SVM支持向量机算法的详细推导 详细到每个步骤 值得
svm算法公式

svm算法公式摘要:1.简介2.SVM 算法基本思想3.SVM 算法公式推导4.SVM 算法应用场景与优缺点5.总结正文:1.简介支持向量机(Support Vector Machine,SVM)是一种经典的二分类机器学习算法。
它通过划分超平面,使得不同类别的数据点到超平面的距离最大,从而实现分类。
SVM 算法具有良好的泛化能力,广泛应用于文本分类、图像分类、生物信息学等领域。
2.SVM 算法基本思想SVM 算法的基本思想是找到一个最佳超平面,使得两个类别之间的距离(即几何间隔)最大化。
为了找到这个最佳超平面,SVM 算法需要解决一个优化问题,即求解一个凸二次规划问题。
3.SVM 算法公式推导设训练样本集为X = {x1, x2, ..., xn},标签为Y = {y1, y2, ..., yn},其中yi∈{-1, 1}。
SVM 算法的优化目标是最小化误分类点到超平面的几何间隔之和,即:min ∑(yi - ∑αi * yi * kernel(xi, xj))^2其中,αi 表示第i 个支持向量对应的拉格朗日乘子,kernel(xi, xj) 表示核函数,用于计算两个向量之间的相似度。
对于线性核函数,kernel(xi, xj) = xi·xj;对于多项式核函数,kernel(xi, xj) = (xi·xj + 1)^d。
4.SVM 算法应用场景与优缺点SVM 算法在以下场景中表现良好:- 数据集具有较高维度,但线性可分;- 数据集中存在噪声或异常值;- 需要对类别进行细分的场景。
SVM 算法的优点包括:- 具有较好的泛化能力,能有效处理过拟合问题;- 对于线性可分数据集,能够实现最优分类效果;- 支持多种核函数,可处理非线性问题。
SVM 算法的缺点包括:- 对于非线性数据集,需要选择合适的核函数,否则可能无法获得好的分类效果;- 计算复杂度较高,尤其是当数据量较大时。
5.总结支持向量机(SVM)是一种经典的二分类机器学习算法,通过寻找最佳超平面来实现分类。
svm算法公式

svm算法公式SVM算法公式支持向量机(Support Vector Machine,简称SVM)是一种常用的机器学习算法,被广泛应用于分类和回归问题的解决中。
它的核心思想是通过找到一个最优超平面来划分不同类别的数据点,从而实现分类的目标。
SVM算法的公式可以用如下方式表达:1. 数据准备假设我们有一个包含N个样本的训练集D={(x1, y1), (x2, y2), ... , (xN, yN)},其中xi表示第i个样本的特征向量,yi表示第i个样本的类别标签。
特征向量xi具有n个维度,即xi=(x1i, x2i, ... , xni)。
2. 寻找最优超平面SVM的目标是找到一个最优超平面,使得该超平面能够最大化样本点到该超平面的间隔,并且能够正确地将不同类别的样本点分开。
最优超平面可以用如下公式表示:w·x + b = 0其中,w表示超平面的法向量,b表示超平面的截距。
w·x表示w 和x的内积。
根据这个公式,我们可以将样本点分为两类:w·x + b > 0的样本点属于一类,w·x + b < 0的样本点属于另一类。
3. 线性可分情况如果训练集D是线性可分的,即存在一个超平面完全能够将两类样本点分开,那么我们可以通过一个优化问题来求解最优超平面。
优化问题可以用如下公式表示:min 1/2 ||w||^2s.t. yi(w·xi + b) ≥ 1, i=1,2,...,N其中,||w||表示向量w的范数,yi表示第i个样本点的类别标签。
这个优化问题的目标是最小化w的范数,同时满足所有样本点的分类约束条件。
4. 线性不可分情况如果训练集D不是线性可分的,那么我们可以通过引入松弛变量(xi, ξi)来解决这个问题。
松弛变量可以将样本点分类约束条件放宽,使得一些样本点可以位于超平面的错误一侧。
此时,优化问题可以用如下公式表示:min 1/2 ||w||^2 + C Σξis.t. yi(w·xi + b) ≥ 1 - ξi, i=1,2,...,Nξi ≥ 0, i=1,2,...,N其中,C是一个正则化参数,用来平衡最小化w的范数和最小化松弛变量的重要性。
SVM算法详解范文

SVM算法详解范文SVM(支持向量机)是一种常用的监督学习算法,广泛应用于分类和回归问题。
它的基本思想是找到一个最优的超平面,能够将不同类别的样本点分开。
支持向量机具有较好的泛化能力和鲁棒性,在实际应用中取得了很好的效果。
一、SVM的基本原理1.线性可分情况下当训练样本线性可分时,SVM算法的目标是找到一个能够将正负样本完全分开的超平面。
这个超平面的选择是使得所有样本点到超平面的距离最大化,即最大化间隔。
2.线性不可分情况下当样本线性不可分时,SVM使用核函数将样本映射到高维特征空间中,使得样本可以在高维空间线性可分。
常用的核函数有线性核函数、多项式核函数和高斯核函数等。
二、SVM的数学模型SVM的数学模型可以表示为一个凸二次规划问题,即:min 1/2 ∥w∥²s.t. yi(w·xi+b)≥1 , i=1,2,...,n其中w是超平面的法向量,b是超平面的截距,(xi,yi)是训练样本点,n是样本总数。
这个问题可以通过拉格朗日函数和KKT条件等方法求解。
三、SVM的优缺点SVM具有以下优点:1.SVM能够处理高维特征空间中的分类问题。
2.SVM对于小样本数据集效果较好。
3.SVM能够处理非线性问题,通过核函数将样本映射到高维特征空间。
SVM的缺点包括:1.SVM对于大规模样本集需要较长的训练时间。
2.SVM对于噪声和缺失数据敏感。
3.SVM模型的选择和核函数的选取对结果有较大影响。
四、SVM算法的步骤1.数据预处理:对数据进行标准化和归一化处理。
2.选择核函数:根据问题的特点选择合适的核函数。
3.参数选择:确定正则化项参数和核函数的参数。
4.求解凸二次规划问题:通过优化算法求解凸二次规划问题。
5.模型评估:通过交叉验证等方法评估模型的性能。
6.预测与分类:使用训练好的SVM模型进行预测和分类。
五、SVM的改进和拓展1.核函数选择:根据问题需求和数据特点选择合适的核函数。
2.超参数调优:使用交叉验证等方法调优SVM模型的超参数。
支持向量机算法的原理和应用

支持向量机算法的原理和应用支持向量机(Support Vector Machine, SVM)是一种基于统计学习理论的机器学习算法,它可以在数据集中找到一个最优超平面,将不同类别的样本分割开来。
在分类问题中,SVM通过构建一个超平面来对不同类别的样本进行分类;在回归问题中,SVM可以用来拟合非线性关系的数据。
SVM的核心思想是最大化间隔,即找到一个能够将不同类别的样本分隔开的超平面,使得两侧最近的样本点到超平面的距离最大。
这些最近的样本点被称为支持向量,它们决定了最终划分超平面的位置。
SVM的基本原理可以分为以下几个步骤:1.数据准备:首先需要对数据进行预处理,包括数据清洗、归一化、特征提取等。
2.特征选择:选择与分类问题相关的特征。
3.模型构建:构建SVM模型,选择适当的核函数、设置参数。
4.模型训练:使用已标记的训练样本进行模型训练,找到最佳的超平面。
5.模型预测:用训练好的模型对新样本进行预测,即将新样本进行分类。
SVM算法的应用非常广泛,主要包括以下几个方面:1.二分类问题:SVM在二分类问题中表现出色,特别适用于具有较大类别间距离且样本数目较少的情况。
例如,在垃圾邮件分类中,SVM可以将垃圾邮件和正常邮件进行有效地区分。
2.多分类问题:通过将多个二分类器组合起来,SVM可以用于解决多分类问题。
例如,在手写数字识别中,可以使用SVM对不同的数字进行分类。
3.异常检测:SVM可以用于异常检测,通过将异常样本与正常样本分开。
例如,在网络入侵检测中,SVM可以帮助识别潜在的入侵行为。
4.文本分类:SVM在文本分类问题中也有广泛的应用。
例如,在垃圾短信识别中,可以使用SVM对短信进行分类。
5.图像识别:SVM在图像识别问题中有很好的表现。
例如,在人脸识别中,可以使用SVM对不同人脸进行分类。
除了以上几个应用领域,SVM还可以应用于生物信息学、计算机视觉、自然语言处理等问题的解决。
尽管SVM算法在许多问题中都表现出色,但也存在一些限制。
《支持向量机SVM》课件

多分类SVM
总结词
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。
详细描述
多类分类支持向量机可以使用不同的核函数和策略来解决多 类分类问题。常用的核函数有线性核、多项式核和RBF核等 。此外,一些集成学习技术也可以与多类分类SVM结合使用 ,以提高分类性能和鲁棒性。
03
SVM的训练与优化
细描述
对于非线性数据,线性不可分SVM通 过引入核函数来解决分类问题。核函 数可以将数据映射到更高维空间,使 得数据在更高维空间中线性可分。常 用的核函数有线性核、多项式核和径 向基函数(RBF)。
通过调整惩罚参数C和核函数参数, 可以控制模型的复杂度和过拟合程度 。
详细描述
多分类支持向量机可以通过两种策略进行扩展:一对一(OAO)和一对多(OAA)。 在OAO策略中,对于n个类别的多分类问题,需要构建n(n-1)/2个二分类器,每个二分 类器处理两个类别的分类问题。在OAA策略中,对于n个类别的多分类问题,需要构建
n个二分类器,每个二分类器处理一个类别与剩余类别之间的分类问题。
鲁棒性高
SVM对噪声和异常值具有 一定的鲁棒性,这使得它 在许多实际应用中表现良 好。
SVM的缺点
计算复杂度高
对于大规模数据集,SVM的训练时间可能会很长,因为其需要解决一 个二次规划问题。
对参数敏感
SVM的性能对参数的选择非常敏感,例如惩罚因子和核函数参数等, 需要仔细调整。
对非线性问题处理有限
SVM的优点
分类效果好
SVM在许多分类任务中表 现出了优秀的性能,尤其 在处理高维数据和解决非 线性问题上。
对异常值不敏感
SVM在训练过程中会寻找 一个最优超平面,使得该 平面的两侧的类别距离最 大化,这使得SVM对异常 值的影响较小。
机器学习--支持向量机(SVM)算法的原理及优缺点

机器学习--⽀持向量机(SVM)算法的原理及优缺点⼀、⽀持向量机(SVM)算法的原理 ⽀持向量机(Support Vector Machine,常简称为SVM)是⼀种监督式学习的⽅法,可⼴泛地应⽤于统计分类以及回归分析。
它是将向量映射到⼀个更⾼维的空间⾥,在这个空间⾥建⽴有⼀个最⼤间隔超平⾯。
在分开数据的超平⾯的两边建有两个互相平⾏的超平⾯,分隔超平⾯使两个平⾏超平⾯的距离最⼤化。
假定平⾏超平⾯间的距离或差距越⼤,分类器的总误差越⼩。
1.⽀持向量机的基本思想 对于线性可分的任务,找到⼀个具有最⼤间隔超平⾯,如图所⽰, (1)⽀持向量机的基本型为: (2)软间隔的优化⽬标: 其中,0-1函数为错分样本的个数。
(3)核⽅法: 其中为特征映射函数。
2、实验⼀般步骤: (1)导⼊数据; (2)数据归⼀化; (3)执⾏svm寻找最优的超平⾯; (4)绘制分类超平⾯核⽀持向量; (5)利⽤多项式特征在⾼维空间中执⾏线性svm (6)选择合适的核函数,执⾏⾮线性svm; 3、算法优缺点: 算法优点: (1)使⽤核函数可以向⾼维空间进⾏映射 (2)使⽤核函数可以解决⾮线性的分类 (3)分类思想很简单,就是将样本与决策⾯的间隔最⼤化 (4)分类效果较好 算法缺点: (1)SVM算法对⼤规模训练样本难以实施 (2)⽤SVM解决多分类问题存在困难 (3)对缺失数据敏感,对参数和核函数的选择敏感 ⼆、数学推导过程 对于线性可分的⽀持向量机求解问题实际上可转化为⼀个带约束条件的最优化求解问题: 推理过程: 结果: 对于线性不可分的⽀持向量机求解问题实际上可转化为⼀个带约束条件的soft-margin最优化求解问题:三、代码实现1、线性svmimport numpy as npfrom sklearn.datasets import load_irisimport matplotlib.pyplot as pltfrom sklearn.preprocessing import StandardScalerfrom sklearn.svm import LinearSVCfrom matplotlib.colors import ListedColormapimport warningsdef plot_decision_boundary(model,axis):x0,x1=np.meshgrid(np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1))x_new=np.c_[x0.ravel(),x1.ravel()]y_predict=model.predict(x_new)zz=y_predict.reshape(x0.shape)custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)w = model.coef_[0]b = model.intercept_[0]plot_x = np.linspace(axis[0],axis[1],200)up_y = -w[0]/w[1]*plot_x - b/w[1] + 1/w[1]down_y = -w[0]/w[1]*plot_x - b/w[1] - 1/w[1]up_index = (up_y>=axis[2]) & (up_y<=axis[3])down_index = (down_y>=axis[2]) & (down_y<=axis[3])plt.plot(plot_x[up_index],up_y[up_index],c='black')plt.plot(plot_x[down_index],down_y[down_index],c='black')warnings.filterwarnings("ignore")data = load_iris()x = data.datay = data.targetx = x[y<2,:2]y = y[y<2]scaler = StandardScaler()scaler.fit(x)x = scaler.transform(x)svc = LinearSVC(C=1e9)svc.fit(x,y)plot_decision_boundary(svc,axis=[-3,3,-3,3])plt.scatter(x[y==0,0],x[y==0,1],c='r')plt.scatter(x[y==1,0],x[y==1,1],c='b')plt.show()输出结果:2、⾮线性-多项式特征import numpy as npfrom sklearn import datasetsimport matplotlib.pyplot as pltfrom sklearn.preprocessing import PolynomialFeatures,StandardScaler from sklearn.svm import LinearSVCfrom sklearn.pipeline import Pipelinefrom matplotlib.colors import ListedColormapimport warningsdef plot_decision_boundary(model,axis):x0,x1=np.meshgrid(np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1), np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1) )x_new=np.c_[x0.ravel(),x1.ravel()]y_predict=model.predict(x_new)zz=y_predict.reshape(x0.shape)custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)def PolynomialSVC(degree,C=1.0):return Pipeline([('poly',PolynomialFeatures(degree=degree)),('std_scaler',StandardScaler()),('linearSVC',LinearSVC(C=1e9))])warnings.filterwarnings("ignore")poly_svc = PolynomialSVC(degree=3)X,y = datasets.make_moons(noise=0.15,random_state=666)poly_svc.fit(X,y)plot_decision_boundary(poly_svc,axis=[-1.5,2.5,-1.0,1.5])plt.scatter(X[y==0,0],X[y==0,1],c='red')plt.scatter(X[y==1,0],X[y==1,1],c='blue')plt.show()输出结果:3、⾮线性-核⽅法from sklearn.preprocessing import StandardScalerfrom sklearn.svm import SVCfrom sklearn.pipeline import Pipelinefrom sklearn import datasetsfrom matplotlib.colors import ListedColormapimport numpy as npimport matplotlib.pyplot as pltimport warningsdef plot_decision_boundary(model,axis):x0,x1=np.meshgrid(np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1), np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1) )x_new=np.c_[x0.ravel(),x1.ravel()]y_predict=model.predict(x_new)zz=y_predict.reshape(x0.shape)custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9']) plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)def RBFKernelSVC(gamma=1.0):return Pipeline([('std_scaler',StandardScaler()),('svc',SVC(kernel='rbf',gamma=gamma))])warnings.filterwarnings("ignore")X,y = datasets.make_moons(noise=0.15,random_state=666)svc = RBFKernelSVC(gamma=100)svc.fit(X,y)plot_decision_boundary(svc,axis=[-1.5,2.5,-1.0,1.5])plt.scatter(X[y==0,0],X[y==0,1],c='red')plt.scatter(X[y==1,0],X[y==1,1],c='blue')plt.show()输出结果:。
超详细SVM(支持向量机)知识点

超详细SVM(支持向量机)知识点一. 简单概括一下SVM:SVM 是一种二类分类模型。
它的基本思想是在特征空间中寻找间隔最大的分离超平面使数据得到高效的二分类,具体来讲,有三种情况(不加核函数的话就是个线性模型,加了之后才会升级为一个非线性模型):•当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机;•当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机;•当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。
二. SVM 为什么采用间隔最大化(与感知机的区别):当训练数据线性可分时,存在无穷个分离超平面可以将两类数据正确分开。
感知机利用误分类最小策略,求得分离超平面,不过此时的解有无穷多个。
线性可分支持向量机利用间隔最大化求得最优分离超平面,这时,解是唯一的。
另一方面,此时的分隔超平面所产生的分类结果是最鲁棒的,对未知实例的泛化能力最强。
三. SVM的目标(硬间隔):有两个目标:第一个是使间隔最大化,第二个是使样本正确分类,由此推出目标函数:稍微解释一下,w是超平面参数,目标一是从点到面的距离公式化简来的,具体不展开,目标二就相当于感知机,只是把大于等于0进行缩放变成了大于等于1,为了后面的推导方便。
有了两个目标,写在一起,就变成了svm的终极目标:四. 求解目标(硬间隔):从上面的公式看出,这是一个有约束条件的最优化问题,用拉格朗日函数来解决。
上式的拉格朗日函数为:在满足Slater定理的时候,且过程满足KKT条件的时候,原问题转换成对偶问题:先求内部最小值,对和 b 求偏导数=0可得将其带入到上式中可以得到此时需要求解α ,利用SMO(序列最小优化)算法:五. 软间隔:不管直接在原特征空间,还是在映射的高维空间,我们都假设样本是线性可分的。
虽然理论上我们总能找到一个高维映射使数据线性可分,但在实际任务中,寻找一个合适的核函数核很困难。
svm算法公式

svm算法公式【原创版】目录1.SVM 算法概述2.SVM 算法公式简介3.SVM 算法公式详解4.SVM 算法公式的应用5.总结正文一、SVM 算法概述支持向量机(Support Vector Machine,SVM)是一种经典的二分类机器学习算法,由 Corinna Cortes 和 Vladimir Vapnik 于 1995 年提出。
它的主要思想是找到一个最佳超平面,使得不同类别的数据点之间的距离最大化。
SVM 算法在实际应用中表现出卓越的性能,被广泛应用于模式识别、图像识别、文本分类等领域。
二、SVM 算法公式简介SVM 算法的核心是基于最大间隔分隔超平面,其公式可以表示为:1.找到一个超平面 $w * x + b = 0$,使得所有样本点到这个超平面的几何距离最大化。
2.通过对所有样本点进行分类,得到分类结果。
三、SVM 算法公式详解SVM 算法的公式可以分为以下三个部分:1.最大间隔超平面假设我们有一组样本点 $(x_1, y_1), (x_2, y_2),..., (x_n, y_n)$,其中 $y_i in {-1, 1}$ 表示样本点属于正负两个类别。
我们的目标是找到一个超平面 $w * x + b = 0$,使得所有样本点到这个超平面的几何距离最大化。
我们可以通过拉格朗日乘子法(Lagrange Multiplier)来解决这个问题。
2.拉格朗日乘子法拉格朗日乘子法是一种用于求解带约束优化问题的方法。
在 SVM 算法中,我们希望在满足约束条件的前提下,最大化超平面的几何距离。
我们可以引入拉格朗日乘子 $alpha_i$,将问题转化为求解无约束问题的最大化问题。
3.软间隔和硬间隔根据拉格朗日乘子法的求解结果,我们可以得到两种类型的超平面:软间隔超平面和硬间隔超平面。
- 软间隔超平面:当某些样本点不满足约束条件时,我们称之为软间隔超平面。
在这种情况下,我们可以继续调整超平面,使得更多的样本点满足约束条件。