2013年陕西省高考数学答案解析(包含理数和文数)
2012陕西高考数学试题及答案

2012陕西高考数学试题及答案根据要求,下面是一份模拟的2012年陕西高考数学试题及答案的内容:2012年陕西省普通高等学校招生全国统一考试数学试题一、选择题(本题共10小题,每小题5分,共50分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333...(无限循环小数)D. 1/3答案:A2. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B...(此处省略其他选择题,以此类推)二、填空题(本题共5小题,每小题5分,共25分)1. 若直线y = 2x + 3与x轴相交,则交点坐标为()。
答案:(-3/2, 0)2. 已知等差数列的前三项分别为3, 7, 11,求第10项的值。
答案:35...(此处省略其他填空题,以此类推)三、解答题(本题共4小题,共75分)1. 解不等式:|x-2| + |x+3| ≤ 8,并用区间表示解集。
答案:解:首先考虑x的三个区间,即x < -3,-3 ≤ x ≤ 2,x > 2。
对于每个区间,去掉绝对值符号,分别解不等式,最后得到解集为[-3, 5]。
2. 已知函数f(x) = x^3 - 3x^2 + 2,求其在[-1, 3]上的最大值和最小值。
答案:首先求导数f'(x) = 3x^2 - 6x。
令f'(x) = 0,解得x = 0,2。
然后分别计算f(-1), f(0), f(2), f(3)的值,得到最大值为f(3) = 8,最小值为f(0) = 2。
...(此处省略其他解答题,以此类推)结束语本套试题旨在考查学生的数学基础知识、运算能力、逻辑推理能力以及解决实际问题的能力。
希望考生们能够认真审题,仔细作答,发挥出自己的最佳水平。
2021年陕西省中考数学试卷(解析版)

2021年陕西省中考数学试卷(解析版)一、选择题(共8小题,每小题3分,计24分。
每小题只有一个选项是符合题意的)1.(3分)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣6【分析】根据有理数乘法法则进行运算.【解答】解:3×(﹣2)=﹣6.故选:D.【点评】本题考查有理数的乘法,熟练掌握有理数乘法法则是解题关键.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)计算:(a3b)﹣2=()A.B.a6b2C.D.﹣2a3b【分析】直接利用负整数指数幂的性质分别化简得出答案.【解答】解:(a3b)﹣2==.故选:A.【点评】此题主要考查了负整数指数幂的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°【分析】由三角形的内角和定义,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∠∠1=∠B+∠ADB,∠ADB=∠A+∠C,∠∠1=180°﹣(∠B+∠A+∠C),∠∠1=180°﹣(25°+35°+50°),∠∠1=180°﹣110°,∠∠1=70°,故选:B.【点评】本题考查了三角形内角和定理和三角形外角性质,掌握这些知识点是解题的关键.5.(3分)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC∠BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∠四边形ABCD是菱形,∠AO=CO,BO=DO,AC∠BD,∠ABD=∠ABC=30°,∠tan∠ABD=,∠,故选:D.【点评】本题考查了菱形的性质,锐角三角函数,掌握菱形的性质是解题的关键.6.(3分)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6【分析】根据平移的规律得到平移后抛物线的解析式为y=2(x+3)+m﹣1,然后把原点的坐标代入求值即可.【解答】解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.【点评】主要考查的是一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.7.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD∠BC,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM∠AC于M,过D作DN∠CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得∠BCM∠∠CDN,得到BM=CN,在Rt∠BCM中,根据勾股定理求出BM=4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,过B作BM∠AC于M,过D作DN∠CE于N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,∠CD∠BC,∠∠BCD=90°,∠∠BCM+∠CBM=∠BCM+∠DCN=90°,∠∠CBM=∠DCN,在∠BCM和∠CDN中,,∠∠BCM∠∠CDN(AAS),∠BM=CN,在Rt∠BCM中,∠BM=5,CM=3,∠BM===4,∠CN=4,∠CE=2CN=2×4=8,故选:D.【点评】本题主要考查了等腰三角形的性质和判定,等腰三角形的性质,勾股定理,正确作出辅助线,证得∠BCM∠∠CDN是解决问题的关键.8.(3分)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.【解答】解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∠二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∠(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当当x>时,y的值随x值的增大而增大,故选:C.【点评】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式x3+6x2+9x=x(x+3)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=x(9+6x+x2)=x(x+3)2.故答案为x(x+3)2【点评】本题考查了因式分解,利用了提公因式法、十字相乘法分解因式,注意分解要彻底.10.(3分)正九边形一个内角的度数为140°.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.故答案为:﹣2.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)【分析】反比例函数的系数为﹣2<0,在每一个象限内,y随x的增大而增大.【解答】解:∠2m﹣1<0(m<),∠图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∠0<1<3,∠y1<y2,故答案为:<.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.13.(3分)如图,正方形ABCD的边长为4,∠O的半径为1.若∠O在正方形ABCD内平移(∠O可以与该正方形的边相切),则点A到∠O上的点的距离的最大值为3+1.【分析】当∠O与CB、CD相切时,点A到∠O上的点Q的距离最大,如图,过O点作OE∠BC于E,OF∠CD 于F,根据切线的性质得到OE=OF=1,利用正方形的性质得到点O在AC上,然后计算出AQ的长即可.【解答】解:当∠O与CB、CD相切时,点A到∠O上的点Q的距离最大,如图,过O点作OE∠BC于E,OF∠CD于F,∠OE=OF=1,∠OC平分∠BCD,∠四边形ABCD为正方形,∠点O在AC上,∠AC=BC=4,OC=OE=,∠AQ=OA+OQ=4﹣+1=3+1,即点A到∠O上的点的距离的最大值为3+1,故答案为3+1.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形的性质.三、解答题(共13小题,计18分。
2013年三角函数各类型试题以及答案详解答案

2013年三角函数各类型试题以及答案详解课标文数14.C1[2011·江西卷] 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.-8【解析】 r =x 2+y 2=16+y 2,∵sin θ=-255,∴sin θ=y r =y 16+y 2=-255,解得y =-8.课标理数5.C1,C6[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45 B .-35 C.35 D.45B 【解析】 解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. 大纲文数14.C2[2011·全国卷] 已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. -55【解析】 ∵tan α=2,∴sin α=2cos α,代入sin 2α+cos 2α=1得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,∴cos α=-55.课标文数15.C3,C5[2011·北京卷] 已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 【解答】 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6. 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.课标理数3.C2,C6[2011·福建卷] 若tan α=3,则sin2αcos 2α的值等于( )A .2B .3C .4D .6D 【解析】 因为sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2tan α=6,故选D.课标理数11.C4,C5[2011·课标全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ) A .f (x )在⎝⎛⎭⎫0,π2单调递减B .f (x )在⎝⎛⎭⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增A 【解析】 原式可化简为f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4,因为f (x )的最小正周期T =2πω=π,所以ω=2.所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4,又因为f (-x )=f (x ),所以函数f (x )为偶函数, 所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4=±2cos2x ,所以φ+π4=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z ,又因为||φ<π2,所以φ=π4.所以f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos2x ,所以f (x )=2cos2x 在区间⎝⎛⎭⎫0,π2上单调递减.课标文理数12.C3[2011·辽宁卷] 已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图1-7,则f ⎝⎛⎭⎫π24=( )A .2+ 3 B.3 C.33D .2- 3 B 【解析】 由图象知πω=2×⎝⎛⎭⎫3π8-π8=π2,ω=2.又由于2×π8+φ=k π+π2(k ∈Z ),φ=k π+π4(k ∈Z ),又|φ|<π2,所以φ=π4.这时f (x )=A tan ⎝⎛⎭⎫2x +π4.又图象过(0,1),代入得A =1,故f (x )=tan ⎝⎛⎭⎫2x +π4.所以f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=3,故选B. 大纲文理数7.C4[2011·全国卷] 设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13B .3C .6D .9 C 【解析】 将y =f (x )的图像向右平移π3个单位长度后得到的图像与原图像重合,则π3=2πωk ,k∈Z ,得ω=6k ,k ∈Z ,又ω>0,则ω的最小值等于6,故选C.课标理数16.D3,C4[2011·福建卷] 已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.【解答】 (1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝⎛⎭⎫2×π6+φ=1.又0<φ<π,故φ=π6. 所以函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π6. 课标文数6.C4[2011·湖北卷] 已知函数f (x )=3sin x -cos x ,x ∈R .若f (x )≥1,则x 的取值范围为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π3≤x ≤2k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π3≤x ≤k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π6≤x ≤2k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x ≤k π+5π6,k ∈Z A 【解析】 因为f (x )=3sin x -cos x =2sin x -π6,由f (x )≥1,得2sin x -π6≥1,即sin x -π6≥12,所以π6+2k π≤x -π6≤5π6+2k π,k ∈Z ,解得π3+2k π≤x ≤π+2k π,k ∈Z .课标17.C8,C4[2011·湖南卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 【解答】 (1)由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4.(2)由(1)知,B =3π4-A ,于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A )=3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12.课标文数11.C4,C5[2011·课标全国卷] 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称 C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称 D 【解析】 f (x )=2sin ⎝⎛⎭⎫2x +π4+π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x ,所以y =f (x )在⎝⎛⎭⎫0,π2内单调递减,又f ⎝⎛⎭⎫π2=2cosπ=-2,是最小值.所以函数y =f (x )的图像关于直线x =π2对称. 课标文理数6.C4[2011·山东卷] 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( )A.23 B.32C .2D .3 B 【解析】 本题考查三角函数的单调性.因为当0≤ωx ≤π2时,函数f (x )为增函数,当π2≤ωx ≤π时,函数f (x )为减函数,即当0≤x ≤π2ω时,函数f (x )为增函数,当π2ω≤x ≤πω时,函数f (x )为减函数,所以π2ω=π3,所以ω=32.课标数学9.C4[2011·江苏卷] 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图1-1所示,则f (0)的值是________.图1-162【解析】 由图象可得A =2,周期为4×⎝⎛⎭⎫7π12-π3=π,所以ω=2,将⎝⎛⎭⎫7π12,-2代入得2×7π12+φ=2k π+32π,即φ=2k π+π3,所以f (0)=2sin φ=2sin π3=62.课标文数7.C4[2011·天津卷] 已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数A 【解析】 ∵2πω=6π,∴ω=13.又∵13×π2+φ=2k π+π2,k ∈Z 且-π<φ≤π,∴当k =0时,φ=π3,f (x )=2sin ⎝⎛⎭⎫13x +π3,要使f (x )递增,须有2k π-π2≤13x +π3≤2k π+π2,k ∈Z ,解之得6k π-5π2≤x ≤6k π+π2,k ∈Z ,当k =0时,-52π≤x ≤π2,∴f (x )在⎣⎡⎦⎤-52π,π2上递增. 大纲理数17. C5,C8[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知A -C =90°,a +c =2b ,求C .【解答】 由a +c =2b 及正弦定理可得 sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =2sin(A +C )=2sin(90°+2C )=2cos2C .故22cos C +22sin C =cos2C ,cos(45°-C )=cos2C .因为0°<C <90°,所以2C =45°-C ,C =15°.课标理数16.C5,C8[2011·课标全国卷] 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.课标理数16.C5,C8[2011·课标全国卷] 27 【解析】 因为B =60°,A +B +C =180°,所以A +C =120°,由正弦定理,有 AB sin C =BC sin A =AC sin B =3sin60°=2, 所以AB =2sin C ,BC =2sin A .所以AB +2BC =2sin C +4sin A =2sin(120°-A )+4sin A =2(sin120°cos A -cos120°sin A )+4sin A =3cos A +5sin A=27sin(A +φ),(其中sin φ=327,cos φ=527)所以AB +2BC 的最大值为27.课标数学15.C5,C7[2011·江苏卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若sin ⎝⎛⎭⎫A +π6=2cos A, 求A 的值; (2)若cos A =13,b =3c ,求sin C 的值.本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力.【解答】 (1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cos A ≠0,tan A=3,因为0<A <π,所以A =π3.(2)由cos A =13,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =π2,所以sinC =cos A =13.课标理数6.C5[2011·浙江卷] 若0<α<π2,-π2<β<0,cos π4+α=13,cos π4-β2=33,则cos α+β2=( )A.33 B .-33 C.539 D .-69C 【解析】 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2,∴sin ⎝⎛⎭⎫π4+α=233.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63,∴cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2=13×33+223×63=539.大纲理数14.C6[2011·全国卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan2α=________. -43 【解析】 ∵sin α=55,α∈⎝⎛⎭⎫π2,π,∴cos α=-255,则tan α=-12,tan2α=2tan α1-tan 2α=2×⎝⎛⎭⎫-121-⎝⎛⎭⎫-122=-43.课标文数9.C2,C6[2011·福建卷] 若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于( ) A.22 B.33C. 2D. 3 D 【解析】 因为sin 2α+cos2α=sin 2α+1-2sin 2α=1-sin 2α=cos 2α,∴cos 2α=14,sin 2α=1-cos 2α=34,∵α∈⎝⎛⎭⎫0,π2,∴cos α=12,sin α=32,tan α=sin αcos α=3,故选D.课标理数7.C6[2011·辽宁卷] 设sin ⎝⎛⎭⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.79A 【解析】 sin2θ=-cos ⎝⎛⎭⎫π2+2θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π4+θ.由于sin ⎝⎛⎭⎫π4+θ=13,代入得sin2θ=-79,故选A.课标理数16.C7[2011·广东卷] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. 课标理数16.C7[2011·广东卷] 【解答】 (1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13×54π-π6 =2sin π4= 2.(2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α,65=f (3β+2π)=2sin ⎣⎡⎦⎤13×(3β+2π)-π6=2sin ⎝⎛⎭⎫β+π2=2cos β, ∴sin α=513,cos β=35,又∵α,β∈⎣⎡⎦⎤0,π2,∴cos α=1-sin 2α=1-⎝⎛⎭⎫5132=1213,sin β=1-cos 2β=1-⎝⎛⎭⎫352=45,故cos(α+β)=cos αcos β-sin αsin β=35×1213-513×45=1665. 课标文数16.C7[2011·广东卷] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f (0)的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求sin(α+β)的值. 【解答】 (1)f (0)=2sin ⎝⎛⎭⎫-π6=-2sin π6=-1. (2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α,65=f (3β+2π)=2sin 13×(3β+2π)-π6=2sin β+π2=2cos β,∴sin α=513,cos β=35,又α,β∈⎣⎡⎦⎤0,π2,∴cos α=1-sin 2α=1-⎝⎛⎭⎫5132=1213,sin β=1-cos 2β=1-⎝⎛⎭⎫352=45, 故sin(α+β)=sin αcos β+cos αsin β=513×35+1213×45=6365.课标理数15.C7[2011·天津卷] 已知函数f (x )=tan ⎝⎛⎭⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝⎛⎭⎫0,π4,若f ⎝⎛⎭⎫α2=2cos2α,求α的大小. 课标理数15.C7[2011·天津卷] 【解答】 (1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z .所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠π8+k π2,k ∈Z .f (x )的最小正周期为π2.(2)由f ⎝⎛⎭⎫α2=2cos2α,得tan ⎝⎛⎭⎫α+π4=2cos2α,sin ⎝⎛⎭⎫a +π4cos ⎝⎛⎭⎫α+π4=2(cos 2α-sin 2α),整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).因为α∈⎝⎛⎭⎫0,π4,所以sin α+cos α≠0,因此(cos α-sin α)2=12,即sin2α=12.由α∈⎝⎛⎭⎫0,π4,得2α∈⎝⎛⎭⎫0,π2,所以2α=π6,即α=π12. 课标文数16.C8[2011·安徽卷] 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.课标文数16.C8[2011·安徽卷] 本题考查两角和的正弦公式,同角三角函数的基本关系,利用正弦定理或余弦定理解三角形,以及三角形的边与角之间的对应大小关系,考查综合运算求解能力.【解答】 由1+2cos(B +C )=0和B +C =π-A ,得1-2cos A =0,cos A =12,sin A=32.再由正弦定理,得sin B =b sin A a =22.由b <a 知B <A ,所以B 不是最大角,B <π2,从而 cos B =1-sin 2B =22.由上述结果知sin C =sin(A +B )=22⎝⎛⎭⎫32+12.设边BC 上的高为h ,则有h =b sin C =3+12.课标理数14.C8[2011·安徽卷] 已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________. 153【解析】 不妨设∠A =120°,c <b ,则a =b +4,c =b -4,于是cos120°=b 2+(b -4)2-(b +4)22b (b -4)=-12,解得b =10,所以c =6.所以S =12bc sin120°=15 3.课标理数9.C8[2011·北京卷] 在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.【解析】 因为tan A =2,所以sin A =255;再由正弦定理有:a sin A =b sin B ,即a255=522,可得a =210.课标文数9.C8[2011·北京卷] 在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.课标文数9.C8[2011·北京卷] 523 【解析】 由正弦定理有:a sin A =b sin B ,即a 13=522,得a=523.大纲文数18.C8[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .【解答】 由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°.(2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64.故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin60°sin45°= 6.课标理数14.C8图1-5[2011·福建卷] 如图1-5,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________. 2【解析】 在△ABC 中,由余弦定理,有cos C =AC 2+BC 2-AB 22AC ·BC =(23)22×2×23=32,则∠ACB =30°.在△ACD 中,由正弦定理,有AD sin C =AC sin ∠ADC ,∴AD =AC ·sin30°sin45°=2×1222=2,即AD 的长度等于 2. 课标文数14.C8[2011·福建卷] 若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.课标文数14.C8[2011·福建卷] 2 【解析】 方法一:由S △ABC =12AC ·BC sin C ,得12AC ·2sin60°=3,解得AC =2.由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos60°=22+22-2×2×2×12=4,∴ AB =2,即边AB 的长度等于2.方法二:由S △AB C =12AC ·BC sin C ,得12AC ·2sin60°=3,解得AC =2.∴AC =BC =2, 又∠ACB =60°, ∴△ABC 是等边三角形,AB =2,即边AB 的长度等于2.课标文理数16.C8[2011·湖北卷] 设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长;(2)求cos(A -C )的值.课标理数16.C8[2011·湖北卷] 【解答】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4,∴c =2,∴△ABC 的周长为a +b +c =1+2+2=5.(2)∵cos C =14,∴sin C =1-cos 2C =1-⎝⎛⎭⎫142=154,∴sin A =a sin C c =1542=158. ∵a <c ,∴A <C ,故A 为锐角,∴cos A =1-sin 2A =1-⎝⎛⎭⎫1582=78.∴cos(A -C )=cos A cos C +sin A sin C =78×14+158×154=1116.课标理数17.C8[2011·江西卷] 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin C+cos C =1-sin C2.(1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值.课标理数17.C8[2011·江西卷] 【解答】 (1)由已知得sin C +sin C 2=1-cos C ,即sinC2⎝⎛⎭⎫2cos C 2+1=2sin 2C 2,由sin C 2≠0得2cos C 2+1=2sin C 2,即sin C 2-cos C 2=12,两边平方得:sin C =34.(2)由sin C 2-cos C 2=12>0得π4<C 2<π2,即π2<C <π,则由sin C =34得cos C =-74,由a 2+b 2=4(a +b )-8得:(a -2)2+(b -2)2=0,则a =2,b =2. 由余弦定理得c 2=a 2+b 2-2ab cos C =8+27,所以c =7+1. 课标理数4.C8[2011·辽宁卷] △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B+b cos 2A =2a ,则ba=( )A .2 3B .2 2 C. 3 D. 2课标理数4.C8[2011·辽宁卷] D 【解析】 由正弦定理a sin A =bsin B得a sin B =b sin A ,所以a sin A sin B +b cos 2A =2a 化为b sin 2A +b cos 2A =2a ,即b =2a ,故选D.课标文数17.C8[2011·辽宁卷] △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B+b cos 2A =2a .(1)求ba;(2)若c 2=b 2+3a 2,求B .【解答】 (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以ba = 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.课标文数15.C8[2011·课标全国卷] △ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.1534 【解析】 解法1:由正弦定理,有AC sin B =AB sin C ,即7sin120°=5sin C, 所以sin C =5sin120°7=5314,所以cos C =1-sin 2C =1-⎝⎛⎭⎫53142=1114,又因为A +B +C =180°,所以A +C =60°, 所以sin A =sin(60°-C )=sin60°cos C -cos60°sin C =32×1114-12×5314=3314,所以S △ABC =12AB ·AC sin A =12×5×7×3314=1534.解法2:设BC =x (x >0),由余弦定理,有cos120°=52+x 2-7210x,整理得x 2+5x -24=0,解得x =3,或x =-8(舍去),即BC =3所以S △ABC =12AB ·BC sin B =12×5×3×sin120°=12×5×3×32=1534.课标文数17.C8[2011·山东卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -a b .(1)求sin C sin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.【解答】 (1)由正弦定理,设a sin A =b sin B =csin C =k .则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B.所以原等式可化为cos A -2cos C cos B =2sin C -sin Asin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B ,化简可得sin(A +B )=2sin(B +C ),又因为A +B +C =π,所以原等式可化为sin C =2sin A ,因此sin C sin A =2.(2)由正弦定理及sin C sin A =2得c =2a ,由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5.从而a =1,因此b =2.课标理数18.C8[2011·浙江卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R ),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.【解答】 (1)由题设并利用正弦定理,得⎩⎨⎧a +c =54,ac =14,解得⎩⎪⎨⎪⎧ a =1,c =14,或⎩⎪⎨⎪⎧a =14,c =1.(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-12b 2-12b 2cos B ,即p 2=32+12cos B ,因为0<cos B <1,得p 2∈⎝⎛⎭⎫32,2,由题设知p >0,所以62<p < 2.课标文数17.C9[2011·江西卷] 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知3a cos A=c cos B +b cos C .(1)求cos A 的值;(2)若a =1,cos B +cos C =233,求边c 的值.【解答】 (1)由余弦定理b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ,有c cos B +b cos C =a ,代入已知条件得3a cos A =a ,即cos A =13.(2)由cos A =13得sin A =223,则cos B =-cos(A +C )=-13cos C +223sin C ,代入cos B +cos C=233,得cos C +2sin C =3,从而得sin(C +φ)=1,其中sin φ=33,cos φ=63,0<φ<π2.则C +φ=π2,于是sin C =63,由正弦定理得c =a sin C sin A =32.课标文数16.C9[2011·天津卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知B=C,2b =3a .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A +π4的值. 课标文数16.C9[2011·天津卷] 【解答】 (1)由B =C ,2b =3a ,可得c =b =32a .所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a=13.(2)因为cos A =13,A ∈(0,π),所以sin A =1-cos 2A =223,故cos2A =2cos 2A -1=-79.sin2A =2sin A cos A =429.所以cos ⎝⎛⎭⎫2A +π4=cos2A cos π4-sin2A sin π4=⎝⎛⎭⎫-79×22-429×22=-8+7218. 大纲理数16.C9[2011·重庆卷] 设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝⎛⎭⎫π2-x 满足f ⎝⎛⎭⎫-π3=f (0).求函数f (x )在⎣⎡⎦⎤π4,11π24上的最大值和最小值.大纲理数16.C9[2011·重庆卷] 【解答】 f (x )=a sin x cos x -cos 2x +sin 2x =a2sin2x -cos2x .由f ⎝⎛⎭⎫-π3=f (0)得-32·a 2+12=-1,解得a =2 3.因此f (x )=3sin2x -cos2x =2sin ⎝⎛⎭⎫2x -π6. 当x ∈⎣⎡⎦⎤π4,π3时,2x -π6∈⎣⎡⎦⎤π3,π2,f (x )为增函数,当x ∈⎣⎡⎦⎤π3,11π24时 ,2x -π6∈⎣⎡⎦⎤π2,3π4,f (x )为减函数.所以f (x )在⎣⎡⎦⎤π4,11π24上的最大值为f ⎝⎛⎭⎫π3=2.又因f ⎝⎛⎭⎫π4=3,f ⎝⎛⎭⎫11π24=2, 故f (x )在⎣⎡⎦⎤π4,11π24上的最小值为f ⎝⎛⎭⎫11π24= 2. 大纲文数18.C9[2011·重庆卷] 设函数f (x )=sin x cos x -3cos(x +π)cos x (x ∈R ). (1)求f (x )的最小正周期;(2)若函数y =f (x )的图象按b =⎝⎛⎭⎫π4,32平移后得到函数y =g (x )的图象,求y =g (x )在⎣⎡⎦⎤0,π4上的最大值.大纲文数18.C9[2011·重庆卷]【解答】 (1)f (x )=12sin2x +3cos 2x =12sin2x +32(1+cos2x )=12sin2x +32cos2x +32=sin ⎝⎛⎭⎫2x +π3+32.故f (x )的最小正周期为T =2π2=π. (2)依题意g (x )=f ⎝⎛⎭⎫x -π4+32=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π3+32+32=sin ⎝⎛⎭⎫2x -π6+ 3. 当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,g (x )为增函数, 所以g (x )在⎣⎡⎦⎤0,π4上的最大值为g ⎝⎛⎭⎫π4=332.[2011·济南三模] 函数f (x )=2cos 2x -3sin2x (x ∈R )的最小正周期和最大值分别为( ) A .2π,3B .2π,1C .π,3D .π,1[2011·东城模拟] 函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,||φ<π2的部分图象如图所示. (1)求f (x )的最小正周期及解析式;(2)设g (x )=f (x )-cos 2x ,求函数g (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.[2011·东北三校一模] 在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,若∠A ∶∠B =1∶2,且a ∶b =1∶3,则cos2B 的值是( )A .-12 B.12C .-32 D.32[2011·北京西城一模] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则∠B =( ) A .90° B .60°C .45°D .30°。
2023年陕西省西安市长安区中考一模数学试卷(含答案解析)

2023年陕西省西安市长安区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题13.如图,在ABC 中,5AB AC ==,BD 是它的一条中线,过点D 作直线EF ,交边AB 于点E ,交BC 的延长线于点F ,当DF DB =时,则AE 的长度为______.三、解答题(1)随后进来的E 车停车恰好与A 车相邻的概率是______;(2)求B 车和E 车都与A 车相邻的概率(用树状图或列表的方法解答).21.学校数学兴趣小组开展课外实践活动,如图是兴趣小组测量某建筑物高度的示意图,已知兴趣小组在建筑物前平台的坡道两端点A 、B 处,分别测得建筑物的仰角45DAC ∠=︒,60DBE ∠=︒,坡道25AB =米,坡道AB 的坡度7:24i =.求建筑物DC 的高度.22.经政府部门和村委会同意,老王在自家门前建了一个简易温泉水供给站.某日老王刚刚给自家的存储罐注满温泉水,拉温泉水的车队就来到了他们家门前.当拉水的车辆(每辆车的型号都相同)依次停好后,他打开出水阀为拉水车注入温泉水,经过2.5分钟第一辆拉水车装满温泉水并离开(每辆拉水车之间的间隙时间不计),当他给第二辆拉水车注满温泉水时,入水阀门自动打开为存储罐匀速注入温泉水,并在给第八辆车注满水时,存储罐恰好加满且入水戈门自动关闭.已知存储罐内温泉水量y (吨)与时间x (分钟)之间的部分函数图像如图所示:请根据图像回答下面的问题:(1)图中的=a ______,b =______,m =______.(2)求他给第6辆拉水车注满温泉水时,存储罐内剩余的温泉水量.23.我们知道,十四届全国人大一次会议于2023年3月13日上午闭幕,在今年的人代会上有很多新提法、新思路、新设想,为我国的发展做出了新规划.某大学马克思主义学院为了了解学生关注两会的情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a .成绩频数分布表:(1)如图1,在ABC 中,90BAC ∠=︒,AO 是它的一条中线,则COA ∠与B ∠的数量关系式是:COA ∠=______B ∠;(2)如图2,在ABC 中,60A ∠=︒,6BC =,CG AB ⊥于点G ,BH AC ⊥于点H ,O 为BC 边上一点,且OG OB =,连接GH ,求GH 的长;问题解决(3)如图3,某次施工中,工人师傅需要画一个20°的角,但他手里只有一把带刻度的直角尺,工程监理给出了下面简易的作图方法:①画线段15cm OB =,再过它的中点C 作m OB ⊥;②利用刻度尺在m 上寻找点A 使得15cm OA =,再过点A 作l OB ∥;③利用刻度尺过点O 作射线,将射线与AC 和l 的交点分别记为点F 、E ,调节刻度尺使FE =□cm 时(“□”内的数字被汗渍侵蚀无法看清),则20EOB ∠=︒.你认为监理给的方法可行吗?如果可行,请写出“□”内的数字,并说明理由;如果不可行,请给出可行的方案.参考答案:【分析】根据邻补角的定义得出365∠=︒,再利用三角形的外角的性质即可得出答案.【详解】解:如图,∵2115∠=︒,∴3180218011565∠=︒-∠=︒-︒=︒,根据题意,490∠=︒,∴1346590155∠=∠+∠=︒+︒=︒.故选:A .【点睛】本题考查三角形外角的性质和邻补角的定义.掌握三角形外角的性质是解题的关键.5.C【分析】根据点()3,P n 是两直线的交点,将点P 的坐标代入两直线的解析式得出n 和k 的值,再解方程组即可得出答案.【详解】解:∵直线4y x =-+与直线5y kx =-相交于点()3,P n ,∴341n =-+=,∴()3,1P ,∴135k =⨯-,∴2k =,∴524y x y x =-+⎧⎨=-⎩,解得:32x y =⎧⎨=⎩.故选:C .【点睛】本题考查两直线的交点坐标,直线上点的坐标特征,解二元一次方程组.掌握交点坐标适合每条直线的解析式是解题的关键.6.B【分析】由菱形的性质可得,,AC BD OA OC OB OD ⊥==,再结合3BE =、5DE =可得)。
2013年咸阳市高考模拟考试试题(一)理科数学试卷(含答案)

2013年咸阳市高考模拟考试试题(一)理 科 数 学第Ⅰ卷一.选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 复数z 满足(1)2z i i -=,则复数z 的实部与虚部之和为( ) A. 2- B. 2 C. 1 D. 02. 已知集合11|24xA x ⎧⎫⎪⎪⎛⎫=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|log (1)2B x x =-<,则A B 等于( )A. (,5)-∞B. (,2)-∞C. (1,2)D. (2,5)3. 以(4,3)M -为圆心,r 为半径的圆与直线250x y +-=相离的充要条件是( ) A. 02r <<B. 0r <<C. 0r <<D. 010r << 4. 由直线1x =,2x =,曲线sin y x =及x 轴所围图形的面积为 A. π B. cos1cos 2+ C. cos1cos 2- D. sin 2sin1-5. 已知偶函数()f x 在区间[0,)+∞单调增加,则满足1(21)3f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是( )A. 12,33⎛⎫⎪⎝⎭B.12,33⎡⎫⎪⎢⎣⎭C. 12,23⎛⎫⎪⎝⎭D. 12,23⎡⎫⎪⎢⎣⎭6. 一个几何体的三视图如图所示(单位长度:cm ),则几何体的体积是( )A. 32243cm B. 1123cm C. 396cm D. 3224cm7. 若变量,x y 满足约束条件1236x y x x y ⎧⎪⎨⎪+⎩≥≥≤,2z x y =+的最小值为( )A.185 B. 103C.3D. 1 8. 已知函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,πϕπ-<≤. 若()f x 的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A. ()f x 在区间[2,0]π-上是增函数B. ()f x 在区间[3,]ππ--上是增函数C. ()f x 在区间[3,5]ππ上是减函数D. ()f x 在区间[4,6]ππ上是减函数9. 如图,12,F F 是双曲线2222:1x y C a b-=(0,0a b >>)的左、右焦点,过1F 的直线l 与C 的左、右两支分别相交于A ,B 两点,若22||:||:||3:4:5AB BF AF =,则双曲线的离心率为( )A.B. C. 2D.10. 对于三次函数32()f x ax bx cx d =+++(0a ≠),给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数32115()33212g x x x x =-+-,则1220132013g g ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭20122013g ⎛⎫+⋅⋅⋅+= ⎪⎝⎭( )A. 2011B. 2012C. 2013 D2014 第Ⅱ卷二.填空题(本大题共5小题,共25分)11. 若关于x 的不等式24x x m -≥对任意[]0,1x ∈恒成立,则实数m 的取值范围是_________12.若2nx ⎫⎪⎭(n 为正偶数)的展开式中的第5项的二项式系数最大,则第5项是_______.13. 已知平行四边形ABCD ,点E 、F 分别为边BC 、CD 上的中点,若AC AE AF λμ=+则λμ+=_______.14. 若某程序框图如图所示,则该程序运行后输出的值是_______.15. 选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A .(选修4—4坐标系与参数方程)已知点A 是曲线2sin ρθ=上任意一点,则点A 到直线sin()43πρθ+=的距离的最小值是________.B .(选修4—5不等式选讲)不等式22|log ||log |x x x x -<+的解集是___________.C .(选修4—1几何证明选讲)如图所示,AB 和AC 分别是圆O 的切线,且OC =3,AB =4,延长AO 到D ,则△ABD 的面积是_________.三.解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且222b c a bc +-=. (Ⅰ)求角A 的大小;第14题图(Ⅱ)设函数2()cos cos 222x x xf x =+,求()f B 的最大值,并判断此时△ABC 的形状.17.(本小题满分12分)已知{}n a 是一个公差大于0的等差数列,且满足3655a a =,2716a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令2141n n b a+=-(n ∈N +),记数列{}n b 的前n 项和为n T ,对于任意的n ∈N +,不等式100n mT <恒成立,求实数m 的最小值.18.(本小题满分12分)已知直三棱柱111ABC A B C -中,5AB =,4AC =,3BC =,14AA =,点D 在AB 上.(Ⅰ)若D 是AB 中点,求证:1AC ∥平面1B CD ; (Ⅱ)当5AB BD =时,求面ABC 和面1B CD 夹角的余弦值.19.(本小题满分12分)现有4个人去参加春节联欢活动,该活动有甲、乙两个项目可供参加者选择. 为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个项目联欢,掷出点数为1或2的人去参加甲项目联欢,掷出点数大于2的人去参加乙项目联欢. (Ⅰ)求这4人中恰好有2人去参加甲项目联欢的概率;(Ⅱ)求这4个人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率; (Ⅲ)用X ,Y 分别表示这4个人中去参加甲、乙项目联欢的人数,记||X Y ξ=-,求随机变量ξ的分布列与数学期望E ξ.C BA1B1A1C D20. (本小题满分13分)如图,已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个顶点为A ,且离心率为2, (Ⅰ)求椭圆的标准方程;(Ⅱ)过点(0,2)M 的直线l 与椭圆相交于不同的两点P ,Q ,点N 在线段PQ 上,设||||MP PN =||||MQ NQ λ=,试求实数λ的取值范围.21. (本小题满分14分)(Ⅰ)若1a =,求曲线()f x 在点(0,(0))A f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性; (Ⅲ)是否存在实数(1,2)a ∈,使22()f x a>当(0,1)x ∈时恒成立?若存在,求出实数a ;若不存在,请说明理由.2013年咸阳市高考模拟考试试题(一)理科数学答案及评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.五、未在规定区域内答题,每错一个区域扣卷面总分1分.第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D 2.C 3. C 4..C 5.A 6.A 7.C 8.A 9.A 10.B第Ⅱ卷(非选择题 共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共5小题,每小题5分,共25分.11.]3,(--∞ 12.358x 6 13.34 14.10. 15. A. 52 B. (1,)+∞ C. 485三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ)在△ABC 中,因为b 2+c 2-a 2=bc ,由余弦定理 a 2= b 2+c 2-2bc cos A 可得cos A =12.-------------------------------------3分∵ 0<A <π , (或写成A 是三角形内角)∴3A π=. ……………………6分(Ⅱ)2cos 2cos 2sin 3)(2x x x x f +=11cos 22x x =++ 1sin()62x π=++, ……9分∵3A π= ∴2(0,)3B π∈ ∴5666B πππ<+< (没讨论,扣1分)∴当62B ππ+=,即3B π=时,()f B 有最大值是23.又∵3A π=, ∴3C π=∴△ABC 为等边三角形. …………12分17(本小题满分12分)(Ⅰ)解:设等差数列{}n a 的公差为d ,则依题设d >0 由a 2+a 7=16.得12716a d += ① 由3655,a a ⋅=得11(2)(5)55a d a d ++= ②由①得12167a d =-将其代入②得(163)(163)220d d -+=.即22569220d -=214,0,2,11(1)221n d d d a a n n ∴=>∴==∴=+-⋅=-又代入得① --------------6分(Ⅱ)由(Ⅰ)得1-2n a n =1421n -=+n a b =()1111111n 242+-=+=-+n n n n )( 11111(1)()()2231n T n n =-+-+⋅⋅⋅+-+=1-1n 1+<1 100n m T <恒成立.1001100m≥⇔≥⇔m ∴m 的最小值为100.-------------------------12分18. (本小题满分12分)(Ⅰ)证明:连结BC 1,交B 1C 于E ,连结DE . ∵ 直三棱柱ABC -A 1B 1C 1,D 是AB 中点, ∴侧面B B 1C 1C 为矩形,DE 为△ABC 1的中位线,∴ DE // AC 1. ∵DE ⊂平面B 1CD , AC 1⊄平面B 1C D ,∴AC 1∥平面B 1CD . -------------6分(Ⅱ) ∵ AC ⊥BC ,∴如图,以C 为原点建立空间直角坐标系C-xyz , 则B (3, 0, 0),A (0, 4, 0),A 1 (0, 4, 4),B 1 (3, 0, 4),设D (a , b , 0)(0a >,0b >), ∵点D 在线段AB 上,且15BD AB =, 即15BD BA =.AA 1B C D B 1C 1∴124,55a b ==. ∴1(3,0,4)BC =--,(3,4,0)BA =-, 124(,,0)55CD =.平面BCD 的法向量为()0,0,1n = 设平面B 1 CD 的法向量为2n =(x ,y ,z )由 120B C n ⋅=,20CD n ⋅=, 得 340124055x z x y --=⎧⎪⎨+=⎪⎩ 令z=1,得4,43x y =-=,24(,4,1)3n =-.设面ABC 和面1B CD 夹角为θ, 则→→→→=12.cos n n n n θ=133所以面ABC 和面1B CD 夹角的余弦值为313. ----------------------------12分 19. 解:依题意,这4个人中,每个人去参加甲项目联欢的概率为13,去参加乙项目联欢的概率为23.设“这4个人中恰有i 人去参加甲项目联欢”为事件i A ,(0,1,2,3,4)i =,则4412()()()33i i ii P A C -=.(Ⅰ)这4个人中恰好有2人去参加甲项目联欢的概率22224128()()()3327P A C ==--------4分 (Ⅱ)设“这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数”为事件B ,34B A A =⋃, 故334434441211()()()()()()3339P B P A P A C C =+=+=. ∴这4人中去参加甲项目联欢的人数大于去参加乙项目联欢的人数的概率为19.-------8分(III)ξ的所有可能取值为0,2,4.28(0)()27P P A ξ===,1340(2)()(),81P P A P A ξ==+=0417(4)()(),81P P A P A ξ==+= 所以ξ的分布列是14881E ξ=.---------------------------------------------------------------------------------12分 20.(本题满分13分)解:(I )设椭圆的标准方程是x 2a 2+y 2b 2=1(a >b >0),由于椭圆的一个顶点是A (0,2),故b 2=2.根据离心率是32得,e =a 2-b 2a 2=32,解得a 2=8. 所以椭圆的标准方程是x 28+y 22=1. ..........6分 (II )设P (x 1,y 1),Q (x 2,y 2),N (x 0,y 0). ①若直线l 与y 轴重合,则|||||MP MQ PNNQ λ==⇒2-22-y 0=2+22+y 0=λ,解得y 0=1,得λ=2....7分② 若直线l 与y 轴不重合,设直线l 的方程为y =kx +2, 与椭圆方程联立消去y ,得(1+4k 2)x 2+16kx +8=0,根据韦达定理得x 1+x 2=-16k 1+4k 2,x 1x 2=81+4k 2.----------------------------------------------8分由||||||||MP MQ PN NQ λ→→→→==,得0-x 1x 1-x 0=0-x 2x 0-x 2, 整理得2x 1x 2=x 0(x 1+x 2),把上面的等式代入得x 0=-1k .又点N 在直线y =kx +2上,所以y 0=k 1k ⎛⎫- ⎪⎝⎭+2=1,于是有1<y 1< 2...........10分λ=2-y 1y 1-1=1y 1-1-1,由1<y 1<2,得1y 1-1>2+1, 所以λ> 2. 综上所述λ≥ 2. ......................................................... 13分21.(本题满分14分) 解 :(I )∵a=1,x e x x x f )12()(2+-=∴x x e x x e x x f )12()22()(2'+-+-==(12-x )x e …………… 2分 于是f (0)=1,1)0(-='f .所以曲线y = f (x )在点A (0,f (0))处的切线方程为1y x -=-, 即10x y +-= -------------------------------- 4分(II )ax ax e a a x a x e a x x f ⋅⋅+-+-=')12()22()(2= axax e a a ax e x ax a x )2()1222(22-+=+-+-∵ a >0,e ax >0,∴ 只需讨论aa ax 22-+的符号. ⅰ)当a >2时,aa ax 22-+>0,这时f ′(x )>0,所以函数f (x )在(-∞,+∞)上为增函数.ⅱ)当a = 2时,f ′(x )= 2x 2e 2x ≥0,函数f (x )在(-∞,+∞)上为增函数.……………… 6分ⅲ)当0<a <2时,令f ′(x )= 0,解得a ax --=21,aax -=22.∴ f (x )在)2,(a a ---∞,),2(+∞-a a 为增函数,f (x )在)2,2(aaa a ---为减函数.---- 9分 (III)当a ∈(1,2)时,a a -2∈(0,1).由(2)知f (x )在)2,0(aa-上是减函数,在)1,2(a a -上是增函数,故当x ∈(0,1)时,ae a aa a f x f ---=-=22min )21(2)2()(.所以22)(ax f >当x ∈(0,1)时恒成立,等价于1)21(2>---a e a 恒成立. 当a ∈(1,2)时,)1,0(2∈-a ,设)1,0(,)1()(∈-=t e t t g t ,则0)(<-=--='t t t t te te e e t g ,表明g (t ) 在(0,1)上单调递减,于是可得)1,0()(∈t g ,即a ∈(1,2)时1)21(2<---ae a 恒成立,因此,符合条件的实数a 不存在. -------- 14。
最新命题题库大全2005-高考数学试题解析 分项专题15 算法框图 文1

2012最新命题题库大全2005-2011年高考试题解析数学(文科)分项专题15 算法框图2011年高考试题一、选择题:1. (2011年高考福建卷文科5)阅读右图所示的程序框图,运行相应的程序,输出的结果是A.3B.11C.38D.123【答案】B【解析】221,10,123;310,3211;1110a a a a a a =<=+==<=+==>,所以输出11a =,选B.2. (2011年高考陕西卷文科7)如右框图,当126,9,x x ==8.5p =时,3x 等于(A) 7 (B) 8 (C)10 (D )11 【答案】B【解析】:12697.522x x ++==而8.5p =则1223||||x x x x ->- 所以23398.522x x x p ++===即38x =故选B 二、填空题:3.(2011年高考安徽卷文科12)如图所示,程序框图(算法流程图)的输出结果是 .【答案】15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15.4.(2011年高考江西卷文科13)下图是某算法的程序框图,则程序运行后输出的结果是____.【答案】27【解析】由框图的顺序,s=0,n=1,s=(s+n)n=(0+1)*1=1,n=n+1=2,依次循环S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次s=(6+3)*3=27,n=4,此刻输出,s=27. 5.(2011年高考湖南卷文科11)若执行如图2所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 答案:154解析:由框图功能可知,输出的数等于12341544x x x x x +++==。
2013年高考真题解析分类汇编(理科数学)含解析
2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
2013年高考理数真题试卷(山东卷)及解析
2013年高考理数真题试卷(山东卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.复数z满足(z﹣3)(2﹣i)=5(i为虚数单位),则z的共轭复数z¯为()A.2+iB.2﹣iC.5+iD.5﹣i2.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}中元素的个数是()A.1B.3C.5D.93.已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为()A.5π12B.π3C.π4D.π64.函数y=sin(2x+φ)的图象沿x轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能的值为()A.3π4B.π4C.0D.- π45.在平面直角坐标系xOy中,M为不等式组{2x−y−2≥0x+2y−1≥03x+y−8≤0所表示的区域上一动点,则答案第2页,总12页………装…………○…………订…………○…………线请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………装…………○…………订…………○…………线A.2 B.1 C.- 13 D.- 126.函数y=xcosx+sinx 的图象大致为( )A.B.C.D.7.用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)………○…………订…………○…………线…………○…_________班级:___________考号:___________………○…………订…………○…………线…………○…8.执行右面的程序框图,若输入的ɛ值为0.25,则输出的n 值为 .9.在区间[﹣3,3]上随机取一个数x 使得|x+1|﹣|x ﹣2|≥1的概率为 . 10.定义“正对数”:ln +x= {0,0<x <1lnx,x ≥1,现有四个命题: ①若a >0,b >0,则ln +(a b )=bln +a ;②若a >0,b >0,则ln +(ab )=ln +a+ln +b ; ③若a >0,b >0,则 ln +(ab )≥ln +a −ln +b ; ④若a >0,b >0,则ln +(a+b )≤ln +a+ln +b+ln2. 其中的真命题有 (写出所有真命题的序号)三、解答题(题型注释)11.设△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a+c=6,b=2, cosB =79.(1)求a ,c 的值;(2)求sin (A ﹣B )的值.12.如图所示,在三棱锥P ﹣ABQ 中,PB⊥平面ABQ ,BA=BP=BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ=2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .答案第4页,总12页……○…………线…………○题※※……○…………线…………○(1)求证:AB∥GH;(2)求二面角D ﹣GH ﹣E 的余弦值.13.设等差数列{a n }的前n 项和为S n , 且S 4=4S 2 , a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n 且 T n +a n +12n=λ (λ为常数).令c n =b 2n (n∈N *)求数列{c n }的前n 项和R n .………外…………○…………装……………○…………线……学校:___________姓名:______________………内…………○…………装……………○…………线……参数答案1.D【解析】1.解:∵(z ﹣3)(2﹣i )=5, ∴z﹣3= 52−i =2+i ∴z=5+i, ∴ z ¯=5﹣i . 故选D .【考点精析】掌握复数的定义是解答本题的根本,需要知道形如的数叫做复数,和分别叫它的实部和虚部.2.C【解析】2.解:∵A={0,1,2},B={x ﹣y|x∈A,y∈A},∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x∈A,y∈A}中元素的个数是5个. 故选C . 3.B【解析】3.解:如图所示,∵AA 1⊥底面A 1B 1C 1 , ∴∠APA 1为PA 与平面A 1B 1C 1所成角, ∵平面ABC∥平面A 1B 1C 1 , ∴∠APA 1为PA 与平面ABC 所成角. ∵==3√34. ∴V 三棱柱ABC ﹣A1B1C1= =,解得 AA 1=√3 . 又P 为底面正三角形A 1B 1C 1的中心,∴==1,在Rt△AA 1P 中, ,∴ ∠APA 1=π3 .故选B .答案第6页,总12页○…………外…………○…………装…………○………订…………○…………线…………○※※请※※不※※要※※在※※装※※订※※线内※※答※※题※※○…………内…………○…………装…………○………订…………○…………线…………○【考点精析】通过灵活运用空间角的异面直线所成的角,掌握已知为两异面直线,A ,C与B ,D 分别是上的任意两点,所成的角为,则即可以解答此题.4.B【解析】4.解:令y=f (x )=sin (2x+φ),则f (x+ π8 )=sin[2(x+ π8 )+φ]=sin(2x+ π4 +φ), ∵f(x+ π8 )为偶函数, ∴ π4 +φ=kπ+ π2 , ∴φ=kπ+ π4 ,k∈Z, ∴当k=0时,φ= π4 . 故φ的一个可能的值为 π4 .故选B .【考点精析】根据题目的已知条件,利用函数y=Asin (ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.…………装………○…………订…………○…………线…………校:___________姓名:_______班级:___________考号:___________…………装………○…………订…………○…………线………… 5.C【解析】5.解:不等式组 {2x −y −2≥0x +2y −1≥03x +y −8≤0表示的区域如图,当M 取得点A (3,﹣1)时,z 直线OM 斜率取得最小,最小值为 k= −13 =﹣ 13 . 故选C .6.D【解析】6.解:因为函数y=xcosx+sinx 为奇函数,所以排除选项B , 由当x= π2 时,,当x=π时,y=π×cosπ+sinπ=﹣π<0. 由此可排除选项A 和选项C . 故正确的选项为D . 故选D . 7.B【解析】7.解:用0,1,2,…,9十个数字,所有三位数个数为:900,其中没有重复数字的三位数百位数从非0的9个数字中选取一位,十位数从余下的9个数字中选一个,个位数再从余下的8个中选一个,所以共有:9×9×8=648, 所以可以组成有重复数字的三位数的个数为:900﹣648=252. 故选B . 8.3【解析】8.解:循环前,F 0=1,F 1=2,n=1, 第一次循环,F 0=1,F 1=3,n=2, 第二次循环,F 0=2,F 1=4,n=3,答案第8页,总12页此时 1F 1=14=0.25 ,满足条件 1F 1≤0.25 ,退出循环,输出n=3,所以答案是:3.【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明. 9.13【解析】9.解:利用几何概型,其测度为线段的长度. 由不等式|x+1|﹣|x ﹣2|≥1 可得 ① {x <1(−x −1)−(2−x)≥1,或②{−1≤x <2(x +1)−(2−x)≥1 ,③ {x ≥2(x +1)−(x −2)≥1.解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2. 故原不等式的解集为{x|x≥1},∴|在区间[﹣3,3]上随机取一个数x 使得|x+1|﹣|x ﹣2|≥1的概率为P= 3−13−(−3) = 13 . 所以答案是: 13【考点精析】通过灵活运用几何概型和绝对值不等式的解法,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题. 10.①③④【解析】10.解:(1)对于①,由定义,当a≥1时,a b ≥1,故ln +(a b )=ln (a b )=blna ,又bln +a=blna ,故有ln +(a b )=bln +a ;当a <1时,a b <1,故ln +(a b )=0,又a <1时bln +a=0,所以此时亦有ln +(a b )=bln +a ,故①正确;(2)对于②,此命题不成立,可令a=2,b= 13 ,则ab= 23 ,由定义ln +(ab )=0,ln +a+ln +b=ln2,所以ln +(ab )≠ln +a+ln +b ,故②错误; (3)对于③,i . ab ≥1时,此时 ln +(ab )≥ln(ab ) ≥0,当a≥b≥1时,ln +a ﹣ln +b=lna ﹣lnb= ln(ab ) ,此时则 ln +(ab )≥ln +a −ln +b ,命题成立;当a >1>b >0时,ln +a ﹣ln +b=lna ,此时 a b >a , ln(ab) >lna ,则 ln +(a b )≥ln +a −ln +b ,命题成立;当1>a≥b>0时,ln +a ﹣ln +b=0, ln +(a b )≥ln +a −ln +b 成立; ii . ab <1时,同理可验证是正确的,故③正确;(4)对于④,当a≥1,b≥1时,ln +(a+b )=ln (a+b ),ln +a+ln +b+ln2=lna+lnb+ln2=ln (2ab ), ∵a+b﹣2ab=a ﹣ab+b ﹣ab=a (1﹣b )+b (1﹣a )≤0, ∴a+b≤2ab,∴ln(a+b )<ln (2ab ), ∴ln +(a+b )≤ln +a+ln +b+ln2.当a >1,0<b <1时,ln +(a+b )=ln (a+b ),ln +a+ln +b+ln2=lna+ln2=ln (2a ), ∵a+b﹣2a=b ﹣a≤0, ∴a+b≤2a,∴ln(a+b )<ln (2a ),∴ln +(a+b )≤ln +a+ln +b+ln2.当b >1,0<a <1时,同理可证ln +(a+b )≤ln +a+ln +b+ln2.当0<a <1,0<b <1时,可分a+b≥1和a+b <1两种情况,均有ln +(a+b )≤ln +a+ln +b+ln2. 故④正确.所以答案是①③④.【考点精析】关于本题考查的命题的真假判断与应用,需要了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能得出正确答案. 11.(1)解:∵a+c=6①,b=2,cosB= 79,∴由余弦定理得:b 2=a 2+c 2﹣2accosB=(a+c )2﹣2ac ﹣ 149 ac=36﹣ 329 ac=4, 整理得:ac=9②,联立①②解得:a=c=3;(2)解:∵cosB= 79 ,B 为三角形的内角,∴sinB= √1−(79)2 = 4√29 ,∵b=2,a=3,sinB=4√29, ∴由正弦定理得:sinA= asinBb = 3×4√292 =2√23, ∵a=c,即A=C ,∴A 为锐角,∴cosA= √1−sin 2A = 13 ,则sin (A ﹣B )=sinAcosB ﹣cosAsinB= 2√23 × 79 ﹣ 13 × 4√29 = 10√227答案第10页,总12页………○…………订………○…………线…………○在※※装※※订※※线※※内※※答※※题………○…………订………○…………线…………○【解析】11.(1)利用余弦定理列出关系式,将b 与cosB 的值代入,利用完全平方公式变形,求出acb 的值,与a+c 的值联立即可求出a 与c 的值即可;(2)先由cosB 的值,利用同角三角函数间的基本关系求出sinB 的值,再由a ,b 及sinB 的值,利用正弦定理求出sinA 的值,进而求出cosA 的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.【考点精析】本题主要考查了两角和与差的正弦公式和正弦定理的定义的相关知识点,需要掌握两角和与差的正弦公式:;正弦定理:才能正确解答此题.12.(1)证明:如图,∵C,D 为AQ ,BQ 的中点,∴CD∥AB, 又E ,F 分别AP ,BP 的中点,∴EF∥AB,则EF∥CD.又EF ⊂平面EFQ ,∴CD∥平面EFQ .又CD ⊂平面PCD ,且平面PCD∩平面EFQ=GH ,∴CD∥GH. 又AB∥CD,∴AB∥GH(2)解:由AQ=2BD ,D 为AQ 的中点可得,三角形ABQ 为直角三角形,以B 为坐标原点,分别以BA 、BQ 、BP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AB=BP=BQ=2,则D (1,1,0),C (0,1,0),E (1,0,1),F (0,0,1), 因为H 为三角形PBQ 的重心,所以H (0, 23 , 23 ). 则 DC →=(−1,0,0) , CH →=(0,−13,23)EF →=(−1,0,0) , FH →=(0,23,−13) .设平面GCD 的一个法向量为 m →=(x 1,y 1,z 1)第11页,总12页由 {m →⋅DC →=0m →⋅CH →=0,得 {−x 1=0−13y 1+23z 1=0 ,取z 1=1,得y 1=2.所以 m →=(0,2,1) .设平面EFG 的一个法向量为 n →=(x 2,y 2,z 2)由 {n →⋅EF →=0n →⋅FH →=0,得 {−x 2=023y 2+13z 2=0 ,取z 2=2,得y 2=1.所以 n →=(0,1,2) . 所以 cos <m →,n →>=m →⋅n→|m →|⋅|n →|=55= 45 .则二面角D ﹣GH ﹣E 的余弦值等于- 45【解析】12.(1)由给出的D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,利用三角形中位线知识及平行公理得到DC 平行于EF ,再利用线面平行的判定和性质得到DC 平行于GH ,从而得到AB∥GH;(2)由题意可知BA 、BQ 、BP 两两相互垂直,以B 为坐标原点建立空间直角坐标系,设出BA 、BQ 、BP 的长度,标出点的坐标,求出一些向量的坐标,利用二面角的两个面的法向量所成的角的余弦值求解二面角D ﹣GH ﹣E 的余弦值.【考点精析】解答此题的关键在于理解直线与平面平行的性质的相关知识,掌握一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行;简记为:线面平行则线线平行. 13.(1)解:设等差数列{a n }的首项为a 1,公差为d ,由a 2n =2a n +1,取n=1,得a 2=2a 1+1,即a 1﹣d+1=0①再由S 4=4S 2,得 4a 1+4×3d 2=4(a 1+a 1+d) ,即d=2a 1②联立①、②得a 1=1,d=2.所以a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1(2)解:把a n =2n ﹣1代入 T n +a n +12n=λ ,得 T n +2n 2n =λ ,则 T n =λ−2n2n .所以b 1=T 1=λ﹣1,当n≥2时, b n =T n −T n−1=(λ−2n2n )−(λ−2(n−1)2n−1) =n−22n−1.所以 b n =n−22n−1 , c n=b 2n =2n−222n−1=n−14n−1.R n =c 1+c 2+…+c n = 0+141+242+⋯+n−14n−1③14R n=142+243+⋯+n−14n④答案第12页,总12页………订…………○……※※线※※内※※答※※题※※………订…………○……③﹣④得: 34R n =14+142+⋯+14n −n−14n = 14(1−14n−1)1−14−n−14n所以 R n =49(1−3n+14n) ; 所以数列{c n }的前n 项和 R n =49(1−3n+14n)【解析】13.(1)设出等差数列的首项和公差,由已知条件列关于首项和公差的方程组,解出首项和公差后可得数列{a n }的通项公式;(2)把{a n }的通项公式代入 T n +a n +12n=λ ,求出当n≥2时的通项公式,然后由c n =b 2n 得数列{c n }的通项公式,最后利用错位相减法求其前n 项和.【考点精析】本题主要考查了等差数列的通项公式(及其变式)和数列的前n 项和的相关知识点,需要掌握通项公式:或;数列{a n }的前n 项和s n 与通项a n 的关系才能正确解答此题.。
2013年高考真题陕西卷(文科数学)Word版(无答案)
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年新疆高考真题(理数)
2013年普通高等学校招生全国统一考试理科数学新课标II 卷(贵州 甘肃 青海 西藏 黑龙江 吉林 宁 夏 内蒙古 新疆 云南 海南)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合M = {x | (x -1)2 < 4, x ∈R },N ={-1, 0, 1, 2, 3},则M ∩ N =(A ){0, 1, 2} (B ){-1, 0, 1, 2} (C ){-1, 0, 2, 3} (D ){0, 1, 2, 3}答案:A【解】将N 中的元素代入不等式:(x -1)2 < 4进行检验即可. (2)设复数z 满足(1-i )z = 2 i ,则z =(A )-1+ i (B )-1- i (C )1+ i (D )1- i答案:A【解法一】将原式化为z = 2i1- i,再分母实数化即可.【解法二】将各选项一一检验即可.(3)等比数列{a n }的的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1 =(A )13(B )- 13(C )19(D )- 19答案:C【解】由S 3 = a 2 +10a 1 ⇒ a 3 = 9a 1 ⇒ q 2 = 9 ⇒ a 1 =a 5q 4 = 19(4)已知m , n 为异面直线,m ⊥平面α,n ⊥平面β . 直线l 满足l ⊥m ,l ⊥n ,l ⊂ /α,l ⊂ /β, 则:(A )α∥β且l ∥α (B )α⊥β且l ⊥β (C )α与β 相交,且交线垂直于l (D )α与β 相交,且交线平行于l 答案:D【解】显然α与β 相交,不然α∥β 时⇒ m ∥n 与m , n 为异面矛盾. α与β 相交时,易知交线平行于l .(5)已知(1+a x )(1+x )5的展开式中x 2的系数为5,则a = (A )- 4 (B )- 3(C )- 2 (D )- 1 答案:D 【解】x 2的系数为5 ⇒C 25+a C 15 = 5 ⇒a = - 1(6)执行右面的程序框图,如果输入的N =10,那么输出的S =(A )1+ 12 + 13 + … + 110(B )1+ 12! + 13! + … + 110!(C )1+ 12 + 13 + … + 111(D )1+12! + 13! + … + 111!答案:B【解】变量T , S , k 的赋值关系分别是: T n+1 =T nk n, S n+1 = S n+ T n+1, k n+1 = k n + 1.( k 0 =1, T 0 = 1, S 0 = 0) ⇒ k n= n + 1, T n= T nTn -1×T n -1T n -2× …×T 1T 0×T 0= 1k n -1×1k n -2×…×1k 0 = 1n !, S n= (S n - S n -1) + (S n -1- S n -2) + … + (S 1- S 0) + S 0 = T n+ T n -1 + … + T 0= 1+12! + 13!+ … + 1n !满足k n> N 的最小值为k 10= 11,此时输出的S 为S 10(7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1, 0, 1),(1, 1, 0),(0, 1, 1),(0, 0, 0),画该四面体三视图中的正视图时,以z O x 平面为投影面,则得到正视图可以为答案:A 【解】(8)设a = log 36,b = log 510,c = log 714,则(A )c > b > a(B )b > c > a(C )a > c > b(D )a > b > c答案:D【解】a = 1 + log 32,b = 1 + log 52,c = 1 + log 72log 23 < log 25 < log 27 ⇒ log 32 > log 52 > log 72 ⇒ a > b > c(9)已知a > 0,x , y 满足约束条件⎩⎪⎨⎪⎧x≥1x + y≤3y ≥a (x - 3) , 若z =2x + y 的最小值为1,则a =(A )14(B )12(C )1(D )2(A)(B) (C) (D)lxy C1A (1, 2)B (3, 0)o答案:B【解】如图所示,当z =1时,直线2x + y = 1与x = 1的交点C (1, -1) 即为最优解,此时a = k BC = 12(10)已知函数f (x ) = x 3 + a x 2 + b x + c ,下列结论中错误的是(A ) x 0∈R , f (x 0)= 0(B )函数y = f (x )的图像是中心对称图形(C )若x 0是f (x )的极小值点,则f (x )在区间(-∞, x 0)单调递减 (D )若x 0是f (x )的极值点,则f '(x 0 ) = 0 答案:C【解】f (x ) 的值域为(-∞, +∞), 所以(A )正确; f (x ) = [x 3 + 3x 2• a 3 + 3x •( a 3)2 + ( a 3)3 ]+ b x - 3x •( a 3)2 + c - ( a3)3= (x + a 3)3 + (b - a 23)(x + a 3) + c - ab 3 - 2a 327因为g (x ) = x 3 + (b -a 23)x 是奇函数,图像关于原点对称, 所以f (x ) 的图像关于点(- a 3 , c - ab 3 - 2a 327)对称.所以(B )正确;显然(C )不正确;(D )正确.(11)设抛物线C :y 2 =2p x ( p > 0)的焦点为F ,点M 在C 上,| MF |=5,若以MF 为直径的圆过点(0, 2),则C 的方程为 (A )y 2 = 4x 或y 2 = 8x (B )y 2 = 2x 或y 2 = 8x (C )y 2 = 4x 或y 2 = 16x (D )y 2 = 2x 或y 2 = 16x 答案:C【解】设M (x 0, y 0),由| MF |=5 ⇒ x 0 + p 2 = 5 ⇒ x 0 = 5 - p2圆心N (x 02 + p 4 , y 02 )到y 轴的距离| NK | = x 02 + p 4 = 12| MF |,则圆N 与y 轴相切,切点即为K (0, 2),且NK 与y 轴垂直⇒ y 0 = 4 ⇒2p (5 - p2 ) = 16 ⇒ p = 2或8 .(12)已知点A (-1, 0),B (1, 0),C (0, 1),直线y = a x +b (a > 0)将△ABC 分割为面积相等的两部分,则b 的取值范围是:(A )(0, 1)(B )(1-22 , 12)(C )(1-22 , 13](D) [ 13,12) 答案:B【解】情形1:直线y = a x +b 与AC 、BC 相交时,如图所示,设MC = m , NC = n , 由条件知S △MNC = 12 ⇒ mn = 1显然0 < n≤ 2 ⇒ m =1n ≥ 22又知0 < m≤ 2 , m ≠n 所以22≤ m ≤ 2 且m ≠1D 到AC 、BC 的距离为t , 则t m + t n = DN MN + DMMN = 1⇒ t = mn m +n ⇒1t = m + 1mf (m ) = m + 1m (22 ≤ m ≤ 2 且m ≠1)的值域为(2, 322 错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年陕西省高考数学卷答案
第一部分 理数答案
一、选择题:
1、D
2、C
3、A
4、B
5、A
6、D
7、B
8、A
9、C 10、D 二、填空题:
11、9 12、3/π 13、-4
14、
()
N *
1
n 21n 2222
n 2
1n n 1n 14321∈+=+⋯+-+---++)()
()( 15: A 、2 , B 、6 , C 、πθθθ<≤=+=0,2sin 4
1
y 2cos 4121x ;。
三、解答题: 16.
17.解:
18. 解:
19. 解:
20. 解:
21. 解:
第二部分 文数答案
一、选择题
1、B
2、C
3、B
4、C
5、D
6、C
7、A
8、B
9、A 10、D
二、填空题 11、
4
5
12、π3 13、()*n )12(5312)()3)(2)(1(N n n n n n n n
∈-⋅⋅⋅⋅=++++
14、20 15、 A . R , B. .6 , C . (1, 0)
三、解答题
16、【解】:
()·f x =a b =)6
2sin(2cos 212sin 232cos 21sin 3cos π
-=-=-
⋅x x x x x x 。
最小正周期ππ
==
2
2T 。
所以),6
2sin()(π
-
=x x f 最小正周期为π。
(Ⅱ) 上的图像知,在,由标准函数时,当]6
5,6-
[sin ]6
5,6-
[)6
2(]2
,
0[π
ππ
ππ
π
x y x x =∈-
∈.
]1,2
1[)]2(),6-([)62sin()(-=∈-
=πππ
f f x x f . 所以,f (x) 在0,2π⎡⎤
⎢⎥⎣⎦
上的最大值和最小值分别为21,1-.
17、【解】:
(Ⅰ) 设公差为d,则d n a a n )1(1-+=
)()()()(21111211
21121a a a a a a a a S a a a a S a a a a S n n n n n n n n n
n n ++++++++=⇒⎩⎨
⎧++++=++++=---- )2
1
(2)()(2111d n a n a a n S a a n S n n n n -+=+=
⇒+=⇒. (Ⅱ) 1,01
1≠≠=q q a 由题知,。
n n n n n n n n n n q q
q q q q q q S S a q q S N n =--=-----=-=⇒--=∈∀++++11111111
111*
,
*2
11
11
N n q a n q
n a n n n n ∈=⇒⎩⎨⎧≥==--,.
所以,}{n a 数列是首项11=a ,公比1≠q 的等比数列。
18、【解】:
(Ⅰ) 设111O D B 线段的中点为
. 11111111//D B BD D C B A ABCD D B BD ∴-的对应棱是和 .
的对应线段是棱柱和同理,111111D C B A ABCD O A AO -
为平行四边形四边形且且11111111//////OCO A OC O A OC O A OC AO O A AO ⇒=⇒∴ 1111111111//,.//B CD BD A O D B C O O BD O A C O O A 面面且⇒==⇒ .(证毕)
(Ⅱ) 的高是三棱柱面ABD D B A O A ABCD O A -∴⊥11111 . 在正方形AB CD 中,AO = 1 . .111=∆O A OA A RT 中,在
11)2(2
1
21111111=⋅⋅=
⋅=-∆-O A S V ABD D B A ABD ABD D B A 的体积三棱柱. 所以,1111111=--ABD D B A V ABD D B A 的体积三棱柱.
19、【解】:
(Ⅰ) 按相同的比例从不同的组中抽取人数。
从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人。
(Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为
3
2· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率92
6232=⋅=P .
所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为9
2
.
20、【解】:
(Ⅰ) 点M(x,y)到直线x=4的距离,是到点N(1,0)的距离的2倍,则
13
4)1(2|4|2
22
2
=+⇒+-=-y x y x x .
所以,动点M 的轨迹为 椭圆,方程为13
42
2=+y x (Ⅱ) P(0, 3), 设212122113202),,(B ),,(A y y x x y x y x +=+=,由题知:
椭圆),3-,0()3,0(和的上下顶点坐标分别是经检验直线m 不经过这2点,即直线m 斜率k 存在。
3:+=kx y m 方程为设直线.联立椭圆和直线方程,整理得:
2
2
1221224324
,432402424)43k x x k k x x kx x k +=⋅+-=
+⇒=+++( 23
2
924)43()24(252)(2212
221212211221±=⇒=⋅+-⇒=⋅⋅-+⇒+=+k k k x x x x x x x x x x
所以,直线m 的斜率2
3±=k 21、【解】:
(Ⅰ) y = x+ 1.
当m )4,0(2e ∈时,有0个公共点;当m= 42e ,有1个公共点;当m ),(∞+∈4
2
e 有2个公共点;
(Ⅲ)
()()2f a f b + > ()()
f b f a b a
-- (Ⅱ) (Ⅰ) f (x)的反函数x x g ln )(=,则y=g(x)过点(1,0)的切线斜率k=(1)g'.
1(1)g'x
1
(x)g'==⇒=
k .过点(1,0)的切线方程为:y = x+ 1 (Ⅱ) 证明曲线y=f(x)与曲线12
12
++=x x y 有唯一公共点,过程如下。
则令,,121
121)()(22R x x x e x x x f x h x ∈---=---=
0)0('',0)0('0)0(,1)('')(',1)('===-=--=h h h e x h x h x e x h x x ,,且的导数
因此,
单调递增时当单调递减时当)('0)(''0;)('0)(''0x h y x h x x h y x h x =⇒>>=⇒<<0)(,0)0(')('===≥=⇒x R x h y h x h y 个零点上单调递增,最多有一在所以
所以,曲线y=f(x)与曲线12
12
++=
x x y 只有唯一公共点(0,1).(证毕) (Ⅲ) 设
)
(2)
()2()()2()()(2)()(a b b f a b a f a b a b a f b f b f a f -⋅⋅--+⋅+-=---+
a
a b b a e a b e a b a b a b e a b e a b ⋅-⋅⋅--++-=-⋅⋅--+⋅+-=-)
(2)2()2()(2)2()2(
令x
x
x
e x e x x g x e x x x g ⋅-+=⋅-++=>⋅-++=)1(1)21(1)(',0,)2(2)(则。
)上单调递增,在(的导函数∞+>⋅=⋅-+=0)('所以,0)11()('')('x g e x e x x g x g x x ,且,0)0(,),0()(0)('.0)0('=+∞>=g x g x g g 而上单调递增在,因此
0)(),0(>+∞x g 上所以在。
,0)2(2)(0b a e x x x g x x <>⋅-++=>且时,当
0)
(2)2()2(>⋅-⋅⋅--++-∴-a a b e a b e a b a b
所以a
b a f b f b f a f -->+)
()(2)()(,b <a 时当。