4初中数学竞赛辅导资料(4)

合集下载

周六社团活动辅导讲义(学生版)——全国初中数学竞赛题选

周六社团活动辅导讲义(学生版)——全国初中数学竞赛题选

周六社团活动辅导讲义2013-3-161.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值。

2.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点。

3.如图,△ABC 中,∠BAC =60°,AB =2AC 。

点P 在△ABC 内,且PA 3PB =5,PC =2,求△ABC 的面积。

4.已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围.5.已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a≥2012时,求a 的最小值.6.若从1,2,3,…,n 中任取5个两两互素的不同的整数1a ,2a ,3a ,4a ,5a ,其中总有一个整数是素数,求n 的最大值。

7.求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<< ,且122012122012n x x x +++= .8.如图,△ABC 为等腰三角形,AP 是底边BC 上的高,点D 是线段PC 上的一点,BE 和CF 分别是△ABD 和△ACD 的外接圆直径,连接EF . 求证: tan E F P A D B C∠=.9.如图,抛物线2y ax bx =+(a >0)与双曲线k y x=相交于点A ,B . 已知点A 的坐标为(1,4),点B 在第三象限内,且△AOB 的面积为3(O 为坐标原点).(1)求实数a ,b ,k 的值;(2)过抛物线上点A 作直线AC ∥x 轴,交抛物线于另一点C ,求所有满足△EOC ∽△AOB 的点E 的坐标.10.求满足22282p p m m ++=-的所有素数p 和正整数m .11.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?12.函数22(21)y x k x k =+-+的图象与x 轴的两个交点是否都在直线1x =的右侧?若是,请说明理由;若不一定是,请求出两个交点都在直线1x =的右侧时k 的取值范围.13.如图,给定锐角三角形ABC ,B C C A <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.14.在平面直角坐标系xOy 中,我们把横坐标为整数、纵坐标为完全平方数的点称为“好点”,求二次函数2(90)4907y x =--的图象上所有“好点”的坐标.15.有n 个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<= ;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.。

初中数学竞赛辅导资料(七八年级部分)11-5最值问题6绝对值42

初中数学竞赛辅导资料(七八年级部分)11-5最值问题6绝对值42

初中数学培优辅导资料姓名: 过关: 成绩:(五)最值问题1. (本题7分)若x ,y 是实数,求19993322+--+-y x y xy x 的最小值。

2. (本题7分)若xy =1,求代数式44411y x +的最小值。

3. (本题7分)设21、x x 是方程02324222=-++-m m mx x 的两个实根,当m 为何值时,2221x x + 有最小值,并求这个最小值。

(六)绝对值的几何意义(每小题5分)1.已知a是有理数,则| a-2007|+| a-2008|的最小值是。

2.若|x+1|+|2-x|=3,则x的取值范围是。

3.不等式|x+2|+|x-3|>5的解集是。

4. 对于任意数x,若不等式|x+2|+|x-4|>a恒成立,则a的取值范围是。

5. 已知|x+2|+|1-x|=9-|y-5|-|1+y|,则x+ y最大值是,最小值是.(七)平面直角坐标系与一次函数(每小题6分)1.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.在平面直角坐标系中,已知A(2,•-2),点P是y轴上一点,则使AOP为等腰三角形的点P 有()(A)1个(B)2个(C)3个(D)4个3.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条4.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限5.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2 (C)-4<a<2且a≠0(D)-4<a<26.已知直线L•经过(2,0)和(0,4),把直线L沿x轴的反方向向左平移2个单位,得到直线L′,则直线L′的解析式为.7.不论k为何值,解析式(2k-1)x-(k+3)y-•(k-11)=0表示的函数的图象经过一定点,则这个定点是.8.设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k(k=1,2,3,……,2008),那么S1+S2+…+S2008= .9.平面直角坐标系内有A(2,-1),B(3,3)两点,点P是y轴上一动点,求P到A、B距离之和最小时的坐标.。

义务教育八年级数学竞赛例题专题讲解4:和差化积--因式分解的方法(2)初二数学试题试卷.doc

义务教育八年级数学竞赛例题专题讲解4:和差化积--因式分解的方法(2)初二数学试题试卷.doc

专题04和差化积•…因式分解的方法(2)阅读与思考因式分解还经常用到以下两种方法1.主元法所谓主元法,即在解多变元问题时,选择其屮某个变元为主要元素,视其他变元为常量,将原式按降幕排列重新整理成关于这个字母的多项式,使问题获解的一种方法.2.待定系数法即对所给的数学问题,根据己知条件和要求,先设出一个或几个待定的字母系数,把所求问题用式子表示,然后再利用已知条件,确定或消去所设系数,使问题获解的一种方法,用待定系数法解题的一般步骤是:(1)在己知问题的预定结论时,先假设一个等式,其中含有待定的系数;(2)利用恒等式对应项系数相等的性质,列出含有待定系数的方程组;(3)解方程组,求出待定系数,再代入所设问题的结构屮去,得出需求问题的解.例题与求解【例1】x2y-y2z + z2x-x2z + y2x + z2y-2xyz因式分解后的结果是()•A. (y_z)(x+yX—z)B. (y-z)(x-y)(x+z)C. (y + z)(^-y)(jc + z)D. (y + zX*+yX兀一z)(上海市竞赛题)解题思路:原式是一个复杂的三元二次多项式,分解有一定困难,把原式整理成关于某个字母的多项式并按降幕排列,改变原式结构,寻找解题突破口. 【例2】分解因式:(1) a2 + 2h2 + 3c2 + 3ah + 4ac+5bc;(“希望杯”邀请赛试题)(2) 2x3 - x2z - 4x2y + 2xyz + 2xy2 - y2z .(天津市竞赛题)解题思路:两个多项式的共同特点是:字母多.次数高,给分解带来一定的怵1难,不妨考虑用主元法分解.【例3】分解因式J^+(2a + l)无2+(。

2+2。

一1)兀+。

2—1 .(“希望杯”邀请赛试题)解题思路:因d的最高次数低于兀的最高次数,故将原式整理成字母Q的二次三项式.【例4】£为何值时,多项式/+与_2于+张+10歹+ £有一个因式是x + 2y + 2?(“五羊杯”竞赛试题)解题思路:由于原式本身含有待定系数,I大I此不能先分解,再求值,只能从待定系数法入手.【例5]把多项式4X4-4X3+5X2 -2兀+ 1写成一个多项式的完全平方式.(江西省景徳镇市竞赛题)解题思路:原多项式的最高次项是4/,因此二次三项式的一般形式为2F+or + b,求出ci、 b即可.【例6】如果多项式x2-(a + 5)x + 5a-\能分解成两个一次因式(无+ b), (x + c)的乘积(b,c 为整数),则a的值应为多少?(江苏省竞赛试题)解题思路:由待定系数法得到关于h,c,a的方程组,通过消元、分解I大I式解不定方程,求出/?, c, a的值.能力训练 A 级1.分解因式:9a2-4b2+4bc-c2= _____________________________________ •(“希望杯”邀请赛试题)2.分解因式:兀2+5兀),+兀+ 3$ + 6〉'= ________________________(河南省竞赛试题)3.分解因式:兀2+3(兀+丿)+ 3—),+(x_y) = ________________________ .(重庆市竞赛试题)4.多项式jv,+ — 6x+8y + 7的最小值为_________________________ .(江苏省竞赛试题)5.把多项式x2-2xy+y2+2x-2y-8分解因式的结果是()A.(兀一〉‘一4)(兀一〉‘ + 2)B. (x-y-8)C.(x-,y + 4)(x-y-2)D.(兀_y + l)(x_y_8)6.已知x2+ax-l2能分解成两个整系数的一次因式的乘积,则符合条件的整数a的个数是().A. 3个B. 4个C. 5个D. 6个7. 若3x 3 -fcc 2 + 4被3兀一1除后余3,则k 的值为( ).A. 2B. 4C. 9D. 10(“CASIO 杯”选拔赛试题) 8. 若a + b = -~, d + 3b = l,贝IJ36Z 2+ 12^? + 9/?2+-的值是().55 2 2 4A. 一 B ・一C.—D. 093 5(大连市“育英杯”竞赛试题)10.如果(x-tz )(x-4)-l 能够分割成两个多项式x + b 和兀+ c 的乘积(b 、c 为整数),那么a 应为多少?(兰州市竞赛试题)11. 已知代数式x 2-3xy-4y 2-x^-by-2能分解为关于的一次式乘积,求b 的值.(浙江省竞赛试题)9.分解因式:(1) 2a 2-b 2-ab-^-bc+2ac ;(2) (c-a)2-4(Z?-c)(a-b):(3) 疋—3兀2 + @ + 2)x —2d ;(4) 2兀~ — 7xy +6y2 + 2x —y —12 ;(5) xy(xy +1) + (xy + 3) — 2(x + y + —) —(x+y-l),(吉林省竟赛试题)(昆明市竞赛试题)(天津市竞赛试题)(四川省联赛试题)(天津市竞赛试题)B 级1. 若x 3 +3x 2 -3x +Z:有一个因式是x+1,则£= _________________________ .(“希望杯”邀请赛试题)2. 设%3+ 3x 2 - 2xy -kx- 4y 可分解为一次与二次因式的乘积,则£= ______________________ .(“五羊杯”竞赛试题)3. 已知x-y + 4是/ 一 J?+加 + 3丿+ 4的一个因式,则加= ________________________________ .(“祖冲之杯”邀请赛试题)4. ____________________________________________________________________ 多项式x 2 +axy + hy 2 -5x+y + 6的一个因式是兀+》一2,则a + b 的值为 _____________________________5. 若x 3+ ax 2+/?x+8有两个因式兀+1和兀+ 2,则a + b =(A. 8B. 7C. 15D. 21E. 22(美国犹他州竞赛试题)6. 多项式5x 2-4^ + 4y 2+12x+25的最小值为().A. 4B. 5C. 16D. 25(“五羊杯”竞赛试题)7. 若M = 3x 2-8xy + 9y 2 -4x + 6y + 13 (x,y 为实数),则 M 的值一定是().A.正数B.负数C.零D.整数("CAS10杯”全国初中数学竞赛试题)8. 设 w 满足 m 2n 2 ++ n 2 +1 Omn + 16 = 0,贝0 (m,n )=()A. (2, 2)或(一2, -2)B. (2, 2)或(2, —2)C. (2, -2)或(一2, 2)D. (-2, -2)或(一2, 2)(“希望杯”邀请赛试题) 9. £为何值时,多项式x 2-2^ + ^2+3x-5y + 2能分解成两个一次因式的积?(天津市竞赛试题)10. 证明恒等式:a 4 + b 4 + (a b )4 = 2(a 2 +ab+b 2)2.(北京市竞赛试题)11.已知整数a,b,c,使等式(x+a )(x+b ) + c (x -10) = (x-1 l )(x+1)对任意的兀均成立,求 c 的值.(山东省竞赛试题)12. 证明:对任何整数下列的值都不会等于33. x 5 +3x 4y-5x 3/ 一 15x 2y 3 + 4xy 4 +12/(莫斯科市奥林匹克试题)(北京市竞赛试题)).精品专题04和差化积——因式分斛的方法(2)例1 A 提示:将原式車新整理成关丁•丄的二次三项式.例 2 (1> (a —2b + 3C(a+b 十<■) 提示】涼式a: +(36亠4c)a+( 3/+5AH-26J<2) (.x - yY (2^ —J>捉.示2 原式= —"J 4*(2“ 一4工»+曲一A)例 3 .原式=〈攵+1)/ +(2 芒+2龙)<3+(卅+>/—文一1) =(工+1)°4-2x(x4-1 )a4-(x+ l)r (x—l) = (x4-1) (a—l〉= Cr+l)Q+a+l〉(;r"rd —1〉例4 k= 12 提示;;°±4-JTJ—2j»' = (x4~2j) (x~,y). .*•可设:原式(.ir+2y+2)(..r—・严+2=8.展开比絞对应项系数叫纭一2=10,解得212. 〔K2”, 例5原式=(2十一工+1)?. 例6 设jr — (a 5)工I % 1 =(才一外(工十c) -,+(方+小工十尿. • jbH= —(a + 5), 16c=5a —1.0)X5+②得 & + 5(, C = -26・ bc+5(b # c 〉+25=—:•“十5〉(t □)=■.IA=~4t Jb= 6.・・'仔_6 ®U=-4.1. (3a+2"-C(3a-2U2. (jr+3y)(j?+2y —1)3. (jr+y+l)(jr —$ f 3》4. -185. C6. D 7・ D9・(1> (2a+6)(“- 6+t):(2) (a+c —2Z>):; (3〉(z 2)(x :—x —a);(4)(丄一2)+3>(2x —3y —4”⑶. -IXy-l).10 •提示,由起章得“X\fh = Ui I.0)X4-②■得 <5 十 4)G : + 4) =—1.「•可设原式 C T+ > -r m ) < — 1 >• n )^)「比校对应项 系数御&=一6或g.&+5----------- 1 > 故L11. Tr 一3心一4〉,亠 Cr+丿心一 4y}・故“ = 5・8. DG)X10 十②為"一血+iw —-in. A(a4-10X6-M0>--ll. ;.「* 10-11上十10= — 11Jd + ic= —1. g 十 10=11, h+io=]i 或 U+io=-i“+IO= —11. ■ fa ------ 9. 諾 fa = —11,&十10=1•• U=-21叹 b ■丨:=-H ■代人①得M=0或2612.原式= (./+3x'y> —+152*)十(4” +12〉〉)= + 3y) 5/y(^-4- 3^) 4-4y (x4-3y) — (x +:iy){.r—5^^~iy) — <.z4-3y)<x 2 —y }<x s —4>;) = <x 4 3y) G-》〉(卄 ) Cr — 2 y) •当y-D 时.原式=£工33$当〉*0 时,x I 3>x-y.u~ 2y.j -2y^-y 至不相同•而33不可能分解为I 个以上 不同丙敬的积■所ab l(k= 11.或以■当工取任意整妓」取不为H的任意整数•原式#33.我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。

初中奥林匹克数学竞赛知识点总结及训练题目-圆

初中奥林匹克数学竞赛知识点总结及训练题目-圆

初中数学竞赛辅导讲义---圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案。

初中数学竞赛应对技巧(含学习方法技巧、例题示范教学方法)

初中数学竞赛应对技巧(含学习方法技巧、例题示范教学方法)

初中数学竞赛应对技巧数学竞赛是检验学生数学综合素质的有效手段,对于提高学生的数学思维能力、解决问题能力具有重要的促进作用。

初中数学竞赛更是培养学生数学兴趣、挖掘数学潜能的重要途径。

为了帮助学生在初中数学竞赛中取得优异成绩,本文将从以下几个方面介绍应对初中数学竞赛的技巧。

一、了解竞赛特点,明确考查方向初中数学竞赛主要考查学生的数学基础知识、逻辑思维能力、空间想象能力和创新意识。

在竞赛中,学生需要熟练掌握以下几个方面的内容:1.初中数学基础知识,如代数、几何、概率等;2.数学逻辑思维,如归纳总结、推理证明等;3.空间想象能力,如立体几何、平面几何等;4.数学创新意识,如数学建模、数学探究等。

了解竞赛特点,有助于学生在备考过程中有的放矢,有针对性地进行复习。

二、培养良好的数学思维习惯1.细心阅读题目,理解题目要求,避免因粗心大意导致失分;2.分析题目,找出已知条件和求解目标,理清解题思路;3.运用合适的解题方法,注重数学公式、定理的灵活运用;4.检查答案,确保解题过程完整、逻辑清晰。

三、提高解题速度和准确性1.强化训练,提高解题熟练度;2.做好时间规划,合理分配解题时间,避免因时间不足导致题目无法完成;3.培养题目分析能力,快速找出解题关键点;4.注重基础,提高基本运算速度和准确性。

四、积极参加模拟竞赛,提高应试能力1.参加学校组织的模拟竞赛,熟悉竞赛环境和流程;2.分析模拟竞赛中的错误,总结经验教训,及时调整学习方法;3.参加各类数学竞赛培训班,提高专业指导;4.与同学交流学习心得,相互借鉴,共同进步。

五、注重创新能力培养1.参与数学课题研究,锻炼数学探究能力;2.多做创新性数学题,培养数学建模能力;3.参加数学竞赛研讨会,拓宽视野,激发创新思维;4.注重数学与实际生活的联系,培养解决实际问题的能力。

总之,要想在初中数学竞赛中取得好成绩,学生需要扎实的数学基础、良好的数学思维习惯、较高的解题速度和准确性以及创新能力的培养。

关于初中数学竞赛的书籍

关于初中数学竞赛的书籍

关于初中数学竞赛的书籍
初中数学竞赛是许多学生热衷的学科,以下是一些相关的书籍推荐:
1.《初中数学竞赛全解析》——这本书提供了各种数学竞赛题目的详细解析和解题思路,适合准备竞赛的学生查阅。

2. 《初中数学竞赛习题集》——该书汇集了大量经典数学竞赛题目,按照题型和难易程度进行分类,帮助学生巩固知识并提高解题能力。

3. 《初中数学竞赛冲刺指南》——这本书介绍了常见竞赛的出题规律和解题技巧,通过精选的例题和训练题,帮助学生提高应试能力。

4. 《初中数学竞赛辅导教材》——该教材系统地介绍了数学竞赛中常见的知识点和题型,并提供了大量的例题和习题供学生练习。

5. 《初中数学竞赛秘籍》——这本书总结了数学竞赛中常见的解题技巧和方法,通过实例讲解帮助学生理解和掌握。

这些书籍都可以在学校教材供应店或者在线书店购买到。

希望这些书籍能够帮助到对数学竞赛感兴趣的同学们。

初中数学竞赛必备——42个定理与解题模型

初中数学竞赛必备——42个定理与解题模型一、概述1. 数学竞赛在培养学生的逻辑思维能力、数学解决问题的能力以及快速计算的能力方面具有重要的作用。

2. 初中数学竞赛中,掌握一定的数学定理和解题模型对于取得好成绩至关重要。

3. 本文将介绍初中数学竞赛必备的42个定理与解题模型,希望能为参加数学竞赛的同学们提供帮助。

二、数学定理与解题模型1. 代数部分1.1. 一元二次方程的求解方法1.2. 因式分解1.3. 角平分线定理1.4. 勾股定理1.5. 平方差公式1.6. 公式a^2-b^2=(a+b)(a-b)1.7. a^3-b^3=(a-b)(a^2+ab+b^2)2. 几何部分2.1. 同位角性质2.2. 对顶角性质2.3. 三角形的内角和2.4. 三角形的外角和2.5. 圆的性质2.6. 相似三角形的性质2.7. 三角形的高到底边的距离是线段的中线3. 概率部分3.1. 随机事件的概率计算3.2. 排列组合问题的概率计算3.3. 互斥事件和对立事件4. 数论部分4.1. 奇数与偶数的性质4.2. 质数与合数4.3. 最大公约数与最小公倍数5. 解题模型5.1. 分析题目5.2. 构建数学模型5.3. 运用定理解题5.4. 推理思路与方法三、数学竞赛练习与应用1. 多做数学竞赛题目,提高解题速度和正确率。

2. 运用所学的定理和解题模型解决实际问题,提高数学应用能力。

3. 对于涉及到竞赛的数学知识点,进行整体性的复习和整理。

四、结语1. 数学竞赛对于学生的数学能力提升有着一定的促进作用。

2. 要想在数学竞赛中取得好成绩,掌握基本数学定理和解题模型至关重要。

3. 希望本文介绍的42个定理与解题模型能为广大初中生在数学竞赛中取得优异成绩提供一定帮助。

五、举例演练1. 代数部分:一元二次方程的求解方法:解方程x^2+5x+6=0,可以使用因式分解或者配方法来进行求解。

因式分解:对于表达式x^2-4,可以因式分解为(x+2)(x-2)。

九年级竞赛辅导《数学竞赛常用解题方法》


【点评】本例我们可采用“换元法”. “换元法”最根本的作用 之一就是使复杂的问题简单化,排除那些不必要的形式上的干扰, 从纷纭混乱的结构中,简洁明快的提示出总是的本质特征,从而 找到解决问题的捷径.
一、换元法
一、换元法
分析:本题从方程组的形式上看比较复杂,但通过比较不难发 现,两个方程有着相似之处,于是考虑可采用换元法,从而使 问题简化.
二、特殊化法
二、特殊化法
特殊位置
二、特殊化法
三、整体处理法
例.九个袋子分别装有9,12,14,16,18,21,24, 25,28只球,甲限走若干袋,乙也取走若干袋,最后 只剩下一袋,已知甲取走的球的总数是乙的两倍,则 剩下的那一袋有球( ). A.14个 B.16个 C.25个 D.28个 【点评】本题如果试图分别求出甲和乙取走的是那几 袋,然后确定其总球关系,显然不现实,但要是我们 整体考虑球的总数,问题就会变得简单多了.
造性地联想.
((
五、数字化法
例:将平面上n个点P1,P2,P3,…,Pn顺次排列在同一 条直线 l上,每个点均被染上红色或蓝色.如果相邻点间 的线段PiPi+1的两端为不同的颜色,则称PiPi+1为“好线 段”.已知P1和Pn为异色,求证:“好线段”的条数一定 是奇数.
【点评】初看本题似乎无从下手,究其原因,是题目中根本就没 有可以让我们动手操作的数或量.因此我们只有另辟蹊径,把原 本与数字似乎毫不相干的颜色赋以了具体的数值,从而使原有问 题变成了一个纯数学运算问题.将原实际问题中的某些事物赋以 具体的数量,并运用数学运算的结果来回答实际问题,这就是 “数字化法”.需要指出的是,数字化的赋值不是任意的,所赋 的数值要根据实际问题中事物的具体性质而定.本题中“+1,- 1”赋值法,是常用的一种数字化赋值的方法.

初中数学竞赛:奇数与偶数


例2.求证:任意奇数的平方减去1是8的倍数
证明:设k为整数,那么2k-1是任意奇数, (2k-1)2-1=4k2-4k+1-1=4k(k-1)
∵k(k-1)是两个連续整数的积,必是偶数 ∴4k(k-1)是8的倍数
即任意奇数的平方减去1是8的倍数
例3.已知:有n个整数它们的积等于n,和等 于0
求证:n是4的倍数
证明:设n个整数为x1,x2,x3,…xn 根据题意得
如果n为正奇数,由方程(1)可知 x1,x2,x3,…xn都只能是奇数,而奇数个奇数 的和必是奇数,这不适合方程(2)右边的 0,所以n一定是偶数;
当n为正偶数时,方程(1)左边的 x1,x2,x3,…xn中,至少有一个是偶数,而 要满足方程(2)右边的0,左边的奇数必 湏是偶数个,偶数至少有2个。
整数按奇数,偶数分为两类,3个整数中必有 两个同是奇数或同偶数,故它们的和是偶数
9.试说明方程2x+10y=77是偶数,x.y不论取什么整 数,都是偶数,而右边是奇数,等式不能成 立
10.求证:两个連续奇数的平方差能被8整除 • (2n+1)2-(2n-1)2=8n
所以n是4的倍数。
例4己知:a,b,c都是奇数
求证:方程ax2+bx+c=0没有整数解
证明:设方程的有整数解x,若它是奇数, 这时方程左边的ax2,bx,c都是奇数,而 右边0是偶数,故不能成立;
若方程的整数解x是偶数,那么ax2,bx,都 是偶数,c是奇数,所以左边仍然是奇数,不 可能等于0。
两个連续整数的和是奇数,积是偶数。
例1.如果|m,n|是质数,且满足3m+5n=-1那么m+n 的值等于(第18届江苏省竞赛题) 【解密】从m,n的奇偶性入手 【解】若m,n均为奇数,则3m,5n均为数,∴3m+5n 为偶数,不合题意故m必有一个数为奇数,另一个 数为偶数.又|m|,|n|是质数,则有两种情况:(1) 若|m|=2,则m=2或-2.当m=2时,3×2+5n=-1. 则,|n| 不为质数,不合题意;当m=-2时,3×(2)+5n=-1.则n=1,n|不为质数,不合题意 (2)若,|n| =2,则=2或一2当n=2时,3m+5×2=1.1m不为质数,不合题意当n=-2时,3m+5×(-2)=1.则m=3,|ml为质数,合乎题意练上所述,m=3,n=2,故m+n=3+(2)=1

初中奥林匹克数学竞赛知识点总结及训练题目-图表信息

初中数学竞赛辅导讲义---图表信息问题21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求.图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题.图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题.表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题.【例题求解】【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达6地;(2)快车追上慢车需小时,慢车、快车的速度分别为千米/时;(3)A、B两地间的路程是.思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程.注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取.【例2】已知二次函数c=2的图象如图,并设M=by++bxax++-+2,-+2+-a-bacabcba则( )A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0思路点拨由抛物线的位置判定a、b、c的符号,并由1x,推出相应y值的正负性.=±注:函数图象选择题是广泛见于各地中考试卷中的一种常见问题,解此类问题的基本思路是:由图象大致位置确定解析式中系数符号特征,进而再判定其他图象的大致位置,在解题中常常要运用直接判断、排除筛选、分类讨论、参数吻合等方法.【例3】某人租用一辆汽车由A城前往B城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:小时)如图所示.若汽车行驶的平均速度为80千米/时,而汽车每行驶1千米所需要的平均费用为1.2元.试指出此人从A城出发到B城的最短路线.(2003年全国初中数学竞赛题)思路点拨从A城出发到B城的路线分成如下两类:(1)从A城出发到达B城,经过O城,(2)从A城出发到达B城,不经过O城.【例4】我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3米/秒的时间共约160天,其中日平均风速不小于6米/秒的时间约占60天.为了充分利用“风能”这种“绿色能源”,该地拟建一个小型风力发电厂,决定选用A、B两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:根据上面的数据回答:(1)若这个发电厂购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为千瓦·时;(2)已知A型风力发电机每台0.3万元,B型风力发电机每台0.2万元.该发电厂拟购置风力发电机共10 Array台,希望购机的费用不超过2.6万元,而建成的风力发电厂每年的发电总量不少于102000千瓦·时,请你提供符合条件的购机方案.思路点拨对于(1),注意“平均风速不小于3米/秒”的时间区分;对于(2),利用购置费用和发电总量分别列出不等式.【例5】一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1日起的50天内,它的市场售价y与上市时间x的关系可用图1的一条线段表示;它的种植成本2y与1上市时间x的关系可用图2抛物线的一部分来表示,假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?思路点拨由图象提供的信息,求出直线、抛物线的解析式,利用市场售价与成本价相等建立时间x的方程.注:本例综合运用一次函数和二次函数的有关知识,涉及信息量大,题中呈现信息的方式不仅是文字和符号,还包括表格.解图象信息问题的关键是化“图象信息”为“数学信息”,具体包括:(1)读图找点;(2)看图确定系数符号特征;(3)见形(图象形态)想式(解析式),建模求解.学历训练1.如图,是某出租车单程收费y (元)与行驶路程x(千米)之间的函数关系的图象,请根据图象回答以下问题:(1)当行驶8千米时,收费应为;(2)从图象上你能获得哪些正确的信息(请写出2条)①;②.(3)收费y (元)与行驶x(千米)( x≥3)之间的函数关系式为.2.甲、乙两人(甲骑自行车,乙骑摩托车)从A 城出发到B 地旅行,如图表示甲、乙两人离开A 城的路程与时间之间的函数图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
初中数学竞赛辅导资料(4)
零的特性
甲内容提要
一,零既不是正数也不是负数,是介于正数和负数之间的唯一中性数。零是自
然数,是整数,是偶数。
1,零是表示具有相反意义的量的基准数。
例如:海拔0米的地方表示它与基准的海平面一样高
收支衡可记作结存0元。
2,零是判定正、负数的界限。
若a >0则a是正数,反过来也成立,若a是正数,则 a>0
记作a>0  a是正数;读作a>0等价于a是正数
b<0  b 是负数
c≥0  c是非负数(即c不是负数,而是正数或0) d0

d是非正数 (即d不是正数,而是负数或0)

e0  e不是0(即e不是0,而是负数或正数)
3,在一切非负数中有一个最小值是0。
例如、绝对值、平方数都是非负数,它们的最小值都是0。
记作:|a|≥0,当a=0时,|a|的值最小,是0,
a2≥0,a2有最小值0(当a=0时)。
4,在一切非正数中有一个最大值是0。
例如、-|X|≤0,当X=0时,-|X|值最大,是0,(∵X≠0时都是负数),
-(X-2)20,当X=2时,-(X-2)2的值最大,是0。
二,零具有独特的运算性质
1、乘方:零的正整数次幂都是零。
2、除法:零除以任何不等于零的数都得零;
零不能作除数。从而推出,0没有倒数,分数的分母不能是0。
3、乘法:零乘以任何数都得零。即a×0=0,
反过来,如果ab=0,那么a、b中至少有一个是0。
要使等式xy=0成立,必须且只需x=0或y=0。
4、加法互为相反数的两个数相加得零。反过来也成立。
即a、b互为相反数a+b=0
3,减法两个数a和b的大小关系可以用它们的差的正负来判定,
若a-b=0,则a=b;若a-b>0,则a>b;若a-b<0,则a<b。
反过来也成立,当a=b时,a-b=0;当a>b时,a-b>0;当a三,在近似数中,当0作为有效数字时,它表示不同的精确度。
例如,近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),
误差不超过5厘米; 后者表示精确到0.01米(即1厘米),误差不超过5毫米。
可用不等式表示其值范围如下:
1.55近似数1.6<1.65,1.595≤近似数1.60<1605
2

乙例题
例1.两个数相除,什么情况下商是1?是-1?
答:两个数相等且不是0时,相除商是1;两数互为相反数且不是0时,相
除商是-1。
例2.绝对值小于3的数有几个?它们的和是多少?为什么?
答:绝对值小于3的数有无数多个,它们的和是0。因为绝对值小于3的数
包括大于-3并且小于3的所有数,它们都以互为相反数成对出现,而互为相
反数的两个数相加得零。
例3.要使下列等式成立X、Y应取什么值?为什么?
①X(Y-1)=0,②|X-3|+(Y+2)2=0
答:①根据任何数乘以0都得0,可知当X=0时,Y可取任何数;
当Y=1时,X取任何数等式X(Y-1)=0都是能成立。
②∵互为相反数相加得零,而|X-3|≥0,(Y+2)2≥0,
∴它们都必须是0,即X-3=0且Y+2=0,
故当X=3且Y=-2时,等式|X|+(Y+2)2 =0成立。
丙练习4
1、有理数a和b的大小如数轴所示: b 0 a
2、比较下列左边各数与0的大小(用>、<、=号連接)

2a__0, -3b__0, a1 __0, -b2__0,
-a2 _____0,-b3 ____ 0, a+b___0,a-b___0,
ab__0, (-2b)3___0 ,ba___0, ba___0
2、a表示有理数,下列四个式子,正确个数是几个?答:__个。
|a|>a, a2> -a2, a>-a, a+1>a
3、x表示一切有理数,下面四句话中正确的共几句?答:__句。
①(x-2)2有最小值0,③-|x+3|有最大值0,
② 2-x2有最大值2,④3+|x-1|有最小3。
4,绝对值小于5的有理数有几个?它们的积等于多少?为什么?
5,要使下列等式成立,字母X、Y应取什么值?

①X0=0,②X(X-3)=0,③|X-1|+(Y+3)2=0
6,下列说法正确吗?为什么?
①a的倒数是a1②方程(a-1)X=3的解是X=13a
③ n表示一切自然数,2n-1表示所有的正奇数
④ 如果a>b, 那么m2a>m2b (a 、b 、m都是有理数 )
7,X取什么值时,下列代数式的值是正数?
①X(X-1)、②X(X+1)(X+2)

相关文档
最新文档