光纤基础知识
1.光纤光缆基础知识

THANK YOU!
产生光损耗的原因大部分为光纤具有的固有损耗和光纤制造后 的附加损耗。前者主要包括瑞利散射损耗、吸收损耗、波导结构不完 善引起的损耗;后者包括微弯损耗、弯曲损耗、接续损耗等。
损耗成因
瑞利散射损耗
吸收损耗
固有损耗
附加损耗
对于光纤损耗的成因及其解决方案,在这里不做深入的研究,了解即可。
微弯损耗
弯曲损耗
接续损耗
N/A
GSK/GMK/GCF
B5
G656
N/A
B6
G657
N/A
多模62.5/125
A1b
N/A
OM1
MCF
OM2
ACF
多模50/125
A1a
G651.1
OM3
OM4
我们公司最常用的光 纤为G652D和G655
G.652是常规单模光纤,零色散 点在1300nm,此点色散最小;同 时根据PMD又分为G. 652A、B、C、 D四种。
按传输模式分类
类型
解释
纤芯只能传输 单模光纤 单个模式的光
纤
多模光纤
纤芯能传输多 个模式的光纤
纤芯直径 包层外径
8μm-10μm 125μm
50μm、 62.5μm
125μm
2. 光纤分类
2.3 总结
光纤 类型
单模 光纤
传输模式
只能传输单 模式的光纤
多模 光纤
能传输多个 模式的光纤
传输距离 传输距离远
6. 光缆简介
6.2 光缆分类
用途
光纤种类
光纤芯数
加强件配置
传输导体、介质状况 铺设方式
结构方式
用户光缆 单模光缆 单芯光缆
光纤通信原理和基础知识

光纤通信原理和基础知识光纤通信是一种利用光纤传输信息的通信技术。
光纤是一种由高纯度玻璃或塑料制成的非导体材料,可以通过内部反射原理传输光信号。
相对于传统的铜线传输,光纤具有更大的带宽、更低的损耗、更长的传输距离和更高的抗干扰能力,因此被广泛应用于现代通信领域。
光纤通信的工作原理基于光的全反射现象。
当光线通过光纤的两侧,并以超过临界角的角度射入光纤中时,光线会在内部完全反射。
这样,光信号就可以沿着光纤进行传输,直到遇到终端设备或者光纤长度超过极限。
光纤通信的基础知识包括以下几个方面:1.光纤的构成:光纤主要由纤芯和包层组成。
纤芯是光信号传输的核心部分,由高纯度玻璃或者塑料制成。
包层是纤芯的保护层,通常由具有低折射率的材料制成,可以减小信号的损耗和干扰。
2.光纤的损耗:光信号在光纤中传输过程中会发生损耗,主要包括衰减损耗和色散损耗。
衰减损耗是光信号强度随着传输距离增加而逐渐减小的现象,通常使用分贝(dB)来表示。
色散损耗是由于光信号的频率不同而引起的,会导致信号失真。
3.光纤的带宽:带宽是指光纤传输信号的能力,通过单位时间内传输的数据量来衡量。
光纤的带宽比铜线更大,可以支持更高速率的数据传输。
4.光纤的连接方式:光纤的连接方式主要有插拔式连接和固定式连接。
插拔式连接通常使用光纤连接器,可以方便地插入和拔出。
固定式连接通常使用光纤接头或者光纤焊接,适用于长期固定的连接。
5.光纤的传输距离:光纤通信可以实现长距离的传输,最远甚至可以达到几百公里。
传输距离的限制主要取决于信号的衰减和光纤的噪声级别。
光纤通信基础知识ppt课件

光检测器广泛应用于光纤通信、光传 感、激光雷达等领域,特别是在高速、 长距离的光纤通信系统中,光检测器 的作用尤为关键。
光放大器
光放大器是光纤通信系统中的关键器件之一,主要分 为掺铒光纤放大器(EDFA)和拉曼光纤放大器(RA)
两类。
输入 标题
作用
光放大器的作用是对光信号进行放大,补偿光纤传输 过程中的光信号损耗,提高光纤通信系统的传输距离 和稳定性。
光检测器
分类
光检测器是光纤通信系统中的另一重 要器件,主要分为光电二极管(PIN) 和雪崩光电二极管(APD)两类。
性能参数
光检测器的性能参数包括响应度、带 宽、噪声等,这些参数直接影响着光 纤通信系统的接收灵敏度和动态范围。
作用
光检测器的作用是将光信号转换为电 信号,从而实现光信号的接收和检测。
模拟光纤通信系统的应用
03
在音频广播、视频传输等领域得到广泛应用。
光纤通信系统设计
01
光纤通信系统设计的基本原则
确保系统的传输性能、稳定性、可靠性和经济性。
02
光纤通信系统设计的主要内容
包括光源、光检测器、光纤、中继器和放大器等器件的选择和配置。
03
光纤通信系统设计的优化
通过采用先进的调制技术、编码技术等手段,提高系统的传输性能和容
性能参数
光源的性能参数包括波长、光谱宽度、输出功率、阈值电 流等,这些参数对光纤通信系统的性能和稳定性有着重要 影响。
作用
光源的作用是将电能转换为光能,为光纤通信系统提供光 信号。
应用场景
光源广泛应用于光纤通信、光传感、光谱分析等领域,特 别是在长距离、大容量的光纤通信系统中,光源的作用尤 为重要。
光纤通信发展历程
通信光缆的基础知识

通信光缆的基础知识目录一、通信光缆的基本概念 (2)1. 通信光缆的定义 (3)2. 通信光缆的特点 (3)3. 通信光缆的应用领域 (4)二、通信光缆的结构和材料 (6)1. 通信光缆的结构 (7)2. 通信光缆的材料 (8)2.1 金属材料 (9)2.2 非金属材料 (10)三、通信光缆的制造过程 (11)1. 原材料的预处理 (12)2. 混合与挤塑 (14)3. 成型与拉伸 (15)4. 热处理与固化 (16)5. 完成与检验 (17)四、通信光缆的性能参数 (18)五、通信光缆的接续与测试 (19)1. 接续前的准备工作 (20)2. 光缆的接续过程 (22)3. 光缆测试方法 (23)3.1 直流电阻测试 (24)3.2 绝缘电阻测试 (25)3.3 近端串音测试 (26)3.4 终端串音测试 (27)3.5 插入损耗测试 (28)4. 测试设备与工具 (29)六、通信光缆的维护与管理 (30)1. 日常维护项目 (31)2. 定期维护任务 (32)3. 故障处理与修复 (33)4. 光缆线路的改造与升级 (34)5. 线路维护人员的培训与管理 (36)七、通信光缆的发展趋势与创新 (37)1. 新型材料的研究与应用 (38)2. 新型结构的探索与创新 (39)3. 数字化与智能化发展 (41)4. 绿色环保与可持续发展 (42)一、通信光缆的基本概念通信光缆是一种用于传输光信号的通信线路,它利用光的全反射原理进行信号传输。
光缆具有高速、大容量的传输特性,能够满足现代通信对高效、稳定数据传输的需求。
通信光缆的结构:通信光缆主要由光纤、光纤膏、填充物和护层等部分组成。
光纤是光缆的核心部分,由芯部和包层组成,芯部材料为高纯度原料石英玻璃,包层材料为二氧化硅。
光纤膏和填充物用于填充光缆的内部空隙,提高光缆的传输性能。
护层材料通常采用聚氯乙烯或聚乙烯等塑料材料,用于保护光纤免受外界环境的影响。
光纤基本知识-教案

项目一认识通信线路工程任务3 通信光缆知识技能点1 光纤基本知识一、教学目标:了解光纤的发展历史理解光纤的结构、光纤的传输特性、光纤的分类代号了解光纤的优点二、教学重点、难点:重点掌握光纤的三层结构和功能,光纤传输特性中的损耗特性和色散特性,单模光纤的特点和分类三、教学过程设计:1.光纤是如何发展的通过图片、视频等呈现方式,回顾光纤的发展历史,点出对光纤做出重大贡献的人物和公司,并提出光纤的现代通信中的地位。
注:可以在正式介绍前,让同学们先发言,考核下学生的通信背景知识掌握情况。
2.光纤的结构首先通过图片和动画,指出光纤的纤芯、包层和涂覆层的三层结构和基本功能。
然后,结合图片和动画,重点分析纤芯和包层的材料和功能,指出纤芯和包层添加掺杂剂的原因,点出纤芯折射率(n1)和包层折射率(n2)的关系:n1略大于n2,使得光信号能封闭在纤芯中传输。
注:可以结合物理知识,先让学生先分组分析下n1和n2的关系。
最后,通过对比图,分析和比较纤芯和包层的直径大小,引出单模和多模光纤的分类;借助传输模式图,解释单、多模光纤的传输模式和单模光纤的优势。
3.光纤的传输特性光纤的传输特性主要是指光纤的损耗特性和色散特性,另有机械特性和温度特性。
重点介绍损耗特性和色散特性3.1 损耗特性通过一段动画,提出光纤损耗特性的定义:光波在光纤中传输,随着传输距离的增加,而光功率强度逐渐减弱,光纤对光波产生衰减作用,称为光纤的损耗(或衰减);并指出损耗对光纤通信系统的影响。
提出光纤损耗的三大主要方面:吸收损耗、散射损耗、弯曲损耗3种损耗。
在理论上分析这三种损耗增大的原因,然后提问学生,让学生回答下,什么实际操作会引起损耗的增大。
最后,结合工程案例,指出在实际施工中,哪些操作或者情况会引起这些损耗的增大,要引起注意。
光纤损耗的主要参数是损耗(衰减)系数,是指光在单位长度光纤中传输时的衰耗量,单位用dB/km。
给出关于损耗系数的计算题,现场推导。
光纤重要基础知识点

光纤重要基础知识点
光纤是一种用于传输光信号的细长柔韧的光学纤维。
光纤作为一种高效、高速、大带宽的通信传输介质,在现代通信领域中发挥着重要的
作用。
下面我们将介绍一些光纤的重要基础知识点。
1. 光纤的结构:光纤由一个或多个玻璃或塑料制成的芯线和包裹在外
面的护套组成。
光纤的芯线是光信号传输的核心部分,护套则起到保
护和绝缘的作用。
2. 光纤的工作原理:光信号通过光纤内的多次全反射来进行传输。
当
光信号从光纤的一端进入时,在芯线内部不断发生全反射,从而使光
信号沿着光纤的长度传播。
光信号会在光纤两端的光接口处进行转换,从光纤中释放出或接收光信号。
3. 光纤的优势:相比传统的电缆传输方式,光纤具有许多优势。
光纤
传输速度快,能够支持大容量的数据传输;光纤抗干扰能力强,不受
电磁干扰和辐射影响;光纤传输距离远,信号衰减较小;光纤重量轻、体积小,便于安装和布线等。
4. 光纤的应用领域:光纤广泛应用于通信、互联网、计算机网络、医疗、军事、航天等领域。
在通信领域中,光纤网络被广泛应用于长途
电话、宽带接入、数据中心连接等。
5. 光纤的分类:根据光纤的制作材料和结构不同,可以将光纤分为多
种类型,如单模光纤和多模光纤、塑料光纤和玻璃光纤等。
每种类型
的光纤在不同的应用场景中有着各自的特点和适用性。
总的来说,了解光纤的基础知识对于我们理解现代通信技术的发展和
使用具有重要意义。
光纤作为一种高效可靠的通信传输介质,不断推动着信息技术的进步和创新。
光纤光缆干货基础知识点
光纤光缆干货基础知识点1.简述光纤的组成答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、色散、带宽、截止波长、模场直径等。
3. 产生光纤衰减的原因有什么?答:光纤中光功率沿纵轴逐渐减小。
光功率减小与波长有关。
光纤链路中,光功率减小主要原因是散射、吸收,以及连接器和熔接接头造成的光功率损耗。
衰减的单位为dB。
产生原因:使光纤产生衰减的原因很多,主要有:吸收衰减,包括杂质吸收和本征吸收;散射衰减,包括线性散射、非线性散射和结构不完整散射等;其它衰减,包括微弯曲衰减等。
其中最主要的是杂质吸收引起衰减。
4.光纤的带宽与什么有关?答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。
光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。
5.信号在光纤中传播的色散特性怎样描述?答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。
6.什么是截止波长?答:是指光纤中只能传导基模的最短波长。
对于单模光纤,其截止波长必须短于传导光的波长。
7.光纤的色散对光纤通信系统的性能会产生什么影响?答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。
影响误码率的大小,和传输距离的长短,以及系统速率的大小。
8.光时域反射计(OTDR)的测试原理是什么?有何功能?答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。
其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。
9.常见光测试仪表中的“1310nm”或“1550nm”指的是什么?答:指的是光信号的波长。
光纤基础知识
1966年,高锟博士的论文《用于光频的光纤表面波导》从理论上证明了光纤作为传输媒体以实现数据通信的可能性。
这篇文章被誉为光纤通信的里程碑。
1970年,美国康宁公司制造了世界上第一根衰减在20dB/km的光纤,同年,美国贝尔实验室研制了世界上第一个能在室温在连续波工作的半导体激光器。
光纤通信技术进入了爆炸式的发展。
一、光纤结构光纤呈圆柱型,由纤芯、包层和涂层组成。
见下图。
二、光在光纤中的传播光在通过高折射率的物质与低折射率的物质时会发生全反射现象。
见下图。
只要选择好入射角就能让光在光纤中不外泄的传播。
早期的光纤就利用了这个原理。
这种光纤叫阶跃光纤。
见下图。
让我们看一下入射角θc的选择。
入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
不同厂家生产的光纤的数值孔径不同。
若平行光线照射在透镜上,并经过透镜聚焦于焦点处时,假设从焦点到透镜边缘的仰角为θ,则取其正弦值,称之为该透镜的数值孔径,如图所示,记作NA=sinθ。
从物理上看,光纤的数值孔径表示光纤端面接收入射光的能力。
数值孔径越大,则光纤接收光的能力越好。
但是,当角度过大时,光在光纤中全反射的次数也过多,同时,进入光纤的光的角度更多,一种角度就代表一种模式,因此光在光纤中有多种模式,除了基模,还存在高次模、低次模,这些模式的光因为传输相位、距离、路径皆不同,经过长距离的传输后,虽然同一束光在同一个时间内发出,但会在不同的时间到达目的地,因此产生较大的脉宽,使光信号存在的时间加长,这种现象叫模式色散或模间色散。
如果这次光波与下一次光波重合,则光接收器将不能分辨正常的信号。
因此需要加大发送端光脉冲之间的时间以便光接收器区分脉冲,这样减小了单位时间内光脉冲的次数,也就减小了光纤的带宽。
因为存在模式色散,则不适合用于长距离传输。
入射角角度越小,光纤接收光的能力越差,角度越大,模式色散越厉害。
既要考虑光纤接收光的能力,又要考虑模式色散,CCITT建议θc的正弦值(光纤的数值孔径)在0.18~0.23,大约在10°到14°之间。
光纤的基本知识
光纤的基本知识光纤是传光的纤维波导或光导纤维的简称。
它是工作在光波波段的一种介质波导,通常是圆柱形。
它把以光的形式出现的电磁波能量利用全反射原理约束在其界面内,并引导光波沿着光纤轴线的方向前进。
光纤的传输特性由其结构和材料决定。
通常,光纤是由高纯度的石英玻璃为主掺少量杂质锗(Ge)、硼(B)、磷(P)等的材料制成的细长的圆柱形,细如发丝(通常直径为几微米到几百微米)。
实用的结构有两个同轴区,内区称为纤芯,外区称为包层。
通常,在包层外面还有一层起支撑保护作用的涂覆层。
因为光是电磁波,所以光在光纤中的传播可用麦克斯韦波动方程来分析。
断面尺寸比光波长大很多时,可用几何光学的概念来处理。
)*4|介质1J图A.1图A.1为光在不同介质中的传播。
图中介质1的折射率为n i,介质2的折射率为门2。
当光束以较小的®角入射到介质界面上时,部分光进入介质2并产生折射,部分光被反射。
它们之间的相对强度取决于两种介质的折射率。
介质的折射率定义为光在空气中的速度与光在介质中的速度之比。
由菲涅耳定律可知廿 1 (A.1)sin 弓n2sin 二2m(A.2)在n i>n2时,逐渐增大5,进入介质2的折射光束进一步趋向界面,直到di趋于90。
此时,进入介质2的光强显著减小并趋于零,而反射光强接近入射光强。
当 d = 90°极限值时,相应的d角定义为临界角d。
由于sin90 °= I,所以临界角入=arcsin(n2;nJ (A.3) 当d>d时,入射光线将产生全反射。
应当注意,只有当光从折射率大的介质进入折射率小的介质,即n^n?时,在界面上才能产生全反射。
图A.2子午光线的全反射全反射现象是光纤传输的基础。
对于一根具体的光纤,如图A.2所示。
为分析方便,以下主要讨论光线为子午光线的情况。
通过光纤中心轴的任何平面都称为子午面,位于子午面内的光线则称为子午光线。
显然,子午面有无数个。
根据光的反射定律:入射光线、反射光线和分界面的法线均在同一平面,光线在光纤的芯-皮分界面反射时,其分界面法线就是纤芯的半径。
PON ONU光纤通信基础知识
一、光学通信基础光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。
光传输原理:光在从一种介质到另外一种介质传播过程中,在两种介质表面会产生光的折射和反射;所以若需要光作为信息载体在理想无损耗的情况下传输信息,则纤芯的折射率要大于纤芯包层,入射光角度要大于临界角,光会在光纤中产生全反射(1),延光纤进行传输。
传输波长:不同波长的光在同一光纤中传输,其色散、散射、损耗都不同,为满足光纤传输过程中损耗最小,主要以850窗口、1310窗口(最适用单模光纤)、1550nm窗口(最适用多模光纤)波长作为常用通信波长。
光纤:光纤主要分为单模光纤(SMF)和多模光纤(MMF),多模因传输模式复杂,光纤端面大,损耗大,只适用在短距离多种模式的场景;针对于PON传输业务,都基于单模光纤传输。
光学上把具有一定频率,一定的偏振状态和传播方向的光波叫做光波的一种模式。
光纤连接头分以下几类,又以端面是否为平面或斜面分为PC和UPC。
PON传输领域主要以SC/PC光纤为主,特殊情况特殊处理。
WDM:波分复用WDM(Wavelength Division Multiplexing)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;二、光模块相关指标:1. 眼图:光眼图是包含从“000”到“111”的所有光电平的状态组叠加成的图形;通常取眼图仪的1.25UI眼图显示来分析眼图指标。
2. 平均光功率(AOP)光逻辑电平1和逻辑电平0的功率平均值。
光功率单位常用毫瓦(mW)和分贝毫伏(dbm)表示,dbm=10*lg(mW)。
测试方法:使用手持光功率计,选择被测光波长,将光纤接入光功率计得出读数。
注光眼图仪中有平均光功率的测量项,但存在内部插损、未校准、分光插损、统计方式差异等会造成和手持光功率计读数有较大差异,不建议以眼图仪中测量值为准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤基础知识图文详解
光纤的构造
通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。玻璃光纤的标准
直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树
脂保护涂敷层。玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的
折射率比纤芯低,从而限制了光的流失。
石英玻璃非常脆弱,因此覆有保护涂层。通常有三种典型的光纤涂敷层。
一次涂敷光纤
覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。其直径非常小,
增加了光缆内可容纳光纤的密度,使用非常普遍。
二次涂敷光纤
亦称为紧包缓冲层光纤或半紧包缓冲层光纤。光纤表面覆有直径为0.9毫米的
热塑性树脂。与0.25毫米的光纤相比,其具有更坚固,易操作的优点。广泛
应用于局域网布线及光纤数量较少的光缆。
带状光纤
带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。
带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。
光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂
敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融
接,在光纤数量多的光缆中能轻易识别出来。
光纤种类
以下是对最常用的通信光纤种类的描述。
MMF(多模光纤)
- OM1光纤或多模光纤(62.5/125)
- OM2/OM3光纤(G.651光纤或多模光纤(50/125))
SMF(单模光纤)
- G.652(色散非位移单模光纤)
- G.653(色散位移光纤)
- G.654(截止波长位移光纤)
- G.655(非零色散位移光纤)
- G.656(低斜率非零色散位移光纤)
- G.657(耐弯光纤)
只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx
技术最常用的光纤为G.652和G.657。
G.651(多模光纤)
G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围
内,G.651是成本较低的多模传输光纤。
ITU-T G.651光纤即OM2/OM3光纤或多模光纤(50/125)。ITU-T推荐光
纤中并没有OM1光纤或多模光(62.5/125)。
多模光纤(50/125)纤芯的反射率从中心到包层逐渐改变,使得多路光传输
可以在同一速度下进行。
G.652光纤(色散非位移单模光纤)
世界上最普遍的单模光纤。可以将波长在1,310nm左右的使信号变形的色散
降至最低。您可将1550nm波长的工作窗口用于短距离传输或与色散补偿光
纤或与模块共同使用。
G.652A/B是基本的单模光纤,G.652C/D是低水峰单模光纤
G.653(色散位移光纤)
此光纤可将在1,550nm波长左右的色散降至最低,从而使光损失降至最低。
G.654(截止波长位移光纤)
G.654的正式名称为截止波长位移光纤,但普通称为低衰减光纤。低衰减的特
性使得G.654光纤主要应用于海底或地面长距离传输,比如400千米无转发
器的线路。
G.655(非零色散位移光纤)
G.653光纤在1,550nm波长时色散为零,而G.655光纤则具有集中的或正或
负的色散,这样就减少了DWDM系统中与相邻波长相互干扰的非线性现象的
不良影响。
第一代非零色散位移光纤,如PureMetro®光纤具有每千米色散等于或低于
5ps/nm的优点,从而使色散补偿更为简便。第二代非零色散位移光纤,如
PureGuide® 色散达到每千米10ps/nm左右,使DWDM系统的容量提高了
一倍。
G.656光纤(低斜率非零色散位移光纤)
非零色散位移光纤的一种,对于色散的速度有严格的要求,确保了DWDM系
统中更大波长范围内的传输性能。
G.657(耐弯光纤)
ITU-T光纤系列中的最新成员。根据FTTx技术的需求及组装应用而生的新产
品。
G.657A光纤与G.652光纤兼容,G.657B光纤无需与传统单模光纤在连接上
兼容。
光纤接线技术的分类
光纤接线技术可以分为融接、机械绞接及连接器接线。融接和机械绞接为永久
性接线,连接器接线则可以反复拆装。光连接器接线主要用于在光服务的运用
和维护中必须切换的接线点,其他场所主要使用永久性接线。