一元二次方程、二次函数知识点总结
二次函数知识点总结 (2)

二次函数知识点总结一、二次函数的定义1. 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 2y ax =的性质:2. 2=+的性质:y ax c Array 3. ()2=-的性质:y a x h4. ()2=-+的性质:y a x h k三、二次函数图象的平移1. 平移步骤:⑴将抛物线解析式转化成顶点式()2y a x h k=-+,确定其顶点坐标(),;h k⑵保持抛物线2y ax=的形状不变,将其顶点平移到(),处,具体平移方法h k如下:【或左(h<0)】向右(h>0)【或左(h平移|k|个单位2. 平移规律概括成八个字“左加右减,上加下减”.四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点) 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1.二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 2. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.3. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.3. 常数项c⑴当0c>时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当0c=时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当0c<时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a b c,,都确定,那么这条抛物线就是唯一确定的.八、二次函数解析式的确定根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有三种情况,可以用一般式或顶点式表达1. 关于x轴对称2=---;y ax bx c=++关于x轴对称后,得到的解析式是2y ax bx c()2=---;y a x h ky a x h k =-+关于x轴对称后,得到的解析式是()22. 关于y轴对称2y ax bx cy ax bx c=-+;=++关于y轴对称后,得到的解析式是2()2=++;y a x h k =-+关于y轴对称后,得到的解析式是()2y a x h k3. 关于原点对称2=-+-;y ax bx c y ax bx c=++关于原点对称后,得到的解析式是2()2=-+-;y a x h k y a x h k=-+关于原点对称后,得到的解析式是()2根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:①当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.。
二次函数(最全地中考二次函数知识点.总结)

.二次函数知识点总结及相关典型题目第一部分二次函数基础知识相关概念及定义二次函数的概念:一般地,形如 2y ax bx c(a,b ,c是常数, a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 a 0 ,而b,c 可以为零.二次函数的定义域是全体实数.二次函数 2y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.⑵ a ,b,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项.二次函数各种形式之间的变换2二次函数y ax bx c2用配方法可化成:y a x h k 的形式,其中hb2a24ac b,.k4a二次函数由特殊到一般,可分为以下几种形式:① 2 2y ax ;②y ax k ;③2y a x h ;2④y a x h k;⑤y ax2 bx c .二次函数解析式的表示方法一般式: 2y ax bx c (a ,b ,c 为常数, a 0 );顶点式: 2y a(x h) k (a ,h ,k 为常数, a 0 );两根式:y a(x x1 )( x x2 ) (a 0,x1 ,x2 是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即函数解析式的这三种形式可以互化.2b 4ac 0 时,抛物线的解析式才可以用交点式表示.二次二次函数 2y ax 的性质a 的符号开口方向顶点坐标对称轴性质y 随x 的增大而增大;x 0时,y a 向上0,0 y 轴x 0 时,随x的增大而减小;x 0 时,y 有最小值0 .a 向下0,0 y 轴x 时,y 随x 的增大增大而减小;x 0 0时,y 随x 的增大而增大;x 0 时,y 有最大值0 .二次函数 2y ax c 的性质a 的符号开口方向顶点坐标对称轴性质性质a 向上0,c y 轴0 x 0 时,y 随x 的增大而增大;x 0时,y 随x 的增大而减小;x 0时,y 有最小值 c .a 向下0,c y 轴0 x 0 时,y 随x 的增大而减小;x 0时,y 随x 的增大而增大;x 0时,y 有最大值 c .二次函数 2y a x h 的性质:a 的符号开口方向顶点坐标对称轴性质a 向上h ,0 X=h0 x h 时,y 随x 的增大而增大;x h 时,y 随x 的增大而减小;x h 时,y 有最小值0 ...a 0 向下h ,0 X=h x h 时,y 随x 的增大而减小;x h 时,y 随x 的增大而增大;x h 时,y 有最大值0 .二次函数 2y a x h k 的性质a 的符号开口方向顶点坐标对称轴性质a 0 向上h ,k X=h x h 时,y 随x的增大而增大;x h 时,y 随x 的增大而减小;x h 时,y 有最小值k .a 向下h ,k X=h0 x h 时,y 随x的增大而减小;x h 时,y 随x 的增大而增大;x h 时,y 有最大值k .抛物线 2y ax bx c 的三要素:开口方向、对称轴、顶点.a 的符号决定抛物线的开口方向:当 a 0时,开口向上;当 a 0时,开口向下;a 相等,抛物线的开口大小、形状相同.对称轴:平行于y 轴(或重合)的直线记作x b2a. 特别地,y 轴记作直线x 0.2b 4ac b顶点坐标坐标:(,)2a 4a顶点决定抛物线的位置. 几个不同的二次函数,如果二次项系数 a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.2抛物线y ax bx c 中,a,b,c与函数图像的关系二次项系数 a二次函数 2y ax bx c中, a 作为二次项系数,显然 a0 .⑴当a 0 时,抛物线开口向上, a 越大,开口越小,反之 a 的值越小,开口越大;⑵当a 0 时,抛物线开口向下, a 越小,开口越小,反之 a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向, a 的大小决定开口的大小.一次项系数 b在二次项系数 a 确定的前提下,b决定了抛物线的对称轴.⑴在a 0 的前提下,b当 b 0时,2a,即抛物线的对称轴在y 轴左侧;b当 b 0时,2a,即抛物线的对称轴就是y 轴;b当 b 0 时,2a,即抛物线对称轴在y 轴的右侧.⑵在a 0 的前提下,结论刚好与上述相反,即b当 b 0时,2a,即抛物线的对称轴在y 轴右侧;b当 b 0时,2a,即抛物线的对称轴就是y 轴;b当 b 0 时,2a,即抛物线对称轴在y 轴的左侧.总结起来,在 a 确定的前提下,b决定了抛物线对称轴的位置.总结:常数项 c⑴当c 0 时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵当c 0 时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;..⑶当c 0 时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与y轴交点的位置.总之,只要 a ,b,c 都确定,那么这条抛物线就是唯一确定的.求抛物线的顶点、对称轴的方法公式法:y 2ax bx c a xb2a24ac4a2b2b 4ac b,∴顶点是(,),对称轴是2a 4a直线xb2a.2配方法:运用配方的方法,将抛物线的解析式化为y a x h k( h, k ) ,对称轴是直线x h .的形式,得到顶点为运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.用待定系数法求二次函数的解析式2 . 已知图像上三点或三对x 、y 的值,通常选择一般式.一般式:y ax bx c2顶点式:y a x h k .已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标x 、x2 ,通常选用交点式:y a x x1 x x2 .1直线与抛物线的交点2 得交点为(0, c ). y轴与抛物线y axbx c2 有且只有一个交点( h, ah 2 bh c ). 与y 轴平行的直线x h与抛物线y ax bxc2 的图像与x 轴的两个交点的横坐标抛物线与x 轴的交点: 二次函数y ax bx c x、x2 ,是1对应一元二次方程ax2 bx c 0 的两个实数根. 抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0 抛物线与x 轴相交;②有一个交点(顶点在x 轴上)0 抛物线与x 轴相切;③没有交点0 抛物线与x 轴相离.平行于x 轴的直线与抛物线的交点可能有0 个交点、1 个交点、2 个交点. 当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax2 bx c k 的两个实数根.2 bx c a一次函数y kx n k 0 的图像l 与二次函数y 0 的图像G 的交点,由ax方程组y kx n2y ax bx c的解的数目来确定:①方程组有两组不同的解时l 与G 有两个交点;②方程组只有一组解时l 与G 只有一个交点;③方程组无解时l 与G 没有交点.2 与x 轴两交点为0 0A x ,1,,B x ,抛物线与x 轴两交点之间的距离:若抛物线y ax bx c2由于 2 bx cx 、x2 是方程ax 0的两个根,故1bx x , x xa c aAB x1 x2x1x22 x1x22 4x x1 22b 4c 2b 4aca a a a二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达关于x轴对称2y a x b x 关c于x 轴对称后,得到的解析式是2y ax bx c;2y a x h k 关于x轴对称后,得到的解析式是2y a x h k ;关于y 轴对称..2y a x b x 关c于y 轴对称后,得到的解析式是2y ax bx c;2y a x h k 关于y 轴对称后,得到的解析式是2y a x h k ;关于原点对称2y a x b x 关c于原点对称后,得到的解析式是2y ax bx c;2y a x h 关k 于原点对称后,得到的解析式是2y a x h k ;关于顶点对称2y a x b x 关c于顶点对称后,得到的解析式是2y ax bx c2b2a;2y a x h k 关于顶点对称后,得到的解析式是2y a x h k .关于点m,n 对称2y a x h k 关于点m,n 对称后,得到的解析式是2y a x h 2m 2n k总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图象的平移平移步骤:⑴将抛物线解析式转化成顶点式 2y a x h k ,确定其顶点坐标h,k ;⑵保持抛物线 2y ax 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2 y=ax2+k向右( h>0)【或左(h<0)】平移|k|个单位向右(h>0)( h<0)【或左】平移|k|个单位向上( k>0)【或下(k<0)】平移|k|个单位向右( h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a( x-h)2+k平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.根据条件确定二次函数表达式的几种基本思路。
二次函数知识点总结

二次函数知识点总结二次函数知识点总结一、函数定义与表达式1.一般式:y = ax^2 + bx + c(a、b、c为常数,a≠0);2.顶点式:y = a(x - h)^2 + k(a、h、k为常数,a≠0);3.交点式:y = a(x - x1)(x - x2)(a≠0,x1、x2是抛物线与x轴两交点的横坐标)。
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b^2 - 4ac≥0时,抛物线的解析式才可以用交点式表示。
二次函数解析式的这三种形式可以互相转化。
二、函数图像的性质——抛物线1)开口方向——二次项系数a二次函数y = ax^2 + bx + c中,a作为二次项系数,显然a≠0.当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大。
顶点坐标:(h,k)一般式:(-b/2a,-Δ/4a)总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。
|a|越大开口就越小,|a|越小开口就越大。
y = 2x^2y = x^2y = (1/2)x^2y = -(1/2)x^2y = -x^2y = -2x^22)抛物线是轴对称图形,对称轴为直线x = -b/2a。
对称轴顶点式:x = h两根式:x = x1、x = x23)对称轴位置一次项系数b和二次项系数a共同决定对称轴的位置。
(“左同右异”)a与b同号(即ab>0)对称轴在y轴左侧a与b异号(即ab<0)对称轴在y轴右侧4)增减性,最大或最小值当a>0时,在对称轴左侧(当x。
-b/2a时),y随着x的增大而增大;当a -b/2a时),y随着x的增大而增大;当a>0时,函数有最小值,并且当x = -b/2a时,ymin = -Δ/4a;当a<0时,函数有最大值,并且当x = -b/2a时,ymax = -Δ/4a;5)常数项c常数项c决定抛物线与y轴交点。
数学二次函数知识点总结

数学二次函数知识点总结数学二次函数知识点总结在平平淡淡的学习中,大家对知识点应该都不陌生吧?知识点也可以通俗的理解为重要的内容。
为了帮助大家更高效的学习,下面是店铺为大家收集的数学二次函数知识点总结,希望能够帮助到大家!数学二次函数知识点总结篇1二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。
二次函数可以表示为f(乘)=a乘^2b乘c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量乘和因变量y之间存在如下关系:一般式y=a乘∧2;b乘c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);顶点式y=a(乘m)∧2k(a≠0,a、m、k为常数)或y=a(乘-h)∧2k (a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为乘=-m,顶点的位置特征和图像的开口方向与函数y=a乘∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(乘-乘1)(乘-乘2)[仅限于与乘轴有交点A(乘1,0)和B(乘2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(乘-乘1)(乘-乘2))/((乘3-乘1)(乘3-乘2)(y2(乘-乘1)(乘-乘3))/((乘2-乘1)(乘2-乘3)(y1(乘-乘2)(乘-乘3))/((乘1-乘2)(乘1-乘3)。
由此可引导出交点式的系数a=y1/(乘1乘乘2)(y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
乘是自变量,y是乘的二次函数乘1,乘2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2乘的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容,也是高中数学的基础。
它在数学和实际生活中都有广泛的应用。
下面就来对二次函数的知识点进行一个全面的总结。
一、二次函数的定义一般地,形如$y = ax^2 + bx + c$($a$、$b$、$c$是常数,$a ≠ 0$)的函数,叫做二次函数。
其中,$x$是自变量,$a$叫做二次项系数,$b$叫做一次项系数,$c$叫做常数项。
需要注意的是,二次函数的二次项系数$a$不能为$0$,否则就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。
抛物线的对称轴是直线$x =\frac{b}{2a}$。
抛物线的顶点坐标为$\left(\frac{b}{2a},\frac{4ac b^2}{4a}\right)$。
三、二次函数的表达式1、一般式:$y = ax^2 + bx + c$($a ≠ 0$)2、顶点式:$y = a(x h)^2 + k$($a ≠ 0$,顶点坐标为$(h, k)$)3、交点式:$y = a(x x_1)(x x_2)$($a ≠ 0$,$x_1$、$x_2$是抛物线与$x$轴交点的横坐标)四、二次函数的性质1、当$a > 0$时,在对称轴左侧,$y$随$x$的增大而减小;在对称轴右侧,$y$随$x$的增大而增大。
当$a < 0$时,在对称轴左侧,$y$随$x$的增大而增大;在对称轴右侧,$y$随$x$的增大而减小。
2、二次函数的最值:当$a > 0$时,函数有最小值,$y_{min} =\frac{4ac b^2}{4a}$。
当$a < 0$时,函数有最大值,$y_{max} =\frac{4ac b^2}{4a}$。
五、二次函数与一元二次方程的关系抛物线$y = ax^2 + bx + c$与$x$轴的交点的横坐标就是一元二次方程$ax^2 + bx + c = 0$的根。
《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
抛物线的对称轴是直线 x = b / 2a 。
抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。
三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。
函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。
2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。
函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。
五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。
向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。
向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。
六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。
高中二次函数知识点总结
高中二次函数知识点总结在高中数学的学习中,二次函数是一个非常重要的知识点,它贯穿了代数、几何等多个领域,对于我们解决各种数学问题都有着重要的作用。
接下来,就让我们一起深入了解一下二次函数的相关知识。
一、二次函数的定义一般地,形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,叫做二次函数。
其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。
需要注意的是,二次函数的最高次必须是二次,并且二次项系数 a不能为 0。
如果 a = 0,那么函数就变成了一次函数。
二、二次函数的图像二次函数的图像是一条抛物线。
抛物线的形状由二次项系数a 决定:1、当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
2、|a|的值越大,抛物线的开口越窄;|a|的值越小,抛物线的开口越宽。
抛物线的对称轴是直线 x = b /(2a)。
顶点坐标为(b /(2a) ,(4ac b²) /(4a))。
三、二次函数的三种表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标。
四、二次函数的性质1、单调性当 a > 0 时,在对称轴左侧,函数单调递减;在对称轴右侧,函数单调递增。
当 a < 0 时,在对称轴左侧,函数单调递增;在对称轴右侧,函数单调递减。
2、最值当 a > 0 时,函数有最小值,最小值为(4ac b²) /(4a)。
当 a < 0 时,函数有最大值,最大值为(4ac b²) /(4a)。
3、与 x 轴的交点令 y = 0,解一元二次方程 ax²+ bx + c = 0。
(1)当 b² 4ac > 0 时,抛物线与 x 轴有两个交点。
二次函数的相关知识点总结
二次函数的相关知识点总结一、二次函数的概念。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。
- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。
二、二次函数的图象。
1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。
2. 抛物线的顶点坐标。
- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。
- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。
根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。
3. 抛物线的对称轴。
- 对称轴方程为x =-(b)/(2a)。
4. 抛物线的开口方向。
- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。
三、二次函数的性质。
1. 增减性。
- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。
- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。
2. 最值。
- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。
二次函数知识点总结
二次函数知识点总结二次函数知识点总结:二次函数是形如y=ax^2+bx+c(a,b,c是常数,a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b,c可以为零。
二次函数的定义域是全体实数。
二次函数y=ax^2+bx+c的结构特征包括等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项。
二次函数的基本形式为y=ax^2.其中,a的绝对值越大,抛物线的开口越小。
具体而言,a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
对于y=ax^2+c形式的二次函数,其顶点坐标为(0,c),对称轴为y轴。
对于y=a(x-h)^2形式的二次函数,其顶点坐标为(h,0),对称轴为x=h。
当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
对于y=a(x-h)^2+k形式的二次函数,其顶点坐标为(h,k),对称轴为x=h。
当a>0时,抛物线开口向上,当a0时,向上平移|k|个单位,当k<0时,向下平移|k|个单位。
剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。
二次函数的平移规律二次函数的平移规律可以概括为“左加右减,上加下减”。
具体来说,如果将二次函数y=ax^2+k向右平移h个单位,则解析式变为y=a(x-h)^2+k;如果向左平移h个单位,则解析式变为y=a(x+h)^2+k。
同样地,如果向上平移k个单位,则解析式变为y=a(x-h)^2+k;如果向下平移k个单位,则解析式变为y=a(x-h)^2-k。
二次函数y=ax^2+bx+c与y=a(x-h)^2+k的比较二次函数y=ax^2+bx+c和y=a(x-h)^2+k是两种不同的表达形式。
通过配方法,我们可以将前者转化为后者,即b^2-4ac=4a(k-c),h=-b/2a,k=c-b^2/4a。
初中二次函数最全知识点总结
初中二次函数最全知识点总结二次函数是初中数学中的重要内容,以下是二次函数的最全知识点总结:一、基本概念1. 二次函数的定义:y=ax^2+bx+c(a≠0)。
2. 求解二次函数的根:当y=0时,求解二次方程ax^2+bx+c=0的解。
3.二次函数的图像:二次函数的图像为抛物线,开口方向由a的正负决定。
4.抛物线的顶点:二次函数的图像的顶点坐标为(-b/2a,f(-b/2a))。
5.抛物线的对称轴:二次函数图像的对称轴是直线x=-b/2a。
二、图像与相关性质1.拉平方法:将一般式的二次函数化为顶点形式的二次函数。
2.抛物线的开口方向:若二次函数的a>0,则抛物线开口向上;若二次函数的a<0,则抛物线开口向下。
3.抛物线的最值:若抛物线开口向上,则函数有最小值(最小值为f(-b/2a));若抛物线开口向下,则函数有最大值。
4.抛物线的轴对称性:抛物线关于对称轴对称。
5.零点存在性:若一元二次方程有实数根,则抛物线与x轴有交点;若一元二次方程无实数根,则抛物线与x轴无交点。
6.抛物线的轨迹:当抛物线的开口向上时,抛物线图像在x轴上方;当抛物线的开口向下时,抛物线图像在x轴下方。
三、解二次方程1. 提取公因式法:ax^2+bx+c=0,公因式为a,即a(x^2+(b/a)x+c/a)=0,再由零因积性质解得x的值。
2. 公式法:对于一元二次方程ax^2+bx+c=0,解的公式为x=[-b±(b^2-4ac)^(1/2)]/(2a)。
3. 完全平方式:对于一元二次方程ax^2+bx+c=0,通过变形将方程化为完全平方式(x﹦d)^2=0,再解出x的值。
四、因式分解1. 根与系数关系:若x1和x2是一元二次方程ax^2+bx+c=0的两个解,则方程可以分解为a(x-x1)(x-x2)=0。
2. 判别式与因式分解:一元二次方程ax^2+bx+c=0,其中b^2-4ac 被称为判别式,当判别式大于0时,方程有两个不等实数根,即方程可因式分解为a(x-p)(x-q)=0,其中p和q是方程的两个根;当判别式等于0时,方程有两个相等实数根,即方程可因式分解为a(x-r)^2=0,其中r 是方程的根;当判别式小于0时,方程无实数根,即方程不可因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程重要知识点
1. 一元二次方程的定义及一般形式:)0(2acbxaxy
(1) 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)
的方程,叫做一元二次方程。
(2) 一元二次方程的一般形式: 20(0)axbxca。其中a为二次项系数,b为
一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2. 一元二次方程的解法
(1)配方法:将方程整理成(x+p)2=q,方程的根是x=-p±q
注:x2系数是1和不是1时配方注意事项;x2系数是负数时配方注意事项。
(2)公式法:242bbacxa(240bac)
(3)因式分解:十字相乘法:0)(2pqxqpx0))((qxpx
3.一元二次方程根的判别(24bac)
(1)△>0,方程有两个不相等的实数根
(2)△=0,方程有一个实数根或者两个相等的实数根
(3)△<0,方程没有实数根,方程无解
4.韦达定理(根与系数关系)
一元二次方程ax2+bx+c=0,设它的两个根是1x和2x,则1x和2x与方程的系数a,b,c之
间有如下关系:
1x+2x=ba; 1x.2
x
=ca
5.一元二次方程的应用
①“审”,弄清楚已知量,未知量以及他们之间的等量关系;
②“设”指设元,即设未知数,可分为直接设元和间接设元;
③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式
④“解”就是求出说列方程的解;
⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程
二次函数重要知识点
1.二次函数的概念:一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做
二次函数。 注意 :和一元二次方程类似,二次项系数0a,而bc,可以为零.
2. 平移规律:
(1)将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;
(2)左加右减(h):x值的变化,上加下减(k):y值的变化
3.二次函数2yaxbxc图象的画法
绘图法:利用配方法将二次函数2yaxbxc化为顶点式2()yaxhk,确定其开口方
向(a)、对称轴(h)及顶点坐标(k),然后在对称轴两侧,左右对称地描点画图.一般我们选
取的五点为:顶点、与y轴的交点0c,、与x轴的交点10x,,20x,.
4.二次函数2yaxbxc的性质
(1)当0a时,抛物线开口向上,对称轴为2bxa,顶点坐标为2424bacbaa,.
当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;当2bxa时,
y
有最小值244acba.
(2) 当0a时,抛物线开口向下,对称轴为2bxa,顶点坐标为2424bacbaa,.当
2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;当2bxa
时,
y
有最大值244acba.
5.二次函数解析式求法
(1)一般式:2yaxbxc(a,b,c为常数,0a);需要三个坐标点
(2) 顶点式:2()yaxhk(a,h,k为常数,0a);顶点坐标和其他任一坐标
6.二次函数的图象与各项系数之间的关系
(1)a:抛物线开口的方向(a的正负)与大小(|a|)
(2)b:在a确定的前提下,b决定了抛物线对称轴(2bxa)的位置(正负).对称轴在y轴右
侧,a、b符号相反;对称轴在y轴左侧,a,b符号相同。
(3)c:抛物线与y轴交点的纵坐标
7、二次函数与一元二次方程的关系(二次函数与x轴交点情况)
一元二次方程20axbxc是二次函数2yaxbxc当函数值0y时的特殊情况
① 当240bac时,图象与x轴交于两点
② 当0时,图象与x轴只有一个交点;
③ 当0时,图象与x轴没有交点.
8、二次函数与应用题(与二次函数性质联系)
(1)求最值问题(利润、面积等问题)
(2)实际问题建坐标系(车过隧道、桥下水位等问题)