ,①AD 是①BAC 的平分线,DE①AB ,DF①AC ,①DF=DE ,①F=①DEB=90°,①ADF=①ADE ,①AE=AF ,①DG 是BC 的垂直平分线,①CD=BD ,在Rt △CDF 和Rt △BDE 中,CD BD DF DE ⎧⎨⎩==, ①Rt △CDF①Rt △BDE (HL ),①BE=CF ,①AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,①AB=11,AC=5, ①BE=12×(11-5)=3.故选:A .【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题20.a <3【详解】7x 62a 5x +-=7x-5x=2a-62x=2a-6x=a-3因为关于x 的方程7x 62a 5x +-=的解是负数,所以a-3<0,所以a<3.故答案是:a<3.21.答案不唯一(如B E ∠=∠或AC FD =)【分析】根据题意可知BC=ED ,再结合三角形全等的判定定理“边角边”和“边边边”即可得出答案.【详解】①BD=EC ,①BC=ED ,由SSS 可知当AC=FD 时,①ABC①①EDF ;由SAS 可知当①B=①E 时,①ABC①①EDF ;故答案为:AC=FD 或①B=①E .【点睛】本题主要考查的是全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.22.三【分析】根据直角坐标系的象限特点即可判断.【详解】①点P 00,则点P 在第三象限. 【点睛】此题主要考查直角坐标系的象限分类,解题的关键是熟知各象限的坐标特点. 23.5-【分析】先把点(),a b 代入一次函数26y x =-,得到26b a =-,再代入代数式计算即可.【详解】①一次函数26y x =-的图像过点(),a b ,①26b a =-,①2126215b a a a -+=--+=-,故答案为:5-【点睛】此题主要考查了一次函数图像上点的坐标特点以及代数式求值的问题,关键是掌握凡是函数图像经过的点必能满足解析式.24.48【分析】设小正方形的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,利用整体代入的思想解决问题,进而可求出该长方形的面积.【详解】解:设小正方形的边长为x ,①46a b ==,,①4610AB =+=,在Rt ABC △中,222AC BC AB +=,即()()2224610x x +++=,整理得,210240x x +-=,即21024x x +=,而长方形面积为()()2461024242448x x x x ++=++=+=, 即该长方形的面积为48,故答案为:48.【点睛】本题考查了勾股定理的运用,利用勾股定理得到21024x x +=再整体代入计算是解题的关键.25.23y x =+【分析】利用将直线y kx b =+向上或平移n 个单位,再向左或向右平移m 个单位,平移后的函数解析式y k x m n ,据此可得到平移后的函数解析式.【详解】①将直线21y x =-向上平移4个单位长度,①平移后直线的函数的解析式21423y x x =-+=+.故答案为:23y x =+.【点睛】本题考查了直线的平移给函数解析式的影响,掌握一次函数图象的平移规律是解本题的关键.26. 200 40 5 160 64【分析】根据图象可得:5-10分钟小明在A 处办事,15-20分钟小明在B 处购物,20-25分钟为小明返回家途中,即可求解.【详解】解:(1)由图可知,x =5时小明到达A 处,A 处离家距离为200米;小明在从家到A 处过程中的速度是200÷5=40(米/分);(2)小明在B 处购物所用的时间是20-15=5(分);他从B 处回家过程中的速度是800÷(25-20)=160(米/分),(3)小明往返所走路程为800×2=1600(米),往返所用时间为25分,所以小明从离家到回家这一过程的平均速度是1600÷25=64(米/分).故答案为:(1)200,40;(2)5,160;(3)64.【点睛】本题考查函数与图象的结合,根据图象,解决实际问题,准确获取信息,找到题中各个点所对应坐标的实际意义是解题的关键.27.23a <≤【分析】根据不等式的正整数解为210,1,2--,,,即可确定出正整数a 的取值范围. 【详解】①不等式3x a -<<有5个正整数解,①这5个整数解为210,1,2--,,, 则23a <≤,故答案为23a <≤.【点睛】本题主要考查不等式组的整数解,解题的关键是掌握据得到的条件进而求得不等式组的整数解.28.30°【详解】试题分析:先根据平行四边形的性质求得①B 的度数,再由根据三角形的内角和定理求解即可.解:①平行四边形, ①①B=60°①①=180°-90°-60°=30°. 考点:平行四边形的性质,三角形的内角和定理点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.29.718a > 【分析】先求出两个方程的解,然后解关于a 的一元一次不等式,即可得到答案.【详解】解:解方程3(4)25x a +=+, 得:273a x -=, 解方程(41)(34)43a x a x +-=, 得:163x a =-. 由题意得:271633a a ->-. 解得:718a >. 故答案为:718a >. 【点睛】本题考查的是解一元一次方程和解一元一次不等式,根据题意列出关于x 的不等式是解答此题的关键.30.65°或50°.【分析】由等腰三角形的一个内角为50°,可分别从50°的角为底角与50°的角为顶角去分析求解,即可求得答案.【详解】①等腰三角形的一个内角为50°,若这个角为顶角,则底角为:(180°﹣50°)÷2=65°,若这个角为底角,则另一个底角也为50°,①其一个底角的度数是65°或50°.故答案为65°或50°.31.20t v= 【分析】根据路程=速度×时间,可计算出家与单位之间的总路程,再根据速度v =路程÷时间,即可得出答案.【详解】解:①20602060⨯=(km) ①小华爸爸下班时路上所用时间t (单位h )与速度v (单位:/km h )之间的关系可表示为:20t v=. 故答案为:20t v =.【点睛】本题考查的知识点是用关系式表示变量之间的关系,读懂题意,比较容易解答.32【分析】分三种情况:①当“等周线”经过点C时,直线l交AB于点E;①当“等周线”经过点A时,直线l交BC于点E,①当“等周线”经过点B时,直线l交AC于点E.画图并运用勾股定理计算.【详解】①Rt①ABC中,①C=90°,AC=4,BC=3,①AB=5①如图,当“等周线”经过点C时,直线l交AB于点E,设BE=x,则AE=5-x,作CH①AB于H.由题意得:3+x=4+5-x解得:x=3①CH=125 BC ACAB⋅=①BH9 5 =①EH=395-=65在Rt①ECH中,CE=①“等周径”①如图,当“等周线”经过点A时,直线l交BC于点E,设BE=x,则CE=3-x由题意得:4+3-x=5+x解得:x=1①EC=2在Rt①ACE中,AE①“等周径”长为①如图,当“等周线”经过点B时,直线l交AC于点E,设AE=x,则CE=4-x由题意得:3+4-x=5+x解得:x=1①CE=3在Rt①BCE中,BE①“等周径”长为综上所述,满足条件的“等周径”【点睛】本题考查“新定义”问题,分类讨论并准确画图,灵活运用勾股定理是解题关键.33.62cm【分析】只要证明△ECD①①AEB,再根据三角形面积公式计算即可.【详解】如图,①①B=①D=①AEC=90°,①①1+①2=90°,①2+①a=90°,①①1=①A ,①EC=AE ,①①ECD①①AEB ,①CD=EB=2cm ,DE=AB=3cm ,①①CDE 和△ABE 的面积之和为2×12×2×3=6cm 2,故答案为62 c m .【点睛】本题考查全等三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找全等三角形全等的条件.34. (3,3),(6,-6) 1-0(1,1)2⎛⎫-- ⎪⎝⎭,, 【分析】(1)根据点(2,36)P a a -+到两坐标轴的距离相等,可得2=36a a -+,当点P 在第一或第三象限时2=36a a -+或当点P 在第二或第四象限时2+360a a -+=,解方程即可;(2)由正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,当点C 在x 轴上,与y 轴上分类列方程与解方程即可.【详解】解:(1)①点(2,36)P a a -+到两坐标轴的距离相等, ①2=36a a -+,当点P 在第一或第三象限时2=36a a -+解得1a =-,当1a =-时,2213,36363a a -=+=+=-+=,①点(3,3)P ,当点P 在第二或第四象限时2+360a a -+=解得4a =-当4a =-时,22+46,361266a a -==+=-+=-,①点(6,-6)P ,故答案为(3,3),(6,-6);(2)①正方形的两边与x ,y 轴的负方向重合,当点C 在第三象限时,(2,23)C a a --,①2=23a a --,解得=1a ,当=1a 时,2121,23231a a -=-=--=-=-,点(1,1)C --.当点C 在x 轴上时,①23=0a - 解得32a =当32a =时,312222a -=-=- 点1,02C ⎛⎫- ⎪⎝⎭; 当点C 在y 轴上时,2=0a -,解得=2a当=2a 时,23=4-3=10a ->不合题意舍去 故答案为1,02⎛⎫- ⎪⎝⎭, (-1,-1). 【点睛】本题考查点到两坐标轴的距离问题,根据坐标的符号分类构建方程是解题关键. 35.6【详解】试题解析:设长方形短边为x ,则长边为x+2,根据勾股定理得:x 2+(x+2)2=42,整理得:x 2+2x-6=0,解得:±①长方形宽为则面积为6.36.1.3.【详解】因为壁虎与蚊子在相对的位置,则壁虎在圆柱展开图矩形两边中点的连线上,如图所示要求壁虎捉蚊子的最短距离,实际上是求在EF 上找一点P ,使PA+PB 最短,过A 作EF 的对称点A',连接A'B ,则A'B 与EF 的交点就是所求的点P .过B 作BM AA'⊥于点M ,在Rt A'MB ∆中,A'M 1.2=,BM 0.5=,①A'B 1.3==.①A'B AP PB =+,①壁虎捉蚊子的最短距离为1.3m .37.12m <≤【分析】首先确定不等式组的整数解,即可确定m 的范围.【详解】解:关于x 的不等式组1x x m><-⎧⎨⎩的解集是:﹣1<x <m , ①不等式组的整数解有2个①这2个整数解是:0,1,①12m <≤故答案为:12m <≤.【点睛】本题考查了不等式组的整数解,正确理解m 与1和2的大小关系是关键. 38.11【分析】如图,延长BE 交AC 于M ,利用三角形内角和定理,得出①3=①4,AB=AM=5,BM=2BE=6,再利用①4是①BCM 的外角,利用等腰三角形判定得到CM=BM ,利用等量代换即可求证.【详解】证明:如图,延长BE 交AC 于M①BE AE ⊥①①AEB=①AEM=90°①①3=90°-①1,①4=90°-①2①①1=①2①①3=①4①AB=AM=5①BE AE ⊥①BM=2BE=6①①4是①BCM 的外角①①4=①5+①C①3∠=∠ABC C①①ABC=①3+①5=①4+①5①3①C=①4+①5=2①5+①C①①5=①C①CM=BM=6①AC=AM+CM=AB+2BE=11.【点睛】本题考查学生对等腰三角形的判定与性质的理解和掌握,本题的关键是作好辅助线,延长BE 交AC 于M ,利用三角形内角和定理、三角形外角的性质,考查的知识点较多,综合性较强.39. 12 232n -【分析】(1)如图所示,设直线与x 轴的交点为D. 计算直线与x 轴y 轴的交点坐标,从而求出正方形111A B C O 边长,然后计算12B A 即可解决问题.(2)分别计算2S 和3S 的面积,然后研究它们面积之间存在的数量关系即可解决n S .。
浙教版初中数学八年级上册期末测试卷(困难)(含答案)

浙教版初中数学八年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图,称有一条公共边的两个三角形为一对共边三角形,则图中的共边三角形有( )A. 8对B. 16对C. 24对D. 32对2.图 ①是一个四边形纸条ABCD,其中AB//CD,E,F分别为边AB,CD上的点,将纸条ABCD沿直线EF折叠得到图 ②,再将图 ②沿直线DF折叠得到图 ③,若在图 ③中,∠FEM=26∘,则∠EFC的度数为( )A. 52∘B. 64∘C. 102∘D. 128∘3.下列四个命题:①直线外一点到这条直线的垂线段叫做点到直线的距离;②内错角相等;③过一点有且只有一条直线与这条直线平行;④如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等.其中真命题的个数是.( )A. 0个B. 1个C. 2个D. 4个4.图甲是第七届国际数学教育大会(ICME−7)的会徽图案,它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如图乙中的OA1=A1A2=A2A3=⋯=A7A8= 1,按此规律,在线段OA1,OA2,OA3,…,OA20中,长度为整数的线段有条.( )A. 3B. 4C. 5D. 65.若关于x的不等式组{x−3≥a−3xx<4有且只有3个整数解,则满足条件的所有整数a 的和是( )A. −3B. −2C. −5D. −66.已知关于x的分式方程1−mx−1−2=21−x的解是非负数,则m的取值范围是( )A. m≤5且m≠−3B. m≥5且m≠−3C. m≤5且m≠3D. m≥5且m≠37.若不等式组{3x−1>2,8−4x≤0的解集在数轴上表示为( )A. B.C. D.8.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有( )A. 5间B. 6间C. 7间D. 8间9.点A的坐标为(3,−5),现将坐标系向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )A. (0,−1)B. (1,−2)C. (−7,−1)D. (6,−9)10.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A. (4,44)B. (5,44)C. (44,4)D. (44,5)11. 在平面直角坐标系中,已知直线y =−34x +3与x 轴、y 轴分别交于A ,B 两点,C(0,n)是y 轴正半轴上一点,把坐标平面沿AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是.( )A. (0,34)B. (0,43)C. (0,3)D. (0,4)12. 如图1,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运动到点B.图2是点F 运动时,△FBC 的面积y(cm 2)随时间x(s)变化的关系图象,则a 的值为( )A. √5B. 2C. 52 D. 2√5第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,△ABC 与△DEF 均为等边三角形,点E ,F 在边BC 上,BE =CF =2EF ,点D在△ABC 内,且AG =GD =GE =√19,则△ABC 的周长为______.14. 如图,“赵爽弦图”由4个完全一样的直角三角形所围成,在Rt △ABC 中,AC =b ,BC =a ,∠ACB =90°,若图中大正方形的面积为60,小正方形的面积为10,则(a +6)2的值为______.15.如果关于x的不等式ax<3的解集为x>3,写出一个满足条件的a值______.a16.如图,直线l1:y=x+1与直线l2:y=kx+b相交于点P(a,2),则关于x的不等式x+1<kx+b的解集为______.三、解答题(本大题共9小题,共72分。
2022-2023年浙教版初中数学八年级上册期末考试检测试卷及部分答案(共五套)

2022-2023年浙教版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°2.若点P的坐标是(1,-2),则点P在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为( )A.30° B.20° C.10° D.40°4.如图,AB=AC,BD=1,BD⊥AD,则数轴上点C所表示的数为( )A.5+1 B.-5-1 C.-5+1 D.5-15.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°6.不等式4x -1>2x +1的解集在数轴上表示为( )7.将一次函数y =12x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是( )A .x >4B .x >-4C .x >2D .x >-28.在等腰三角形中,有一个角是70°,则它的一条腰上的高与底边的夹角是( )A .35°B .40°或30°C .35°或20°D .70°9.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地.已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象的是( )10.如图,在平面直角坐标系中有一点A (1,0),点A 第一次向左跳动至A 1(-1,1),第二次向右跳动至A 2(2,1),第三次向左跳动至A 3(-2,2),第四次向右跳动至A 4(3,2),…,依照此规律跳下去,点A 第100次跳动至A 100,则A 100的坐标为( )A .(50,49)B .(51,50)C .(-50,49)D .(100,99) 二、填空题(每题3分,共24分)11.把命题“等腰直角三角形是轴对称图形”的逆命题改写成“如果……那么……”的形式是_______________________________________________________. 12.一次函数y =2x -6的图象与x 轴的交点坐标为________.13.在平面直角坐标系中,已知点O (0,0),A (1,3),将线段OA 向右平移3个单位,得到线段O 1A 1,则点O 1的坐标是________,A 1的坐标是________. 14.如图是一副三角板拼成的图案,则∠CEB =________°.15.如果不等式(m +1)x <m +1的解集是x >1,那么m 的取值范围是________. 16.在平面直角坐标系中,已知点A (m ,3)与点B (4,n )关于y 轴对称,那么(m +n )2 019=________.17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是3,5,2,3,则最大正方形E 的面积是________.18.如图,在直角坐标系中,一次函数y =34x +6的图象与两坐标轴分别交于A ,B 两点,OC ⊥AB ,垂足为点C ,在直线AB 上有一点P ,y 轴的正半轴上有一点Q ,使得以O ,P ,Q 为顶点的三角形与△OCP 全等,请写出所有符合条件的点Q 的坐标:__________________.三、解答题(19题6分,20,21题每题8分,22,23题每题10分,24,25题每题12分,共66分)19.解下列不等式(组),并把解集在数轴上表示出来.(1)4x -13-x >1; (2)⎩⎪⎨⎪⎧1+x >-2,2x -13≤1.20.已知一次函数y=ax+c与y=kx+b的图象如图,且点B的坐标为(-1,0),请你确定这两个一次函数的表达式.21.如图,在Rt△ABC中,∠C=90°.(1)请在线段BC上找一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AC=6,BC=8,请求出CD的长度.22.如图,在△ABC中,D在AB上,E在AC的延长线上,连结DE交BC于P,BD=CE,DP =EP.求证:AB=AC.23.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线交点的三角形)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格中建立平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3)求出△A′B′C′的面积.24.小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图①所示,樱桃价格z(元/千克)与上市时间x(单位:天)的函数关系如图②所示.(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数表达式;(3)试比较第10天与第12天的销售金额哪天多.25.如图①,在△ABC中,CD⊥AB于D,且BD∶AD∶CD=2∶3∶4.(1)试说明△ABC是等腰三角形.(2)已知S△ABC=40 cm2,如图②,动点M从点B出发以每秒1 cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒).①若△DMN的边与BC平行,求t的值.②若点E是AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.答案一、1.解:∵∠A =50°,∠B =80°, ∴∠ACD =∠A +∠B =50°+80°=110°, 故选:C .2.D 点拨:由题意知,点P 的横坐标为正,纵坐标为负,这样的点在第四象限内. 3.C 点拨:∵AB ∥CD ,∴∠EFC =∠ABE =60°.∵∠EFC =∠D +∠E ,∴∠E =∠EFC -∠D=60°-50°=10°,故选C.4.D 点拨:∵在直角三角形ABD 中,∠ADB =90°,∴AB =AD 2+BD 2=22+12=5,∴点C 到原点的距离为5-1,∴点C 表示的数是5-1.故选D. 5.C 6.C7.B 点拨:将一次函数y =12x 的图象向上平移2个单位后,所得图象对应的函数的表达式为y =12x +2,令y >0,即12x +2>0,解得x >-4.8.C 点拨:70°的角可能是顶角,也可能是底角.分两种情况讨论:如图①,当顶角∠A=70°时,底角∠ABC =∠C =12(180°-∠A )=55°,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =35°.如图②,当底角∠ABC =∠C =70°时,腰AC 上的高与底边BC 的夹角∠CBD =90°-∠C =20°.9.C10.B 点拨:观察发现,第2次跳动至点A 2(2,1),第4次跳动至点A 4(3,2),第6次跳动至点A 6(4,3),第8次跳动至点A 8(5,4)……第2n 次跳动至点A 2n (n +1,n ),∴第100次跳动至点A 100(51,50).故选B .二、11.如果一个三角形是轴对称图形,那么这个三角形是等腰直角三角形12.(3,0) 点拨:令y =0,得2x -6=0,解得x =3,所以一次函数y =2x -6的图象与x轴的交点坐标为(3,0).13.(3,0);(4,3) 点拨:将线段OA 向右平移3个单位,线段上任意一点的横坐标增加3,纵坐标不变,所以O 1的坐标是(3,0),A 1的坐标是(4,3). 14.10515.m <-1 点拨:∵不等式(m +1)x <m +1的解集是x >1,∴m +1<0,∴m <-1. 16.-1 17.4718.⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485点拨:∵OC ⊥AB ,∴△OCP 是以OP 为斜边的直角三角形.要使△OCP 与△OPQ 全等,则△OPQ 也是直角三角形,且OP 是斜边,∠OQP =90°,即PQ ⊥y 轴.设P ⎝ ⎛⎭⎪⎫a ,34a +6,则Q ⎝ ⎛⎭⎪⎫0,34a +6.由直线y =34x +6,可得A (-8,0),B (0,6),∴OA =8,OB =6,∴AB=10,∴OC =OA ·OB AB =245.①当OC =OQ 时,∵OP =OP ,∴Rt △OCP ≌Rt △OQP (HL).∵OQ =OC =245,∴Q ⎝ ⎛⎭⎪⎫0,245.②当OC =PQ 时,∵OP =OP , ∴Rt △OCP ≌Rt △PQO (HL), ∴245=|a |,∴a =245或a =-245, ∴34a +6=485或125,∴Q 的坐标为⎝⎛⎭⎪⎫0,485或⎝ ⎛⎭⎪⎫0,125.综上所述,所有符合条件的点Q 的坐标为⎝⎛⎭⎪⎫0,125,⎝ ⎛⎭⎪⎫0,245,⎝ ⎛⎭⎪⎫0,485 .三、19.解:(1)去分母,得4x -1-3x >3,移项、合并同类项,得x >4, 它的解集在数轴上表示如图.(2)由1+x >-2,得x >-3, 由2x -13≤1,得x ≤2.∴原不等式组的解集为-3<x ≤2. 它的解集在数轴上表示如图.20.解:由题图可知交点A 的坐标为(1,3),因为函数y =kx +b 的图象过点A (1,3)和点B (-1,0),所以⎩⎪⎨⎪⎧k +b =3,-k +b =0,解得⎩⎪⎨⎪⎧k =32,b =32.又因为函数y =ax +c 的图象过点(1,3)和(0,-2),所以⎩⎪⎨⎪⎧a +c =3,c =-2,解得⎩⎪⎨⎪⎧a =5,c =-2.所以这两个一次函数的表达式分别为y =5x -2,y =32x +32.点拨:解此问题先通过图形确定两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的表达式的关键..是确定a ,c ,k ,b 的值. 21.解:(1)如图,点D 即为所求.(2)如图,过点D 作DE ⊥AB 于E , 设DC =x ,则BD =8-x .∵在Rt △ABC 中,∠C =90°,AC =6,BC =8, ∴由勾股定理得AB =AC 2+BC 2=10.∵点D 到边AC 、AB 的距离相等,∴AD 是∠BAC 的平分线. 又∵∠C =90°,DE ⊥AB ,∴DE =DC =x .在Rt △ACD 和Rt △AED 中,⎩⎪⎨⎪⎧AD =AD ,DC =DE ,∴Rt △ACD ≌Rt △AED (HL),∴AE =AC =6,∴BE =4. 在Rt △DEB 中,∠DEB =90°, ∴DE 2+BE 2=BD 2, 即x 2+42=(8-x )2, 解得x =3.∴CD 的长度为3.22.证明:如图,过点D 作DF ∥AC 交BC 于点F .∵DF ∥AC ,∴∠1=∠E ,∠5=∠2. 在△DPF 和△EPC 中, ⎩⎪⎨⎪⎧∠1=∠E ,DP =EP ,∠3=∠4,∴△DPF ≌△EPC (ASA), ∴DF =EC .又∵BD =EC ,∴BD =DF , ∴∠B =∠5.又∵∠5=∠2,∴∠B =∠2, ∴AB =AC .23.解:(1)建立平面直角坐标系如图.(2)△A ′B ′C ′如图.B ′(2,1). (3)S △A ′B ′C ′=12×2×(2+2)=4.24.解:(1)日销售量的最大值为120千克.(2)当0≤x ≤12时,设日销售量y 与上市时间x 的函数表达式为y =kx . ∵点(12,120)在y =kx 的图象上, ∴k =10.∴函数表达式为y =10x .当12<x ≤20时,设日销售量y 与上市时间x 的函数表达式为y =k 1x +b . ∵点(12,120),(20,0)在y =k 1x +b 的图象上,∴⎩⎪⎨⎪⎧12k 1+b =120,20k 1+b =0, 解得⎩⎪⎨⎪⎧k 1=-15.b =300.∴函数表达式为y =-15x +300.综上:y =⎩⎪⎨⎪⎧10x (0≤x ≤12),-15x +300(12<x ≤20).(3)∵第10天和第12天在第5天和第15天之间,∴当5<x ≤15时,设樱桃价格z 与上市时间x 的函数表达式为z =k 2x +b 1. ∵点(5,32),(15,12)在z =k 2x +b 1的图象上,∴⎩⎪⎨⎪⎧5k 2+b 1=32,15k 2+b 1=12, 解得⎩⎪⎨⎪⎧k 2=-2,b 1=42.∴函数表达式为z =-2x +42. 当x =10时,y =10×10=100,z =-2×10+42=22.销售金额为100×22=2 200(元). 当x =12时,y =120,z =-2×12+42=18.销售金额为120×18=2 160(元).∵2 200>2 160,∴第10天的销售金额多. 25.解:(1)设BD =2x cm ,AD =3x cm ,CD =4x cm ,则AB =5x cm ,AC =AD 2+CD 2=5x cm ,∴AB =AC ,∴△ABC 是等腰三角形.(2)∵S △ABC =12×5x ×4x =40,x >0,∴x =2,∴BD =4 cm ,AD =6 cm ,CD =8 cm ,AC =10 cm. ①当MN ∥BC 时,AM =AN , 即10-t =t , ∴t =5;当DN ∥BC 时,AD =AN ,∴t =6.∴若△DMN 的边与BC 平行,t 的值为5或6. ②∵E 为Rt △ADC 斜边上的中点,∴DE =5 cm.当点M 在BD 上,即0≤t <4时,△MDE 为钝角三角形,但DM ≠DE . 当t =4时,点M 运动到点D ,不能构成三角形.当点M 在DA 上,即4<t ≤10时,△MDE 为等腰三角形,有3种可能. 若MD =DE ,则BM =9 cm , 此时t =9.若ED =EM ,则点M 运动到点A , 此时t =10.若MD =ME =(t -4)cm , 过点E 作EF ⊥AB 于点F , ∵ED =EA ,∴DF =AF =12AD =3 cm ,在Rt △AEF 中,易得EF =4 cm. ∵BM =t cm ,BF =7 cm , ∴FM =(t -7)cm.在Rt △EFM 中,由勾股定理,得(t -4)2-(t -7)2=42, ∴t =496.综上所述,符合要求的t 的值为9或10或496.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(二)1.在以下四个标志中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,∠A=50°,∠B=80°,则∠ACD的度数为()A.120°B.125°C.130°D.135°3.若a>b,则下列式子中正确的是()A.a+3>b+3B.﹣a>﹣bC.D.﹣3a+2>﹣3b+24.下列四组线段中,能组成三角形的是()A.1,2,3B.2,2,4C.2,4,5D.1,3,55.对假命题“若a2<b2,则a<b”举反例,可以是()A.a=﹣1,b=2B.a=﹣1,b=﹣1C.a=﹣2,b=﹣1D.a=0,b=﹣1 6.如图,已知BE=CF,AC∥DF,添加下列条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.∠B=∠DEC C.AC=DF D.∠A=∠D 7.如图,直线y=kx+b(k≠0)经过点A(0,3),且与直线y=x交于点B(1,1),则不等式kx+b>x的解为()A.x>0B.x>1C.x<1D.x<28.将一根16cm长的细铁丝折成一个等腰三角形(弯折处长度忽略不计),设腰长为xcm,底边长为ycm,则下列选项中能正确描述y与x函数关系的是()A.B.C.D.9.如图,在边长为2的等边△ABC中,点D,P分别为BC,AC的中点,点Q是AD上一动点,则△PQC的周长的最小值为()A.3B.+1C.D.10.如图,已知直线l:y=x,过点A0(1,0)作x轴的垂线交直线l于点B0,过点B0作直线l的垂线交x轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l 的垂线交x轴于点A2,…,按此作法继续下数,记△A0B0A1的面积为S1,△A1B1A2的面积为S2,…,△A n﹣1B n﹣1A n的面积为S n,那么S4的值为()A.3×83B.C.3D.11.若点P(a﹣1,2)在第一象限,则a的取值范围是.12.若点(﹣1,y1)和点(2,y2)是直线y=3x+1上的两个点,则y1y2(填“>”、“<”或“=”).13.如图,在△ABC中,BD是一条角平分线,CE是AB边上的高线,BD,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=.14.如图,△ABC中,CD⊥AB于D,E是AC的中点,若AD=9,DE=7.5,则CD的长为.15.如图,将边长为8cm的正方形ABCD沿EF折叠(E,F分别是AD,BC边上的点),使点B恰好落在CD的中点B'处,则BF的长为.16.如图,在长方形ABCD中,AB=4cm,AD=6cm,E为AB的中点.点P从点D出发,以2cm/s的速度沿D→C→B→A路线运动,运动至点A停止,运动时间为t(s).若△DEP 为等腰三角形,则t的值为.17.解一元一次不等式组.18.如图,在平面直角坐标系中,△ABC如图所示.(1)在图中,以y轴为对称轴,作△ABC的轴对称图形△A'B'C'.(2)求△ABC的面积.19.如图,在△ABC中,AB=AC,点D是△ABC内一点,且DB=DC,过点D作DE⊥AB 于点E,DF⊥AC于点F,求证:DE=DF.20.通过测量获得成年女性的脚长与身高的各组数据如下表:脚长x(cm)2222.52323.52424.5身高y(cm)150155161165169175(1)判断成年女性的身高y与脚长x是否满足或近似地满足一次函数关系.如果是,求出y关于x函数表达式.(2)若某人身高为167cm,则其脚长约为多少?21.[旧知重温]课本第64页作业题第2题:如图1,AD平分△ABC的外角∠EAC,AD∥BC,求证:△ABC是等腰三角形.证明:∵AD∥BC,∴∠DAC=∠C,∠EAD=∠B.∵AD平分∠EAC,∴∠DAC=∠EAD,∴∠B=∠C,∴AB=AC,即△ABC为等腰三角形.[拓展知新]如图2,AD平分△ABC的外角∠EAC,AF平分∠BAC交BC于点F,连结DF 交AC于点H,已知DF∥AB,求证:H为DF中点.22.周老师参加了某次半程马拉松比赛(赛程21km).若周老师从甲地出发出发,匀速前进,15分钟后,工作人员以18km/h的速度沿同一路线骑车运送一批运动饮料到距离起点9km的补给站,到达后留在原地.周老师在补给站补充能量后进行了提速并保持匀速,直至到达终点.如图是周老师和工作人员经过的路程y(km)与周老师出发时间x(h)之间的函数关系,根据图象信息回答下列问题:(1)周老师出发多久后,工作人员追上了他?(2)周老师提速后的速度是多少?(3)周老师出发多久后,在工作人员前方2km处?23.如图1,直线l:y=﹣x+6分别与x,y轴交于A,B两点,作∠ABO的角平分线交x 轴于点P.(1)写出A,B的坐标.(2)求OP的长.(3)如图2,点C为线段BP上一点,过点C作CD∥AB交x轴于点D,且CD=OB.求证:P为OD中点.参考答案1.解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意.故选:B.2.解:∵∠A=50°,∠B=80°,∴∠ACD=∠A+∠B=50°+80°=110°,故选:C.3.解:A、不等式a>b的两边同时加上3,不等号的方向不变,即a+3>b+3,原变形正确,故本选项符合题意.B、不等式a>b的两边同时乘﹣1,不等号的方向改变,即﹣a<﹣b,原变形错误,故本选项不符合题意.C、不等式a>b的两边同时除以5,不等号的方向不变,即>,原变形错误,故本选项不符合题意.D、不等式a>b的两边同时乘﹣3,再加上2,不等号的方向改变,即﹣3a+2<﹣3b+2,原变形错误,故本选项不符合题意.故选:A.4.解:A.∵1+2=3,∴不能组成三角形,故本选项不符合题意;B.∵2+2=4,∴不能组成三角形,故本选项不符合题意;C.∵2+4>5,∴能组成三角形,故本选项符合题意;D.∵1+3<5,∴不能组成三角形,故本选项不符合题意;故选:C.5.解:用来证明命题“若a2<b2,则a<b是假命题的反例可以是:a=0,b=﹣1,因为02<(﹣1)2,但是0>﹣1,所以D符合题意;故选:D.6.解:B:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠A=∠D,∵∠B=∠DEC,∴△ABC≌△DEF(AAS),∴不符合题意;C:∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵AC=DF,∴△ABC≌△DEF(SAS),∴不符合题意;D::∵BE=CF,∴BE+EC=CF+CE,∴BC=EF,∵AC∥DF,∴∠F=∠ACB,∵∠A=∠D,∴△ABC≌△DEF(AAS),∴不符合题意;A:无法判定△ABC≌△DEF,∴符合题意;故选:A.7.解:如图所示:不等式kx+b>x的解为:x<1.故选:C.8.解:由已知y=16﹣2x,由三角形三边关系得:,解得:4<x<8,故选:D.9.解:如图,连接BP,与AD交于点Q,连接CQ,∵△ABC是等边三角形,AD⊥BC,∴QC=QB,∴QP+QC=QP+QB=BP,此时QP+QC最小,△PQC的周长QP+QC+PC最小,∵△ABC是一个边长为2的正三角形,点P是边AC的中点,∴∠BPC=90°,CP=1cm,∴BP==,∴△PQC的周长的最小值为+1.故选:B.10.解:∵A0B0⊥x轴交直线l于点B0,A0(1,0),直线l:y=x,∴B0(1,),OA0=1,∴A0B0=,∴∠OB0A0=30°,∠B0OA0=60°,∵A1B0⊥l,∴∠OB0A1=90°,∴∠A0B0A1=60°,∴A0A1=×=3,∴S1=•A0B0•A0A1=××3=,OA1=1+3=4,∴A1(4,0),∵A1B1⊥x轴交直线l于点B1,A1(4,0),直线l:y=x,∴B1(4,4),∴A1B1=4,∴∠OB1A1=30°,∠B1OA1=60°,∵A2B1⊥l,∴∠OB1A2=90°,∴∠A1B1A2=60°,∴A1A2=×4=12,∴S2=•A1B1•A1A2=×4×12=24,OA2=4+12=16,同理可得,S3=×16×48=384,S4=×163,故选:B.11.解:∵点P(a﹣1,2)在第一象限,∴a﹣1>0,∴a>1,故答案为:a>1.12.解:∵y=3x+1,k=3>0,∴y随x的增大而增大,∵点(﹣1,y1)和N(2,y2)是直线y=3x+1上的两个点,﹣1<2,∴y1<y2,故答案为:<.13.解:∵CE是AB边上的高线,∴∠CEB=90°,∵∠EFB=60°,∴∠EBF=30°,∵∠EBD+∠A=∠BDC=70°∴∠A=∠BDC﹣∠EBD=70°﹣30°=40°,故答案为:40°.14.解:∵CD⊥AB于D,E是AC的中点,∴DE=AE=EC,∵AD=9,DE=7.5,∴AC=15,∴在Rt△ADC中AD2+DC2=AC2,即DC2=AC2﹣AD2=225﹣81=144,故DC=12.故答案为:12.15.解:∵点B'是CD中点,∴B'C=DB'=4cm,∵将边长为8cm的正方形ABCD沿EF折叠,∴BF=B'F,∵F'B2=CF2+B'C2,∴BF2=(8﹣BF)2+16,∴BF=5,故答案为:5cm.16.解:①若ED=EP,点P与C重合,∵AB=4cm,∴CD=DP=4cm,∴t==2;②如图,若EP=DP,设PC=xcm,则BP=(6﹣x)(cm),∵EB2+BP2=EP2,CP2+CD2=PD2,∴22+(6﹣x)2=x2+42,解得x=2,∴DC+PC=4+2=6(cm).∴t==3;③如图,若ED=DP,∵AD=6cm,AE=2cm,∴DE===2(cm),∴DP=2(cm),∴PC==2(cm),∴DC+PC=(4+2)(cm),∴t==2+.综合以上可得t的值为2或3或2+.故答案为:2或3或2+.17.解:,由①得,x>1,由②得,x<5,∴原不等式组的解集是1<x<5.18.解:(1)如图,△A'B'C'即为所求;(2)△ABC的面积=2×3﹣1×2﹣1×3﹣×1×2=6﹣1﹣﹣1=.19.证明:在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF.20.解:(1)身高y与脚长x满足或近似地满足一次函数关系,通过描点发现y与x的关系对应图象成一条直线,近似满足一次函数关系,设y与x的关系为:y=kx+b,将(22,150),(22.5,155)代入,得:,解得:,∴一次函数关系式为:y=10x﹣70,将其它点代入,发现都成立;(2)当y=167时,代入函数关系式,10x﹣70=167,解得:x=23.7,即脚长为23.7厘米.21.证明:∵AF平分∠BAC,∴∠BAF=∠CAF,∵AB∥DF,∴∠BAF=∠AFH,∴∠CAF=∠AFH,∴HA=HF,同理HA=HD,∴HD=HF,即H为DF中点.22.解:(1)直线EF:y=18(x﹣0.25)=18x﹣4.5,由题意:点A坐标为(1,9),∴OA:y=9x,方程组,解得:,∴周老师出发0.5小时后,工作人员追上了他;(2)提速后,速度为==10(km/h),答:周老师提速后的速度是10km/h;(3)①工作人员出发前:(h);②工作人员出发后,为追上周老师:设周老师出发x小时,在工作人员前方2km,则9x﹣(18x﹣4.5)=2,解得:x=;③工作人员达到补给站后:10(x﹣1)=2,解得:x=,答:周老师出发或或后,在工作人员前方2km处.23.(1)解:在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=8,令x=0,则y=6,∴A点的坐标为(8,0),B点的坐标为(0,6);(2)解:如图1,过P作PQ⊥AB于Q,∵BP平分∠ABO,∠BOP=90°,∴PQ=PO,∵PB=PB,∴Rt△PBO≌Rt△PBQ(HL),∴BQ=OB=6,∵AB==10,∴AQ=4,设OP=x,则PQ=PO=x,∵AP2=PQ2+AQ2,∴(8﹣x)2=x2+42,∴x=3,∴OP=3;(3)证明:过D作DE∥OB交BP的延长线于E,则∠OBP=∠DEP,∵AB∥CD,∴∠PCD=∠PBA,∵∠PBA=∠OBP,∴∠PCD=∠OBP,∴∠PCD=∠DEP,∴CD=ED,∵CD=OB,∴DE=DB,在△OPB与△DPE中,,∴△OPB≌△DPE(AAS),∴OP=DP,∴P为OD中点.2022-2023年浙教版数学八年级上册期末考试测试卷及答案(三)一、选择题(80分)1.(2019·模拟·江苏苏州市吴中区)如图,内接于圆O,∠OAC=25∘,则∠ABC的度数为( )A.B.115∘C.D.125∘2.(2020·同步练习·天津天津市)如图,点A表示的实数是( )A.√3B.C.−√3D.−√53.(2019·期中·浙江温州市鹿城区)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图()所示).图()由弦图变化得到,它是由八个全等的直角三角形拼接而成的记图中正方形,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若,则S1+S2+S3的值是( )A.B.38C.48D.804.(2019·期末·云南昆明市官渡区)如图,在中,,∠BAC=45∘,BD⊥AC,垂足为D点,平分∠BAC,交于点F交于点E,点为AB的中点,连接DG,交AE于点,下列结论错误的是( )A.B.HE=BE C.AF=2CE D.DH=DF 5.(2019·期中·天津天津市和平区)如图,四边形ABCD,,,点E在边AB上,且AD=AE,BE=BC,则的值为A.√2B.C.√22D.126.(2018·期中·江苏无锡市锡山区)等腰三角形一个角为,则这个等腰三角形的顶角可能为( )A.B.65∘C.80∘D.或80∘7.(2020·单元测试)如图,在△ABC和中,点在边BD上,边交边BE于点.若AC=BD,AB=ED,BC=BE,则∠ACB等于A.∠EDB B.∠BED C.12∠AFB D.2∠ABF 8.(2019·期中·河北石家庄市新华区)如图,在和△OCD中,,OC=OD,OA>OC,,连接,BD交于点M,连接OM.下列结论:① AC=BD;② ∠AMB=40∘;③ OM平分∠BOC;④ MO平分∠BMC,其中正确的个数为A.4B.C.D.19.(2017·期中·天津天津市和平区)如图,在平面直角坐标系中,为坐标原点,四边形ABCD是矩形,顶点,,C,D的坐标分别为(−1,0),,(5,2),,点E(3,0)在x轴上,点P在CD边上运动,使为等腰三角形,则满足条件的P点有A.3个B.4个C.5个D.个10.(2020·期中·江苏苏州市相城区)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重合的四边形EFGH,EH=12cm,EF=16cm,则边的长是A.12cm B.16cm C.D.24cm 11.(2017·期末·江苏苏州市昆山市)如图,在平面直角坐标系xOy中,直线y=√3x经过第一象限内一点A,且过点A作AB⊥x轴于点B,将△ABO绕点逆时针旋转60∘得到,则点C的坐标为A.(−√3,2)B.(−√3,1)C.(−2,√3)D.(−1,√3) 12.(2020·单元测试·上海上海市)如图,已知在△ABC,中,∠BAC=∠DAE=90∘,,AD=AE,点,,E三点在同一条直线上,连接,.以下四个结论:① BD=CE;② ;③ BD⊥CE;④ ∠BAE+∠DAC=180∘.其中结论正确的个数是( )A.B.C.3D.13.(2019·期中·江苏徐州市新沂市)如图,在△ABC中,∠B=50∘,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边的中点,CD=CF,则( )A.125∘B.C.175∘D.14.(2018·期中·广东深圳市)如果三角形满足有一个角是另一个角的倍,那么我们称这个三角形为完美三角形.下列各组数据中,能作为一个完美三角形三边长的一组是( )A.2,,2B.1,,√2C.2,,2√3D.1,,215.(2019·模拟·浙江温州市苍南县)如图,的半径为2√3,四边形为⊙O的内接矩形,AD=6,M为中点,E为⊙O上的一个动点,连接,作DF⊥DE交射线EA于,连接MF,则MF的最大值为( )A.B.6+√57C.2√3+√61D.16.(2017·期中·天津天津市红桥区)如图,点是△ABC外的一点,PD⊥AB于点,PE⊥AC于点,PF⊥BC于点F,连接PB,PC.若PD=PE=PF,∠BAC=70∘,则∠BPC的度数为A.B.30∘C.35∘D.17.(2020·专项)如图,在三角形纸片ABC中,BC=3,AB=6,∠BCA=90∘.在上取一点,以为折痕,使的一部分与BC重合,点A与延长线上的点重合,则DE的长度为( )A.6B.C.2√3D.√318.(2018·期末·江苏苏州市张家港市)如图,矩形ABCD中,AB=2,,对角线的垂直平分线分别交AD,于点E,,连接CE,则△DCE的面积为( )A.5B.C.2D.119.(2020·同步练习·上海上海市)已知三角形的两边长分别为和9cm,则下列长度的四条线段中能作为第三边的是A.13cm B.6cm C.5cm D20.(2019·模拟·天津天津市和平区)如图,四边形中,DC∥AB,BC=1,AB=AC=AD=2,则的长为( )A.B.√14C.√15D.3√2二、填空题(30分)x+4交轴于点A,交轴于21.(2019·期末·广东佛山市禅城区)如图,直线y=43点,点为线段OB上一点,将△ABC沿着直线翻折,点B恰好落在轴上的处,则△ACD的面积为.22.(2019·期中·浙江温州市龙湾区)如图,△ABC中,,∠BAC=120∘,是边上的中线,且BD=BE,则是度.23.(2020·单元测试·上海上海市)如图,在直角坐标系中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,,A n B n C n C n−1的顶点A1,,A3,⋯,均在直线上,顶点C1,C2,C3,,C n在x轴上,若点的坐标为(1,1),点B2的坐标为(3,2),那么点B4的坐标为.24.(2019·单元测试)如图,正方形ABDE,CDFI,EFGH的面积分别为,9,16,,△BDC,△GFI的面积分别为S1,S2,S3,则S1+S2+S3=.25.(2020·专项·上海上海市闵行区)如图,在四边形ABCD中,AD∥BC,要使△ABD≌△CDB,可添加一个条件为.26.(2019·期中·江苏苏州市常熟市)如图,在△ABC中,ED∥BC,∠ABC和的平分线分别交ED于点G,,若BE=6,DC=8,DE=20,则.三、解答题(40分)27.(2021·专项)如图,等腰直角△ABC的斜边AB在轴上且长为,点在轴上方.矩形ODEF中,点D,F分别落在,轴上,边OD长为2,长为,将等腰直角△ABC沿x轴向右平移得等腰直角△AʹBʹCʹ.(1) 当点Bʹ与点D重合时,求直线AʹCʹ的解析式;(2) 连接CʹF,CʹE.当线段和线段之和最短时,求矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积;(3) 当矩形ODEF和等腰直角△AʹBʹCʹ重叠部分的面积为 2.5时,求直线AʹCʹ与轴交点的坐标.(本问直接写出答案即可)28.(2019·单元测试·黑龙江哈尔滨市香坊区)如图,在△ABC中,∠C=90∘,是∠BAC的平分线,DE⊥AB于点E,点在上,BD=DF.求证:(1) CF=EB;(2) AB=AF+2EB.29.(2019·期末·广东佛山市高明区)如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,,B(−2,1),.(1) 作出关于轴对称的△A1B1C1;(2) 写出△A1B1C1的各顶点的坐标;(3) 求△ABC的面积.30.(2018·期末·江苏苏州市)已知:Rt△ABC中,∠BAC=90∘,,点是BC的中点,点是BC边上的一个动点.(1) 如图①,若点与点重合,连接,则与BC的位置关系是;(2) 如图②,若点P在线段上,过点作BE⊥AP于点E,过点作CF⊥AP于点,则CF,和EF这三条线段之间的数量关系是;(3) 如图③,在(2)的条件下若的延长线交直线于点M,找出图中与相等的线段,并加以证明;(4) 如图④,已知BC=4,AD=2,若点P从点出发沿着BC向点运动,过点B作BE⊥AP于点,过点作CF⊥AP于点F,设线段的长度为,线段的长度为d2,试求出点P在运动的过程中d1+d2的最大值.答案一、选择题1. 【答案】B【解析】∵OA=OC,∠OAC=25∘,,由圆周角定理得,∠ABC=(360∘−130∘)÷2=115∘,故选:B.【知识点】等腰三角形的性质、三角形的内角和、圆周角定理及其推理2. 【答案】D【知识点】勾股定理、在数轴上表示实数3. 【答案】C【解析】因为八个直角三角形全等,四边形,EFGH,MNKT是正方形,所以CG=KG,CF=DG=KF,所以S1=(CG+DG)2=CG2+DG2+2CG⋅DG=GF2+2CG⋅DG,所以S2=GF2=EF2,S3=(KF−NF)2=KF2+NF2−2KF⋅NF,所以.【知识点】勾股定理4. 【答案】A【解析】∵∠BAC=45∘,,∴∠CAB=∠ABD=45∘,,∵AB=AC,平分,BC,∠CAE=∠BAE=22.5∘,AE⊥BC,∴CE=BE=12∴∠C+∠CAE=90∘,且∠C+∠DBC=90∘,∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90∘,∴△ADF≌△BDC(AAS),,故选项C不符合题意;∵点为的中点,AD=BD,∠ADB=90∘,,∴AG=BG,DG⊥AB,∠AFD=67.5∘,∴∠DFA=∠AHG=∠DHF,∴DH=DF,故选项D不符合题意;连接BH,∵AG=BG,DG⊥AB,,∴∠HAB=∠HBA=22.5∘,∴∠EHB=45∘,且,∴∠EHB=∠EBH=45∘,∴HE=BE,故选项B不符合题意.【知识点】等腰三角形的判定、等腰三角形“三线合一”5. 【答案】B【解析】过点A作AF⊥BC于点,∵∠D=∠C=90∘,四边形是矩形,,AF=CD,设AE=x,BE=y,则AB=x+y,∵AD=AE,,∴BF=BC−CF=BC−AD=y−x,∵CD=2,∴AF=CD=2,在Rt△ABF中,根据勾股定理可得22+(y−x)2=(x+y)2,解得xy=1,∴AE⋅BE=1.【知识点】矩形的判定、勾股定理6. 【答案】D【解析】分两种情况:当角为等腰三角形的顶角时,此时等腰三角形的顶角;当50∘角为等腰三角形的底角时,此时等腰三角形的顶角为:180∘−50∘×2=80∘,综上,等腰三角形的顶角为50∘或80∘.【知识点】等腰三角形的性质、三角形的内角和7. 【答案】C【解析】在和△DEB中,{AC=DB,AB=DE,BC=EB,(SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,.【知识点】边边边8. 【答案】B【解析】∵∠AOB=∠COD=40∘,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB,∠AOC=∠BOD, OC=OD,∴△AOC≌△BOD(SAS),,,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40∘,②正确;作OG⊥MC于,OH⊥MB于,如图所示:则∠OGC=∠OHD=90∘,在△OCG和△ODH中,,∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,当∠DOM=∠AOM时,OM才平分∠BOC,假设,∵∠AOC=∠BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,∴∠COM=∠BOM,在△COM和中,{∠COM=∠BOM,OM=OM,∠CMO=∠BMO,,∴OB=OC,,∴OA=OC,与矛盾,∴③错误.正确的个数有3个.【知识点】角边角9. 【答案】A【知识点】等腰三角形的判定10. 【答案】C【解析】如图所示,由折叠过程可知:,∠MEF=∠BEF,∵∠AEH+∠AHE=90∘,∠HEM+∠MEF=90∘,∴∠MEF=∠BEF=∠AHE,同理可得∠EHM=∠DGH=∠GFN,∴∠HEM=∠FGN;在与△GFN中,{∠HME=∠FNG,EM=NG,∠HEM=∠FGN,,∴NF=HM=AH=FC,,在Rt△EFH中,由勾股定理知EH2+EF2=HF2=AD2,.【知识点】折叠问题、对应边相等、角边角、勾股定理11. 【答案】D【解析】作CH⊥x轴于H点,如图,设,∴n=√3m,∴tan∠AOB=ABOB=√3,∴∠AOB=60∘,∵OA=4,∴OB=2,,∵△ABO绕点B逆时针旋转60∘,得到△CBD,,∠ABC=60∘,∴∠CBH=30∘,BC=√3,BH=√3CH=3,在Rt△CBH中,CH=12∴OH=BH−OB=3−2=1,点坐标为(−1,√3).【知识点】坐标平面内图形的旋转变换、正切、正比例函数的图象12. 【答案】D【解析】如图:① ∵∠BAC=∠DAE=90∘,,即∠BAD=∠CAE.在△ABD和△ACE中,∴△ABD≌△ACE(),∴BD=CE①正确;② ∵∠BAC=90∘,AB=AC,∴∠ABC=45∘,∴∠ABD+∠DBC=45∘.∴∠ACE+∠DBC=45∘,②正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90∘,∴∠ABD+∠AFB=90∘,.∵∠DFC=∠AFB,,∴∠FDC=90∘.∴BD⊥CE,∴③正确;④ ∵∠BAC=∠DAE=90∘,∠BAC+∠DAE+∠BAE+∠DAC=360∘,∴∠BAE+∠DAC=180∘,故④正确.所以①②③④都正确,共计4个.【知识点】等腰直角三角形、边角边13. 【答案】C【解析】,为边AC的中点,,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60∘,∵∠B=50∘,∴∠BCD+∠BDC=130∘,和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65∘,∴∠CED=115∘,.【知识点】直角三角形斜边的中线、等边三角形三个角相等,都等于60°14. 【答案】C【解析】A、若三边为,2,2,则此三边构成等边三角形,三个角相等,所以这个三角形不是“完美三角形”,所以A选项不符合题意;B、若三边为1,,√2,由于12+12=(√2)2,则此三边构成一个等腰直角三角形,所以这个三角形不是“完美三角形”,所以B选项不符合题意;C、若三边为2,,,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30∘,顶角为120∘,所以这个三角形是“完美三角形”,所以C选项符合题意;D、若三边为,,,由于12+(√3)2=22,此三边构成一个直角三角形,最小角为30∘,所以这个三角形不是“完美三角形”,所以D选项不符合题意.故选:C.【知识点】30度所对的直角边等于斜边的一半、勾股逆定理15. 【答案】B【解析】如图,连接AC交BD于点,以AD为边向上作等边△ADJ,连接JF,,JD,JM.四边形是矩形,∴∠ADC=90∘,,AC=4√3,∴sin∠ACD=ADAC =4√3=√32,∴∠ACD=60∘,,∵DF⊥DE,,∴∠EFD=30∘,是等边三角形,∴∠AJD=60∘,∴∠AFD=12∠AJD,∴点的运动轨迹是以J为圆心JA为半径的圆,当点F在MJ的延长线上时,FM的值最大,此时,JM=√(4√3)2+32=√57,∴FM的最大值为6+√57.【知识点】勾股定理、圆周角定理及其推理16. 【答案】C【解析】在Rt△BDP和Rt△BFP中,{PD=PF, BP=BP,∴Rt△BDP≌Rt△BFP(HL),,在Rt△CEP和Rt△CFP中,{PE=PF,PC=PC,,∴∠ACP=∠FCP,∵∠ACF是的外角,,两边都除以2,得:12∠ABC+12∠BAC=12∠ACF,即∠PBC+12∠BAC=∠FCP,∵∠PCF是△BCP的外角,,∴∠BPC=12∠BAC=12×70∘=35∘.【知识点】斜边、直角边17. 【答案】C【知识点】勾股定理18. 【答案】B【解析】因为四边形ABCD是矩形,所以,AD=BC=4,因为是AC的垂直平分线,所以AE=CE,设CE=x,则ED=AD−AE=4−x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4−x)2,,解得:x=52即CE的长为5,,2所以△DCE的面积.【知识点】矩形的性质、垂直平分线的性质、勾股定理19. 【答案】B【知识点】三角形的三边关系20. 【答案】C【解析】过点C作的垂线交于点G,作AF⊥BC交BC于点F,作交BA的延长线于点E,,AB=AC=AD=2,,∴CF=12∴AF=√AC2−CF2=√15.2又,,∴CG=√154∴AG=√AC2−CG2=7,,∵DE⊥AB,CG⊥AB,,又∵CD∥AB,∠CGE=90∘,∴四边形是矩形,,∴DE=CG=√154又,∠CGA=∠DEA=90∘,∴△DEA≌△CGA(HL),∴EA=AG,,∴BE=2AG+BG=154。
人教版初中数学八年级上册同步练习全套(含答案解析)

人教版初中数学八年级上册同步练习全套《11.1.1 三角形的边》同步练习一、选择题(共15题)1、图中三角形的个数是()A、8个B、9个C、10个D、11个2、至少有两边相等的三角形是()A、等边三角形B、等腰三角形C、等腰直角三角形D、锐角三角形3、已知三角形的三边为4、5、x ,则不可能是()A、6B、5C、4D、14、以下三条线段为边,能组成三角形的是()A、1cm、2cm、3cmB、2cm、2cm、4cmC、3cm、4cm、5 cmD、4cm、8cm、2cm5、一个三角形的两边分别为5cm、11cm,那么第三边只能是()A、3cmB、4cmC、5cmD、7cm6、下列长度的各组线段中,不能组成三角形的是()A、1.5,2.5,3.5B、2,3,5C、6,8,10D、4,3,37、已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A、13cmB、6cmC、5cmD、4cm8、若三角形的三边长分别为3,4,x-1,则x的取值范围是( )A、0<x<8B、2<x<8C、0<x<6D、2<x<69、已知三角形的三边长分别为3、x、14,若x为正整数,则这样的三角形共有()A、2个B、3个C、5个D、7个10、小明与小王家相距5km,小王与小邓家相距2km,则小明与小邓家相距()A、3kmB、7kmC、3km或7kmD、不小于3km也不大于7km11、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个12、若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是()A、7B、6C、5D、413、已知不等边三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A、8cmB、10cmC、8cm或10cmD、8cm或9cm14、△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形15、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A、6B、7C、8D、10二、填空题16、按照三个内角的大小,可以将三角形分为锐角三角形、________、________;按照有几条边相等,可以将三角形分为等边三角形、________、________.17、△ABC的三边分别为a , b , c.则同时有________,理由:________.18、等腰三角形的一边为6,另一边为12,则其周长为________.19、一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长________cm.20、某村庄和小学分别位于两条交叉的大路边(如图).可是,每年冬天麦田弄不好就会走出一条小路来.你说小学生为什么会这样走呢?________.21、小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是________.________ ________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C 【考点】三角形内角和定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角和定理列式进行计算求出k值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C 【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之和大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B 【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之和大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C 【考点】三角形内角和定理【解析】【解答】(1)最小内角是20°,那么其他两个角的和是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角和定理和三角形的分类,关键是要知道钝角三角形、直角三角形和锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B 【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D 【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A 【考点】三角形的角平分线、中线和高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C 【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角和是180°可求解.9、已知三角形的两边长分别是4和10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B 【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。
∵三角形的两边长分别是4和10∴此三角形第三边长大于10-4=6且小于10+4=14故选B.【点评】解题关键是熟练掌握三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边。
10、在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能确定△ABC为直角三角形的条件有()A、2个B、3个C、4个D、5个【答案】A 【考点】三角形内角和定理【解析】【解答】解:①∵∠A+∠B=∠C,且∠A+∠B+∠C=180°,∴∠C+∠C=180°,即∠C=90°,此时△ABC为直角三角形,①可以;②∵∠A=∠B=2∠C,且∠A+∠B+∠C=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∠A=∠B=2∠C=72°,△ABC为锐角三角形,②不可以;③∵∠A=∠B=α∠C,且∠A+∠B+∠C=180°,∴α∠C+α∠C+∠C=180°,∴,∠A=∠B=α∠C=,△ABC为锐角三角形,③不可以;④∵∠A﹕∠B﹕∠C=1﹕2﹕3,∴∠A+∠B=∠C,同①,此时△ABC为直角三角形,④可以;综上可知:①④能确定△ABC为直角三角形.故选A.【分析】结合三角形的内角和为180°逐个分析4个条件,可得出①④中∠C=90°,②③能确定△ABC为锐角三角形,从而得出结论.11、一个三角形中直角的个数最多有()A、3B、1C、2D、0【答案】B 【考点】三角形内角和定理【解析】【解答】解:根据三角形内角和是180度可知,一个三角形中直角的个数最多有1个.故选B.【分析】根据三角形内角和定理可知,一个三角形中直角的个数最多有1个.12、下列图形中有稳定性的是()A、正方形B、长方形C、直角三角形D、平行四边形【答案】C 【考点】三角形的稳定性【解析】【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.【分析】稳定性是三角形的特性.13、如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A、三角形的稳定性B、两点之间线段最短C、两点确定一条直线D、垂线段最短【答案】A 【考点】三角形的稳定性【解析】【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.14、已知三角形的三边长分别为3、4、x,则x不可能是()A、2B、4C、5D、8【答案】D 【考点】三角形三边关系【解析】【解答】解:∵3+4=7,4﹣3=1,∴1<x<7.故选D.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,先求出x的取值范围,再根据取值范围选择.15、下面四个图形中,线段BD是△ABC的高的是()A、B、C、D、【答案】A 【考点】三角形的角平分线、中线和高【解析】【解答】解:线段BD是△ABC的高,则过点B作对边AC的垂线,则垂线段BD为△ABC的高.故选A.【分析】根据三角形高的定义进行判断.16、下列各图中,正确画出AC边上的高的是()A、B、C、D、【答案】D 【考点】三角形的角平分线、中线和高【解析】【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.17、一个三角形的三个内角中()A、至少有一个钝角B、至少有一个直角C、至多有一个锐角D、至少有两个锐角【答案】D 【考点】三角形内角和定理【解析】【解答】解:根据三角形内角和定理,一个三角形的三个内角中至少有两个锐角.故选D.【分析】此题考查三角形内角和定理,较为容易.二、填空题(共14题;共17分)18、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=________.【答案】180°【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:由三角形的外角性质得,∠1=∠B+∠F+∠C+∠G,∠2=∠A+∠D,由三角形的内角和定理得,∠1+∠2+∠E=180°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.故答案为:180°.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和解答即可.19、(2015•常德)如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________ .【答案】70°【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数20、建筑工地上,我们经常会见到木工师傅在木门框上斜钉上一根木条,这是因为________ 的缘故.【答案】三角形具有稳定性【考点】三角形的稳定性【解析】【解答】解:木工师傅在木门框上斜钉上一根木条,是为了构成三角形,因为三角形具有稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.21、在三角形,四边形中,具有稳定性的是________ ,举一个这类图形稳定性应用的实例________ .【答案】三角形;在门的后面沿对角线钉一根木条【考点】三角形的稳定性【解析】【解答】解:在三角形,四边形中,具有稳定性的是三角形,举一个这类图形稳定性应用的实例:在门的后面沿对角线钉一根木条.【分析】只要三角形的三边确定,则三角形的大小唯一确定,即三角形的稳定性;四边形的四边确定,其大小不能唯一确定,故四边形具有不稳定性.22、已知:如图:△ABC中,∠B、∠C的角平分线交于点O,若∠A=60°,则∠BOC=________【答案】120°【考点】三角形内角和定理【解析】【解答】解:∵在△ABC中,∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC和∠ACB的平分线交于O点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×120°=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质得出∠OBC+∠OCB的度数,由三角形内角和定理即可得出结论.23、将一副三角板按如图摆放,图中∠α的度数是________【答案】105°【考点】三角形的外角性质【解析】【解答】解:根据题意得∠1=60°,∠2=45°,∠2+∠3=90°,∴∠3=90°﹣45°=45°,∴∠α=∠1+∠3=60°+45°=105°.故答案为105°.【分析】由于一副三角板按如图摆放,则∠1=60°,∠2=45°,∠2+∠3=90°,根据互余得到∠3=45°,然后根据三角形外角性质得∠α=∠1+∠3=105°.24、如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E=________.【答案】180°【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:延长CE交AB于F,∵∠BFC是△ACF的外角,∴∠BFC=∠A+∠C,∵∠EGB是△EDG 的外角,∴∠EGB=∠D+∠DEG,∵∠B+∠BFC+∠EGB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【分析】延长CE交AB于F,再根据三角形内角与外角的关系求出∠BFC=∠A+∠C,∠D+∠DEG=∠EGB,再根据三角形内角和定理解答即可.25、如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添________ 根木条【答案】3 【考点】三角形的稳定性【解析】【解答】解:根据三角形的稳定性,得如图:从图中可以看出,要使框架稳固且不活动,至少还需要添3根木条.【分析】根据三角形的稳定性,只要使六边形框架ABCDEF变成三角形的组合体即可.26、如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=________,若BM、CM 分别平分∠ABC,∠ACB的外角平分线,则∠M=________.【答案】140°;40°【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠A=100°,∵∠ABC+∠ACB=180°﹣100°=80°,∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC= ∠ABC,∠ICB= ∠ACB,∴∠IBC+∠ICB= ∠ABC+ ∠ACB= (∠ABC+∠ACB)=×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°,∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1= ∠DBC,∠2= ECB,∴∠1+∠2= ×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.【分析】首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC= ∠ABC,∠ICB= ∠ACB,求出∠IBC+∠ICB 的度数,再次根据三角形内角和求出∠I的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1= ∠DBC,∠2= ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M的度数.27、如图,则x=________°.【答案】20 【考点】三角形的外角性质【解析】【解答】解:∵∠ACD是△ABC的外角,∠ACD=100°,∴∠A+∠B=∠ACD,即3x+2x=100°,解得x=20°.故答案为:20.【分析】直接根据三角形外角的性质解答即可.28、如图所示,α=________度.【答案】20 【考点】三角形的外角性质【解析】【解答】解:由图形可得,60°+α=60°﹣α+40°,解得α=20°.【分析】根据三角形内角与外角的关系解答即可.29、在Rt△ABC中,∠C=90°,∠A=50°,则∠B=________.【答案】40°【考点】三角形内角和定理【解析】【解答】解:∵Rt△ABC中,∠C=90°,∠A=50°,∴∠A+∠B=90°(直角三角形的两个锐角互余),∴∠B=40°.故答案为:40°.【分析】根据直角三角形的两个锐角互余的性质进行解答.30、在△ABC中,∠A:∠B:∠C=3:4:5,则∠A=________,∠B=________.【答案】45°;60°【考点】三角形内角和定理【解析】【解答】解:∵在△ABC中,∠A:∠B:∠C=3:4:5,∴设∠A=3x°,∠B=4x°,∠C=5x°,∴3x+4x+5x=180°,解得x=15°,∴∠A=3x=45°,∠B=4x=60°,∠C=5x=75°,故答案为:45°,60°.【分析】根据三角形内角和定理以及∠A:∠B:∠C=3:4:5即可求得答案.31、一个三角形3条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x的取值范围是________.【答案】1<x≤12 【考点】三角形三边关系【解析】【解答】解:∵一个三角形的3边长分别是xcm,(x+1)cm,(x+2)cm,它的周长不超过39cm,∴,解得1<x≤12.故答案为:1<x≤12.【分析】根据三角形的三边关系以及周长列出不等式组,求出x的取值范围即可.三、解答题(共12题;共60分)32、已知:在△ABC中,AD⊥BC,BE平分∠ABC交AD于F,∠ABE=23°.求∠AFE的度数.【答案】解:∵AD⊥BC,∴∠ADB=90°,∵BE平分∠ABC,∠ABE=23°,∴∠FBD=∠ABE=23°,∴∠BFD=180°﹣∠ADB﹣∠FBD=67°,∴∠AFE=∠BFD=67°【考点】三角形内角和定理【解析】【分析】根据垂直求出∠ADB,根据角平分线定义求出∠FBD,根据三角形内角和定理求出∠BFD即可.33、一个等腰三角形的周长是16厘米,其中一条边长是4厘米,则另外两边长分别是多少厘米.【答案】解答:该三角形是等腰三角形,当底边长为4厘米时,其它两条边为(16-4)÷2=6(厘米),即三边长分别为6厘米、6厘米、4厘米,能组成三角形.当腰长为4厘米时,底边长为16-2×4=8(厘米),即三边长分别为4厘米,4厘米,8厘米,不能组成三角形.综上,另外两边长分别为6厘米、6厘米.【考点】三角形三边关系【解析】【分析】运用分类讨论的思想和三角形三边关系的知识去解题.题中没有给出长为4厘米的边是底边还是腰,所以要分类讨论.特别要注意的是要判断三边是否能组成三角形.34、叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)【答案】证明:过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.【考点】三角形内角和定理【解析】【分析】欲证明三角形的三个内角的和为180°,可以把三角形三个角转移到一个平角上,利用平角的性质解答.35、如图,在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°.求∠EAD的度数.【答案】解:∵∠B=60°,∠C=20°,∴∠BAC=180°﹣60°﹣20°=100°,∵AE为角平分线,∴∠BAE=100°÷2=50°,∵AD为△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣60°=30°,∴∠EAD=∠BAE﹣∠BAD=50°﹣30°=20°.【考点】三角形内角和定理【解析】【分析】首先根据三角形的内角和定理,求出∠BAC的度数;然后根据AE为角平分线,求出∠BAE的度数,最后在Rt△ABD中,求出∠BAD的度数,进而可得出结论.36、如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.【答案】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC= ∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠DAE=∠EAC﹣∠DAC.37、如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.【答案】解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.∴∠C=∠ABC=2∠A=72°.∵BD⊥AC,∴∠DBC=90°﹣∠C=18°【考点】三角形内角和定理【解析】【分析】根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.38、如图图形中哪些具有稳定性?【答案】解:根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.显然(1)、(4)、(6)3个.【考点】三角形的稳定性【解析】【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.39、如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【答案】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】根据AD是△ABC 的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.40、如图,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度数(用两种方法做).【答案】解:解法一、∵在△ABC中,∠1=20°,∠2=25°,∠A=35°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣35°=100°,∴在△BDC中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣100°=80°;解法二、延长AD,∵∠3=∠1+∠BAD,∠4=∠2+∠CAD,∴∠BDC=∠3+∠4=∠1+∠BAD+∠2+∠CAD=∠1+∠2+∠BAC=20°+25°+35°=80°.【考点】三角形内角和定理,三角形的外角性质【解析】【分析】解法一、根据三角形内角和定理求出即可;解法二、根据三角形外角性质求出即可.41、一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是21°和32°.当检验工人量得的∠BDC的度数不等于多少度时,就可判定此零件不合格?【答案】解:延长CD交AB于E.∵∠BED=∠A+∠C,∠BDC=∠BED+∠B,∠A=90°,∠B=21°,∠C=32°,∴∠BDC=∠A+∠C+∠B=90°+21°+32°=143°.故当检验工人量得∠BDC≠143°时,就可判定此零件不合格【考点】三角形的外角性质【解析】【分析】延长CD交AB于E,根据三角形内角与外角的性质可求出∠BDC的度数,即可知道此零件是否合格.42、已知,如图,AD是△ABD和△ACD的公共边.求证:∠BDC=∠BAC+∠B+∠C(用两种方法)【答案】证法1:∵在△ABD中,∠B+∠BAD+∠ADB=180°,在△ACD中,∠C+∠ADC+∠CAD=180°,∴∠ADB+∠ADC=360°﹣∠B﹣∠BAD﹣∠CAD﹣∠C=360°﹣∠B﹣∠BAC﹣∠C,∵∠BDC=360°﹣(∠ADB+∠ADC)=∠BAC+∠B+∠C;证法2:延长AD到E,∵∠BDE=∠B+∠BAD,∠CDE=∠C+∠CAD,∴∠BDC=∠BDE+∠CDE=∠B+∠BAD+∠C+∠CAD=∠BAC+∠B+∠C.【考点】三角形的外角性质【解析】【分析】利用三角形的内角和定理或三角形的外角的性质的性质求解即可求得答案.43、如图,点O是△ABC内的一点,证明:OA+OB+OC>(AB+BC+CA)【答案】证明:∵△ABO中,OA+OB>AB,同理,OA+OC>CA,OB+OC>BC.∴2(OA+OB+OC)>AB+BC+CA,∴OA+OB+OC>(AB+BC+CA)【考点】三角形三边关系【解析】【分析】在△ABO和△AOC以及△BOC中,分别利用三角形三边关系定理,两边之和大于第三边,然后把三个式子相加即可证得.四、综合题(共6题;共54分)44、“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)解:共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4)(2)解:由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.【考点】三角形三边关系【解析】【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC 即为满足条件的三角形.45、如图所示,AB、CD相交于点O,∠A=48°,∠D=46°.(1)若BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,求∠BEC的度数;(2)若直线BM平分∠ABD交CD于F,CM平分∠DCH交直线BF于M,求∠BMC的度数.【答案】(1)解:∵∠D+∠OBD+∠BOD=180°,∠A+∠ACO+∠AOC=180°,∠BOD=∠AOC,∴∠D+∠OBD=∠A+∠ACO,∵∠A=48°,∠D=46°,∴∠OBD=∠ACD﹣2°.∵BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,∴∠DBF= ∠OBD= ∠ACD﹣1°,∠OCG=∠ACO.∵∠D+∠DBF+∠BFD=180°=∠BEC+∠OCG+∠CFE,∠BFD=∠OCG,∴∠D+ ∠ACD﹣1°=∠BEC+ ∠ACD,∴∠BEC=∠D﹣1°=45°.(2)解:∵∠ACD+∠DCH=180°,CM平分∠DCH交直线BF 于M,∴∠DCM= ∠DCH= (180°﹣∠ACD)=90°﹣∠ACD,∵∠MFC=∠D+∠DBF=∠D+∠ACD﹣1°,∠MFC+∠DCM+∠BMC=180°,∴∠BMC=180°﹣∠MFC﹣∠DCM=180°﹣(∠D+ ∠ACD﹣1°)﹣(90°﹣∠ACD)=91°﹣∠D=45°.【考点】三角形内角和定理,三角形的外角性质【解析】【分析】(1)根据三角形内角和定理以及对顶角相等可得出∠OBD=∠ACD ﹣2°,由平分线的定义可得出∠DBF= ∠ACD﹣1°、∠OCG= ∠ACO,再结合三角形内角和定理即可得出∠BEC=∠D﹣1°,代入∠D度数即可得出结论;(2)由邻补角互补结合角平分线可得出∠DCM=90°﹣∠ACD,根据三角形外角性质结合(1)中∠DBF= ∠ACD﹣1°即可得出∠MFC=∠D+ ∠ACD﹣1°,再根据三角形内角和定理即可得出∠BMC=91°﹣∠D,代入∠D度数即可得出结论.46、综合题。